
–

Enhancing ebXML Registries to Make them OWL
Aware *

ASUMAN DOGAC asuman@srdc.metu.edu.tr

YILDIRAY KABAK yildiray@srdc.metu.edu.tr

GOKCE B. LALECI banu@srdc.metu.edu.tr

Software Research and Development Center
Department of Computer Engineering
Middle East Technical University (METU)
06531, Ankara, Turkiye

CARL MATTOCKS carlmattocks@checkmi.com

CHECKMi, USA

FARRUKH NAJMI farrukh.najmi@sun.com

Sun Micro Systems, USA

JEFF POLLOCK jeff.pollock@networkinference.com

Network Inference, USA

Abstract. In this paper, we address how ebXML registry semantics support can be further
enhanced to make it OWL aware. There are basically three ways of achieving this: The first one
is mapping OWL constructs to ebXML registry information model constructs without modifying
the registry architecture and implementation. In this way, the semantic explicitly stored in the
registry can be retrieved through querying; yet, the application program must contain additional
code to process this semantics. The second approach is additionally providing predefined stored
procedures in the registry for processing the OWL constructs. We believe that this approach
is quite powerful to associate semantics with registry objects: it becomes possible to retrieve
knowledge through queries and the enhancements to the registry are generic. The capabilities
provided move the semantics support beyond what is currently available in ebXML registries and it
does so by using a standard ontology language. The third approach is changing the ebXML registry
to support OWL with full reasoning capabilities. However, this approach requires considerable
changes in the registry architecture.

Since our aim is to make the ebXML registry OWL aware by keeping the registry specification
intact, we take the second approach. To be able to demonstrate the benefits of the enhancements,
we also show how the resulting semantics can be made use of in Web service discovery and
composition.

This work is realized within the scope of IST-2104 SATINE project as a proposal to OASIS
ebXML Semantic Content Management subcommittee which is working on possible semantic
extensions to the registry.

* This work is supported in part by the European Commission, Project No: IST-1-002104-STP
SATINE and by the Scientific and Technical Research Council of Turkey (TÜBÍTAK), Project
No: EEEAG 104E013

2 DOGAC ET. AL.

1. Introduction

Currently, semantics is becoming a much broader issue than it used to be since
several application domains are making use of ontologies to add the knowledge
dimension to their data and applications. One of the driving forces for ontologies is
the Semantic Web initiative [2]. As a part of this initiative, W3C’s Web Ontology
Working Group defined Web Ontology Language (OWL) [31]. OWL is defined as
three different sublanguages: OWL Full, OWL DL and OWL Lite, each geared
towards fulfilling different requirements [22].

In this paper, we investigate how ebXML registries can be made OWL aware. In
this way, we believe a mutually beneficial relationship is created between ebXML
registries and the OWL ontology language: the former gains the ability to store
OWL ontologies and the mechanisms provided by the ebXML registry proves very
useful in associating the semantics defined in an OWL ontology with the registry
objects. In this work, we use OWL Lite since we are using ontologies to get knowl-
edge through querying rather than reasoning.

There are three alternatives to support OWL Lite ontologies through ebXML
registries:

• Various constructs of OWL can be represented by ebXML classification hierar-
chies with no changes in the registry architecture specification and implemen-
tation. In this way, although some of the OWL semantics stored in an ebXML
registry can be retrieved from the registry through ebXML query facilities, fur-
ther processing needs to be done by the application program to make use of the
enhanced semantics. For example, we can introduce “subClassOf” “association”
to the ebXML registry to handle OWL multiple inheritance. Yet since ebXML
registry does not natively support such an association type, to make any use of
this semantics, the application program must have the necessary code, say, to
find out all the super classes of a given class.

• The code to process the OWL semantics can be stored in ebXML registry archi-
tecture through predefined procedures. For example, to find the super classes of
a given class (defined through a new association type of “subClassOf”), a stored
procedure can be defined. The user can call this procedure when the need arises.
Furthermore, the stored procedures can also be called transparently to the user
by changing only the query manager component of the registry.

• The third approach is changing the ebXML registry architecture to support
OWL with full reasoning capabilities. Reasoning entails the derivation of new
data that is not directly stored in the registry. To deduce this data, rules need to
be stored in the registry. However, this approach requires considerable changes
in the registry architecture and brings about the efficiency considerations of rule
based systems. Since our aim is to make ebXML registry OWL aware rather
than specifying a new registry architecture, this approach will not be pursued
any further in this paper.

