
1.1 Non-Normative References

[ebCPPA 3.0]
OASIS Working Draft. D. Moberg. ebXML Collaboration Protocol Profiles and Agreements. Version 3.0. Editor’s Draft.
[HL7ebMSv3]
P. Knapp. HL7 Version 3 Standard: Transport Specification - ebXML, Release 2. http://www.hl7.org/v3ballot2007sep/html/infrastructure/transport/transport-ebxml.htm.

[RFC 4130]
MIME-Based Secure Peer-to-Peer Business Data Interchange Using HTTP, Applicability Statement 2 (AS2). IETF, juli 2005.
http://www.ietf.org/rfc/rfc4130.txt.

[WS-RM11]
OASIS Standard. D. Davis, et al, eds, Web Services Reliable Messaging (WS-ReliableMessaging. Version 1.1, 2007.
http://docs.oasis-open.org/ws-rx/wsrm/v1.1/wsrm.pdf
[XPath]
W3C Recommentation J. Clark and S. DeRose. XML Path Language (XPath). Version 1.0.
URL http://www.w3.org/TR/xpath.

[XSLT]
W3C Recommendation. XSL Transformations (XSLT). Version 2.0. January 2007.
http://www.w3.org/TR/xslt20/

A. Routing Scenarios (non-normative)
<JD> There is more than Scenarios here: could be titled “Routing Scenarios and Best Practices”.

In multi-hop environments, ebXML intermediaries provide a flexible mechanism for the routing of ebXML messages based on standardized SOAP header content. The ebMS 3.0 business document header offers a rich set of metadata elements with a standardized semantics that support a variety of messaging and routing scenarios, including document exchange and service invocation. This non-normative section discusses some routing scenarios and requirements enabled by the use of ebXML intermediaries.
A.1 Routing
The ebMS 3.0 routing function defined by this profile <JD> is that a profile..or just a use case? supports messages carrying arbitrary payloads, including non XML data and encrypted data. It also supports routing non-ebMS messages using the ebint:RoutingInput WS-Addressing reference parameter. This section illustrates some scenarios that are supported by this profile:
· Routing based on business partner identity

· Routing based on business partner domains
· Routing based on requested service and action
· Defining separate logical environments for development, test, acceptance and production.
These scenarios are typical of many messaging environments and have been identified in some deployments of version 2.0 of ebXML messaging. All scenarios use routing based on pattern matching against SOAP message headers rather than target URI or IP address.
A.2 Routing Patterns or Routing Rules?
To route messages, intermediaries need some configuration mechanism based on routing rules. Conceptually, a routing rule can be thought of as a pair of a message pattern and a set of next MSH configuration parameters. <JD> Or more generally: routing rule = { message pattern + forwarding pattern + configuration data accessory to the forwarding pattern} . In case of forwarding pattern (B), can we really talk of “next MSH config parameters” ? The message is forwarded to an MPC configured for pulling. Other MSHs know about this MPC and will pull on it. There might or might not be any authorization data associated with this pull , A message pattern can be expressed using XPath expressions [XPath]. A rule conflict resolution mechanism like the one defined in section 6.4 of [XSLT] could be used to select among multiple matching patterns.
This annex assumes three categories of message patterns:

· Patterns matching eb3:UserMessage content.

· Patterns matching ebint:RoutingInput structures

· Patterns used to forward eb3:PullRequests

The following example is an example of the first category:

//eb3:UserMessage[1]/eb3:PartyInfo/eb3:To/eb3:PartyId/text()

When applied to a SOAP message, this expression matches content in the first eb3:UserMessage element only and selects the destination business partner based on the PartyID value (see A.3). The restriction to the first user message element avoids any routing ambiguity in situations where multiple UserMessage elements are “bundled” in a single SOAP envelope: all but the first user message structures are ignored by the routing function.

The second category of message patterns is needed because of the requirement to route messages other than ebMS user messages, such as ebMS response signals (receipts and errors) and non-ebMS messages like the sequence lifecycle management messages of [WS-RM11]. These messages can be routed using the ebint:RoutingInput WS-Addressing routing parameter. An example of a pattern matching these messages using the same metadata as the previous pattern is:

//ebint:RoutingInput/ebint:UserMessage/ebint:PartyInfo/eb3:To/eb3:PartyId/text()

For any routing rules operating on eb3:UserMessages, a rule operating on ebint:UserMessages is needed to route these messages to the exact same destination.