3

− equivalentClass

− sameAs
− differentFrom
− AllDifferent
− distinctMembers

− equivalentProperty

(In)Equality
− Class (Thing, Nothing)
− rdfs: subClassOf
− rdf:Property
− rdfs: subPropertyOf
− rdfs:domain
− rdfs:range
− individual

RDF Schema Features

− InverseFunctionalProperty

− ObjectProperty
− DatatypeProperty
− inverseOf
− TransitiveProperty
− SymmetricProperty
− FunctionalProperty

Property Characteristics

−xsd datatypes
Datatypes

−intersectionOf
Class Intersection

− minCardinality
− maxCardinality
− cardinality

Restricted Cardinality
− Restriction
− onProperty
− allValuesFrom
− someValuesFrom

Property Restrictions

Figure 1. OWL Lite Constructs

Being OWL aware entails the following:

• Representing OWL constructs through ebXML constructs.

• Automatically generating ebXML constructs from the OWL descriptions and
storing the resulting constructs into the ebXML registry.

• Querying the registry for enhanced semantics.

Furthermore, we show how the resulting semantics can be made use of in Web ser-
vice discovery and composition. This work is realized within the scope of IST-2104
SATINE project as a proposal to OASIS ebXML Semantic Content Management
subcommittee which is working on possible semantic extensions to the registry.

The paper is organized as follows: Section 2 briefly summarizes the main tech-
nologies involved in this work, namely, OWL and ebXML Registry architecture. In
Section 3, we give an overall view of the approach and describe how the proposed en-
hancements fit into ebXML architecture. Section 4 describes how semantics defined
in OWL ontologies can be represented and accessed in ebXML registries. Section 5
put the work described in this paper into perspective by summarizing the ebXML
semantic standardization efforts undertaken by the OASIS open source standards
body. Section 6 gives the related work. Finally, Section 7 concludes the paper and
presents the future work.

2. OWL and ebXML RIM

In order to describe how OWL ontologies can be stored in ebXML registries we first
briefly summarize the semantic constructs they each provide.

4 DOGAC ET. AL.

2.1. Web Ontology Language (OWL)

Web Ontology Language (OWL) is a semantic markup language for publishing
and sharing ontologies on the World Wide Web [31]. OWL is derived from the
DAML+OIL Web Ontology Language [7] and builds upon the Resource Description
Framework (RDF) [37, 38].

OWL describes the structure of a domain in terms of classes and properties.
Classes can be names (URIs) or expressions and the following set of constructors
are provided for building class expressions: owl:intersectionOf, owl:unionOf, owl:-
complementOf, owl:oneOf, owl:allValuesFrom, owl:someValuesFrom, and owl:has-
Value.

In OWL, properties can have multiple domains and multiple ranges. Multiple
domain (range) expressions restrict the domain (range) of a property to the inter-
section of the class expressions.

Another aspect of the language is the axioms supported. These axioms make it
possible to assert subsumption or equivalence with respect to classes or properties
[19]. The following are the set of OWL axioms: rdfs:subClassOf, owl:sameClassAs,
rdfs:subPropertyOf, owl:samePropertyAs, owl:disjointWith, owl:sameIndividualAs,
owl:differentIndividualFrom, owl:inverseOf, owl:transitiveProperty, owl:functional-
Property, and owl:inverseFunctionalProperty. OWL constructs are given in more
detail in Section 4.1 while describing their representation in ebXML registry.

OWL provides three decreasingly expressive sublanguages [41]:

• OWL Full is meant for users who want maximum expressiveness and the syn-
tactic freedom of RDF with no computational guarantees. It is unlikely that
any reasoning software will be able to support complete reasoning for OWL Full
[22].

• OWL DL supports those users who want the maximum expressiveness while re-
taining computational completeness (all conclusions are guaranteed to be com-
putable) and decidability (all computations will finish in finite time). OWL DL
is so named due to its correspondence with description logics which form the
formal foundation of OWL.

• OWL Lite supports those users primarily needing a classification hierarchy and
simple constraints.

Within the scope of this paper, we consider OWL Lite constructs which are given
in Figure 1 and in the rest of the paper; OWL is used to mean OWL Lite unless
otherwise stated.

2.2. ebXML Registry Architecture and Information Model

An ebXML registry consists of both a registry and a repository. The repository
is capable of storing any type of electronic content, while the registry is capable

5

��������
ClassificationNode

��������
Classification

��������
RegistryEntry

��������
Association

��������
ExternalLink

��������
RegistryObject

��������
ClassificationScheme

��������
RegistryPackage

��������
Service

Figure 2. A Part of the ebXML RIM Class Hierarchy

of storing metadata that describes content. The content within the repository is
referred to as “repository items” while the metadata within the registry is referred
to as ”registry objects”. Clients access the registry and the repository via the
ebXML registry API as defined in [16]. The API has two main interfaces:

• LifeCycleManager (LCM) is the interface responsible for all object lifecycle
management requests.

• QueryManager (QM) is the interface responsible for handling all query requests.

The LifeCycleManager service enforces the life cycle rules for objects. The Query-
Manager interface of the ebXML Registry API provides access to the query service
of the ebXML registry. A client uses the operations defined by this service to query
the registry and discover objects. Supported query syntaxes include:

• An XML Filter Query syntax,

• An SQL-92 query, and

• A stored query syntax that allows client to invoke queries stored in the server
by simply identifying the parameterized query and providing parameters for the
query.

2.2.1. ebXML Registry Information Model

The ebXML registry defines a Registry Information Model (RIM) [15] which spec-
ifies the standard metadata that may be submitted to the registry. This com-
plements the ebXML Registry API which defines the interface clients may use to
interact with the registry. Figure 2 presents the part of the ebXML RIM [15] related
with storing metadata information. The main features of the information model
include:

• RegistryObject: The top level class in RIM is the “RegistryObject”. This is
an abstract base class used by most classes in the model. It provides minimal
metadata for registry objects.

6 DOGAC ET. AL.

• Object Identification: All RegistryObjects have a globally unique id, a human
friendly name and a human friendly description.

• Slot: “Slot” instances provide a dynamic way to add arbitrary attributes to
“RegistryObject” instances.

• Object Classification: Any RegistryObject may be classified using Classifica-
tionSchemes and ClassificationNodes which represent individual class hierarchy
elements. A ClassificationScheme defines a tree structure made up of “Classifi-
cationNode”s. The ClassificationSchemes may be user-defined.

• Object Association: Any RegistryObject may be associated with any other Reg-
istryObject using an Association instance where one object is the sourceObject
and the other is the targetObject of the Association instance. An Association
instance may have an associationType which defines the nature of the associa-
tion. There are a number of predefined Association Types that a registry must
support to be ebXML compliant [15] as shown in Table 1. ebXML allows this
list to be expanded.

• Object Organization: RegistryObjects may be organized in a hierarchical struc-
ture using a familiar file and folder metaphor. The RegistryPackage instances
serve as folders while RegistryObjects server as files in this metaphor. In
other words RegistryPackage instances group logically related RegistryObject
instances together.

• Service Description: The Service, ServiceBinding and SpecificationLink classes
provide the ability to define service descriptions including WSDL and ebXML
CPP/A.

As a summary, ebXML registry provides a persistent store for registry content.
The current registry implementations store registry data in a relational database.
ebXML Registry Services Specification defines a set of Registry Service interfaces
which provide access to registry content. There are a set of methods that must
be supported by each interface. A registry client program utilizes the services of
the registry by invoking methods on one of these interfaces. The Query Manager
component also uses these methods to construct the objects by obtaining the re-
quired data from the relational database through SQL queries. In other words,
when a client submits a request to the registry, registry objects are constructed by
retrieving the related information from the database through SQL queries and are
served to the user through the methods of these objects.

3. Proposed Enhancements to the ebXML Registry Architecture

Being OWL aware entails the following enhancements to the ebXML registry:

• Representing OWL constructs through ebXML constructs: ebXML provides a
classification hierarchy made up of classification nodes and predefined type of

7

Name Description

RelatedTo Defines that source RegistryObject is related to target RegistryObject.

HasMember Defines that the source RegistryPackage object has the target

RegistryObject object as a member.

ExternallyLinks Defines that the source ExternalLink object externally

links the target RegistryObject object.

Contains Defines that source RegistryObject contains the target

RegistryObject.

EquivalentTo Defines that source RegistryObject is equivalent to the target

RegistryObject.

Extends Defines that source RegistryObject inherits from or specializes

the target RegistryObject.

Implements Defines that source RegistryObject implements the functionality

defined by the target RegistryObject.