The third category of routing <JD> or pattern of routing - involves routing eb3:PullRequests in the “end-to-end pulling” case (ref draft 0.22 section 1.5.2.2). In this scenario, the intermediary needs to connect to another ebMS node when it receives an ebMS message containing an eb:PullRequest.
<eb3:SignalMessage>

 <eb3:MessageInfo>

 <eb3:Timestamp>2009-05-21T11:30:11.320Z</eb3:Timestamp>

 <eb3:MessageId>30c6eb92-6329-44c7-a4a3-468d503c01f8@seller.com</eb3:MessageId>

 </eb3:MessageInfo>

 <eb3:PullRequest mpc="e5c31ef7-d750-4db8-b4dc-13a751d80b9a" />

</eb3:SignalMessage>

This third case of routing is similar to a regular pull request message except that there is no periodic or other scheduling of pull requests (the pull is triggered by an incoming pull request), that there is no authorization done by the intermediary (this is relayed transparently) and that the incoming request must wait for the related outgoing request to complete. <JD> We should mention this pattern only relies on the mpc value so far. Not exclusively used by the routing of PullRequest: could also rely on Pattern #2.
A.3 Business Partner Identification

It is a common requirement for electronic business messages to be routed based on the identification code for the intended recipient business partner. Examples of these include:

· EDI Value Added Networks (VANs) route messages based on partner identifiers in EDIFACT interchange header segments or ASX X12 Interchange Control Headers.

· Many messaging protocols have header elements to identify business partners using codes. An example are the AS2-From and AS2-To system identifiers [RFC 4130].

In ebXML, partner identification is expressed as a combination of a PartyId string, qualified by an optional type attribute. The content of the PartyId type can be retrieved from an incoming ebMS SOAP message using the following XPath expression:
//eb3:UserMessage[1]/eb3:PartyInfo/eb3:To/eb3:PartyId/@type
The following expression retrieves the actual partner identifier string for the PartyId
//eb3:UserMessage[1]/eb3:PartyInfo/eb3:To/eb3:PartyId/text()
An ebXML message containing the following destination information:
<eb3:To>

 <eb3:PartyId type="urn:oasis:names:tc:ebxml-cppa:partyid-type:0002"
 >123456789</eb3:PartyId>

 <eb3:Role>Seller</eb3:Role>

</eb3:To>

matches the following XPath expression:
//eb3:UserMessage[1]/eb3:PartyInfo/eb3:To/eb3:PartyId[@type='urn:oasis:names:tc:ebxml-cppa:partyid-type:0002'][text()='123456789']
An intermediary could use this XPath expression to retrieve the transport configuration parameters for the next node from ebXML messages.
This example adopts the convention from [ebCPPA 3.0] to use the urn:oasis:names:tc:ebxml-cppa:partyid-type: prefix of a PartyId type attribute value to indicate that the code list agency used is itself registered in ISO 6523. Value 0002 in the ISO 6523 registry is assigned to SIRENE, the business registry for France.

The combination of a “Push” channel binding for incoming messages with a “Pull” channel binding for outgoing messages and the use of PartyId for routing allows ebMS intermediaries to offer a store-and-collect functionality that replicates the “mailbox” functionality of EDI value-added networks and SMTP-based message exchanges. This enables the intermediary to support situations where both business partners have addressability and connection issues: the receiver can receive messages even if the sender is offline or not addressable, as long as the sender has stored the message on an intermediary accessible to both.
<JD> The store-and-collect scenario deserves a separate sub-section ? (at same level as A.5 end-to-end pulling) Illustration of the routing rule associated with it. Would be useful to insert here the routing functions examples in “C-Intermediary.example” file.
It would be good to indicate that the routing techniques discuss here can also extend beyond the ebMS Intermediary functions: E.g. another routing practice could be to involve Payload elements, e.g. route based on some payload content. In that case the XPath matching technique works as well. One approach is to bring-up these crucial payload elements in the header, as “message properties”. The other is just to extend the scope of message pattern (and of the XPath match) to the SOAP Body.
A.4 Business Partner Domains

A generalization from the previous scenario is a scenario where intermediaries are used to connect different communities that all use their own, distinct business identification schemas. Examples of these include cross-border trade and collaboration of government agencies across sectors.
As a first example, assume an organization in the Netherlands exchanges business documents with an organization in France. The organization in the Netherlands has a party identifier from the Association of Chambers of Commerce and Industry in the Netherlands, which has the value 0106 in ISO 6523. The party identification type for the organization in France could use the SIRENE identification (cf. A.3). A system of national intermediaries could be set up where each national intermediary provides secure routing to businesses in a single country, based on PartyId where the type is constrained to the national type. In addition to this, the intermediary would act as a relay to similar intermediaries in other countries.
This routing can be based only on the value for type and does not need to refer to any particular partner identification code. For example, the hypothetical intermediary in France could have a single routing rule to forward all messages sent to businesses in the Netherlands to an intermediary in the Netherlands that can deliver messages based on the 0106 PartyId type. That rule would use the following XPath expression:
//eb3:UserMessage[1]/eb3:PartyInfo/eb3:To/eb3:PartyId[@type= 'urn:oasis:names:tc:ebxml-cppa:partyid-type:0106']
Similarly, the intermediary in the Netherlands would have a single rule to forward messages to businesses in France to its counterpart in France:

//eb3:UserMessage[1]/eb3:PartyInfo/eb3:To/eb3:PartyId[@type= 'urn:oasis:names:tc:ebxml-cppa:partyid-type:0002']
A similar requirement is common in environments where multiple government sectors (e.g. healthcare, criminal justice, social security, immigration) have sectoral (private) networks and messaging infrastructures that are based on sector-specific identification schemas. For instance, the healthcare system could use the urn:hl7ii type to identify HL7 V3 instances [HL7ebMSv3]. Other sectors would use their own, distinct, organization identification mechanisms. A cross-sector routing mechanism supports collaboration among agencies across sector boundaries without requiring a single identification scheme.
1.2 Services
The ebXML document header also supports service-oriented messaging based on the eb3:Service and eb3:Action elements. An ebMS 3.0 intermediary can use these standard and required header elements to route request message to services providers and reverse route the response messages to the service consumers. Their values can be retrieved using the following XPath expressions:
//eb3:UserMessage[1]/eb3:CollaborationInfo/eb3:Service
//eb3:UserMessage[1]/eb3:CollaborationInfo/eb3:Action

As an example, the following pattern matches ebMS messages sent to a “Procurement” service.
//eb3:UserMessage[1]/eb3:CollaborationInfo/eb3:Service[text()='Procurement']
In many larger environments there will be several (potential or competing) providers of a single particular service. This means that in practice routing rules are likely to require both a partner identifier (as described in A.3) and a service identifier.

//eb3:UserMessage[1][eb3:PartyInfo/eb3:To/eb3:PartyId[@type='urn:oasis:names:tc:ebxml-cppa:partyid-type:0002'] [text()='123456789']]/eb3:CollaborationInfo/eb3:Service[text()='Procurement']

In large or distributed organizations, there may be multiple data centers hosting the business applications that provide distinct services. Each of these data centers could have its own ebXML message service handler endpoints. A separate rule would map messages related to this other service to a distinct next MSH.

//eb3:UserMessage[1][eb3:PartyInfo/eb3:To/eb3:PartyId[@type='urn:oasis:names:tc:ebxml-cppa:partyid-type:0002'] [text()='123456789']]/eb3:CollaborationInfo/eb3:Service[text()='Marketing']

Only the last intermediary delivering messages to these MSHs needs to know which data center provides which service. When using intermediaries, services can be relocated from one data center and MSH to another, data centers can be reorganized and consolidated, services outsourced or in-sourced, without the business partners using services from those data center having to reconfigure their MSH configurations.
1.3 Separate Environments

Like other information systems, messaging systems typically follow a lifecycle through various stages, such as development, test, acceptance and production. It is common practice in service management frameworks to have different environments for these stages so that versions of systems and services in various development stages are separated and can be developed, tested and deployed in parallel. In these situations it is important that messages from one environment never cross boundaries with other environments. For instance, a test message should never be confused with a production message.
There are multiple approaches to separating these environments. One approach is to use distinct (virtual) private networks, each containing endpoints and intermediaries for each environment. When using messaging intermediaries, each intermediary participates in at most one environment. Another approach is to partition the endpoints and intermediaries logically and to configure messaging intermediaries to keep the message traffic from or to systems in one particular logical environment separate from other environments.
[image: image1.png]Production
Message

—s
Partner A Partner A
Production Production
Business Endpoint
Application MSH

—

—
Partner A Partner A
Test Test
Business Endpoint
Application MSH

—

Response

Production

Production

Test
Response

Partner B Partner B
Production Production
Endpoint Business
MSH Application
Partner B Partner B
Test Test
Endpoint Business
MSH Application

Figure 1 Separate environments for test and production
The routing function of an ebXML intermediary provides multiple approaches to meet this requirement. One approach is to use the ebMS concept of message partition channels to assign messages to a Development, Test, Acceptance and Production partition. An intermediary can route messages based on MPC using patterns like:

//eb3:UserMessage[1][@mpc='Production']
An alternative approach is to use the ebMS 3.0 feature of MessageProperties and have a Property to classify messages according to environment.
<eb3:MessageProperties>

 <eb3:Property name="Environment">Production</eb3:Property>

</eb3:MessageProperties>

This approach is more flexible as environments may be partitioned in more dimensions (e.g. for versioning services) and additional properties could be added to reflect this.

The name and values of these properties need to be standardized and used consistently in the community. A test MSH can be configured to always insert (or check for the presence of) this property and the correct value in any outgoing message and validate its correct use in incoming messages. Intermediaries can deploy routing rules that reference these properties, possibly in combination with the other message header elements discussed in this section or other properties, to route messages within the appropriate logical environment.

//eb3:UserMessage[1]/eb3:MessageProperties/eb3:Property[@name='Environment'][text()='Production']
A.5 End-to-end Pulling (this could be more generally: “Some patterns of multi-hop transfers”)
And could include as subsections: (a) store-and-collect, (b) end-to-end pulling.

A separate category of messages to route are ebMS PullRequests. An ebXML intermediary may handle PullRequests either as requests to retrieve messages it received from other message handlers and is storing on behalf of these, or as request messages that need to be forwarded synchronously to a remote ebMS 3.0 server. The latter case is referred to as end-to-end pulling in section 1.5.2.2 of draft #23 and involves a Receiving MSH to pull messages from a remote Sender MSH via an Intermediary MSH. A routing rule supporting such end-to-end pulling could use a pattern containing the mpc, for example:
//eb3:SignalMessage/eb3:PullRequest[@mpc='e5c31ef7-d750-4db8-b4dc-13a751d80b9a']