InstanceOf Defines that source RegistryObject is an Instance of target

RegistryObject.

Supersedes Defines that the source RegistryObject supersedes the target

RegistryObject.

Uses Defines that the source RegistryObject uses the target RegistryObject

in some manner.

Replaces Defines that the source RegistryObject replaces the target

RegistryObject in some manner.

SubmitterOf Defines that the source Organization is the submitter of the target

RegistryObject.

ResponsibleFor Defines that the source Organization is responsible for the ongoing

maintainence of the target RegistryObject.

OffersService Defines that the source Organization object offers the target Service

object as a service.

Table 1. Predefined Association Types in ebXML Registries

associations between the registry objects. We represent OWL Lite constructs
by using combinations of these constructs and define additional types of asso-
ciations when necessary. For example, “OWL ObjectProperty” is defined by
introducing a new association of type “objectProperty”. The details of this
work are presented in Section 4.

• Automatically generating ebXML constructs from the OWL descriptions and
storing the resulting constructs into the ebXML registry: We developed a tool
to create an ebXML Classification Hierarchy from a given OWL ontology auto-
matically by using the transformations described in Section 4. The OWL file is
parsed using Jena [21], the classes together with their property and restrictions

8 DOGAC ET. AL.

+ Public Method
Protected Method
− Private Method

attributes:

+ Public Method
Protected Method
− Private Method

attributes:

Classification

NodeQM

ebXML
RS

OWL

Ontology

AdHoc

Query

ebXML RS: ebXML Registry Services
LCM: Life Cycle Manager
QM: Query Manager

�
�
�
�

RegistryObjects
Relational DB

Association

Persistent Registry Objects

Existing ebXML
stored procedures

− findTransitiveRanges
− findInverseRanges
− findSuperClasses ...

Stored procedures to handle
OWL Semantics

Association ClassificationNode
LCM

OWL aware ebXML Registry

Figure 3. Enhancements to the ebXML Registry Architecture

are identified, and the ”SubmitObjectsRequest” is prepared automatically. This
request is then sent to ebXML registry which in turn creates necessary classes
and associations between them.

• Querying the registry for enhanced semantics: We provide additional stored
procedures to process the OWL semantics introduced in Section 4. A user can
handle the OWL semantics by using these stored procedures or through SQL.
Note that stored procedures and SQL are two of the supported query syntaxes
in ebXML. In order to handle the OWL semantics transparently to the user
through the third query syntax, namely, the “filter query”, the Query Manager
needs to be modified to invoke the related stored procedures we have introduced,
when necessary.

The enhanced architecture is shown in Figure 3. The OWL constructs are rep-
resented entirely through ebXML constructs by defining new types of associations
which is allowed by the registry architecture. Hence there are no changes in the
relational database schemas.

4. Providing OWL Lite Support to ebXML Registries

In this section, we first describe how OWL constructs can be represented through
ebXML registry information model constructs. We then provide the stored pro-

9

Table 2. ebXML Relational Schemas

ClassificationNode(accessControlPolicy, id, objectType, code, parent, path)
Association(accessControlPolicy, id, objectType, associationType, sourceObject,
targetObject, isConfirmedBySourceOwner, isConfirmedByTargetOwner)
Name (charset, lang, value, parent)

cedures to retrieve richer sets of results from the registry based on OWL Lite
constructs. The stored procedures are defined using the ebXML relational schema
specifications. The schemas used in the examples are given in Table 2.

In Section 4.2, to demonstrate the benefits of the additional semantics incorpo-
rated into the ebXML registries, we describe a semantic-based service composition
tool. This tool partially automates service discovery and composition in OWL
aware ebXML registries.

4.1. Mapping OWL Ontologies through ebXML Classification Hierar-
chies and Providing Registry Support for Processing the OWL
Constructs

From the descriptions presented in Section 2, it is clear that there are considerable
differences between an OWL ontology and an ebXML class hierarchy in terms of
semantic constructs. In this section, we provide the details of representing the OWL
Lite constructs in an ebXML registry and then give the required stored procedures
to process this semantics.

4.1.1. OWL Classes and Properties

OWL classes can be represented through “ClassificationNodes” and RDF properties
that are used in OWL can be treated as “Associations”. An “Association” instance
represents an association between a “source RegistryObject” and a “target Reg-
istryObject”. Hence the target object of “rdfs:domain” property can be mapped to
a “source RegistryObject” and the target object of “rdfs:range” can be mapped to
a “target RegistryObject”. In OWL, properties can be of two types:

• ObjectProperty type defines relations between instances of two classes.

• DatatypeProperty type defines relations between instances of classes and XML
Schema datatypes.

To represent OWL ObjectProperty (or DatatypeProperty) in ebXML, we define a
new type of association called “ObjectProperty” (or “DatatypeProperty”). Con-
sider the following example which defines an object property “hasAirport” whose
domain is “City” and whose range is “Airport”:

<owl:ObjectProperty rdf:ID="hasAirport">
<rdfs:domain rdf:resource="#City"/>

10 DOGAC ET. AL.

<rdfs:range rdf:resource="#AirPort"/>
</owl:ObjectProperty>

In order to define this property in ebXML RIM, first, two classification nodes are
created, namely “City” and “Airport”. Then, an association, called “hasAirport”
of type “ObjectProperty”, is defined where the “sourceObject” is “City” and the
“targetObject” is “Airport”, as shown in the following:
<rim:ClassificationNode id = ’City’parent= ’Country’> </rim:ClassificationNode>
<rim:ClassificationNode id = ’Airport’ parent= ’TravelThing’> </rim:ClassificationNode>
<rim:Association id = ’promotion’associationType = ’ObjectProperty’ sourceObject =
’City’ targetObject = ’Airport’ >
</rim:Association>

Similarly, to represent OWL DatatypeProperty in ebXML, we define a new type
of association called “DatatypeProperty”. Consider the following example which
defines an datatype property “hasPrice” whose domain is the “AirReservationSer-
vices” and whose range is “XMLSchema nonNegativeInteger”:
<owl:DatatypeProperty rdf:ID="hasPrice">

<rdfs:subpropertyOf rdf:resource="http://www.daml.org/services/daml-s/2001/05/Profile.owl"/>
<rdfs:domain rdf:resource="#AirReservationServices"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/10/XMLSchema/nonNegativeInteger"/>

</owl:DatatypeProperty>

To describe this semantics, we define a new association of type “DatatypeProp-
erty” as shown in the following:
<rim:Association id = ’hasPrice’ associationType = ’DatatypeProperty’

sourceObject = ’AirReservationServices’
targetObject = ’integer’ >
<rim:Name> <rim:LocalizedString value ="hasPrice"/></rim:Name>

</rim:Association>

OWL allows the use of XML Schema datatypes to describe part of the datatype
domain by simply including their URIs within an OWL ontology. In ebXML, XML
Schema datatypes are used by providing an external link from the registry, as
demonstrated in the following:
<rim:ExternalLink id = "integer"

externalURI="http://www.w3.org/2001/XMLSchema#integer" >
<rim:Name> <rim:LocalizedString value = "XML Schema integer"/>

</rim:Name>
</rim:ExternalLink>

Once such ObjectProperty or DatatypeProperty definitions are stored in the
ebXML registry, they can be retrieved through ebXML query facilities by the user.
However, providing some stored procedures for this purpose facilitates the direct
access. We therefore propose the following stored procedure to be available in the
registry which retrieves all the object properties of a given classification node:
CREATE PROCEDURE findObjectProperties($className) AS
BEGIN
SELECT A.id
FROM Association A, Name_ N, ClassificationNode C
WHERE A.associationType LIKE ’objectProperty’ AND

C.id = N.parent AND
N.value LIKE $className AND
A.sourceObject = C.id

END;

11

Association
type subClassOf

target object
source object

Association
type subClassOf

target object
source object

ClassificationNode

id

ClassificationNode

id

ClassificationNode

id

OWL−S Profile AirServices

AirReservationServices

Figure 4. Representing an Example “owl:subClassOf” Property in ebXML Registry

A similar stored procedure can be given to retrieve datatype properties of a given
class.

4.1.2. OWL Class Hierarchies

When it comes to mapping OWL class hierarchies to ebXML class hierarchies,
OWL relies on RDF Schema for building class hierarchies through the use of
“rdfs:subClassOf” property and allows multiple inheritance. An ebXML Class hier-
archy has a tree structure, and therefore is not readily available to express multiple
inheritance, that is, there is a need for additional mechanisms to express multiple
inheritance. We define a “subClassOf” property as an association for this purpose.

Consider the example:

<owl:Class rdf:ID="AirReservationServices">
<rdfs:subClassOf rdf:resource="http://www.daml.org/services/owl-s/1.0/Profile.owl#Profile"/>
<rdfs:subClassOf rdf:resource="#AirServices"/>

</owl:Class>

Here, “AirReservationServices” service inherits both from “AirServices” service
and OWL-S ServiceProfile class. Figure 4 shows how this is represented through
ebXML RIM constructs.

Once we define such a semantics, we need the code to process the objects in the
registry according to the semantics implied; that is, given a class, we should be
able to retrieve all of its subclasses and/or all of its super classes. By making the
required stored procedures available in the registry, this need can be readily served.
For example, the following procedure finds all the immediate super classes of a
given class:

CREATE PROCEDURE findSuperClasses($className) AS
BEGIN
SELECT C2.id
FROM Association A, Name_ N, ClassificationNode C1, ClassificationNode C2
WHERE A.associationType LIKE ’subClassOf’ AND

C1.id = N.parent AND

12 DOGAC ET. AL.

N.value LIKE $className AND
A.sourceObject = C1.id AND
A.targetObject = C2.id

END;

Similar procedures can be provided to find all the superclasses of a given class
(not only the immediate ones) as well as all its subclasses. The following procedure
can then be used to retrieve all of the properties of a given class including the ones
inherited from its super classes:

CREATE PROCEDURE findInheritedObjectProperties ($className) AS
SELECT A.id FROM Association A, ClassificationNode C WHERE
A.sourceObject=C.id AND

A.associationType LIKE ’objectProperty’ AND
C.id IN (

SELECT parent
FROM name_
WHERE value LIKE $className
UNION
findSuperClasses($className)
}

END;

4.1.3. OWL subPropertyOf

Since OWL properties are represented through ebXML associations, we define
“rdfs:subPropertyOf” as an association between associations with a new associ-
ation type of “subPropertyOf”. The following procedure finds all the immediate
super properties of a given property and similar procedures can be made available
for all the super and subproperties:

CREATE PROCEDURE findSuperProperties($propertyName) AS
BEGIN
SELECT A3.id
FROM Association A1, Association A2, Association A3, Name_ N
WHERE A2.associationType LIKE ’subPropertyOf’ AND

A1.id = N.parent AND
N.value LIKE $propertyName AND
A2.sourceObject = A1.id AND
A2.targetObject = A3.id

4.1.4. OWL equivalentClass, equivalentProperty and sameAs Properties

In ebXML, the predefined “EquivalentTo” association (Table 1) expresses the fact
that the source registry object is equivalent to target registry object. Therefore,
“EquivalentTo” association is used to express “owl:equivalentClass”, “equivalent-
Property” and “sameAs” properties since classes, properties and instances are all
ebXML registry objects.

Given a class, the following stored procedure retrieves all the equivalent classes:

CREATE PROCEDURE findEquivalentInstances($className) BEGIN SELECT
N.value FROM Service S, Name_ N WHERE S.id IN (

SELECT classifiedObject

13

FROM Classification
WHERE classificationNode IN (

SELECT id
FROM ClassificationNode
WHERE id IN (

SELECT parent
FROM name_
WHERE value LIKE $className
)

UNION
SELECT A.targetObject
FROM Association A, Name_ N, ClassificationNode C
WHERE A.associationType LIKE ’EquivalentTo’ AND

C.id = N.parent AND
N.value LIKE $className AND
A.sourceObject = C.id

)
) AND S.id=N.parent

END;

4.1.5. OWL Transitive Property

In OWL, if a property, P, is specified as transitive then for any x, y, and z: P(x,y)
and P(y,z) implies P(x,z). Transitive property can be defined as a new type of
association in ebXML.

Consider the following example where we define the “succeeds” as a transitive
property of “TravelWebService” class:

<owl:ObjectProperty rdf:ID="succeeds">
<rdf:type rdf:resource="&owl;TransitiveProperty" />
<rdfs:domain rdf:resource="#TravelWebService" />
<rdfs:range rdf:resource="#TravelWebService" />

</owl:ObjectProperty>

Assuming the following two definitions:

<TravelWebService rdf:ID="MyHotelAvailabilityService">
<succeeds rdf:resource="#MyAirReservationService" />

</TravelWebService>

<TravelWebService rdf:ID="MyInsuranceService">
<succeeds rdf:resource="#MyHotelAvailabilityService" />

</TravelWebService>

Since “succeeds” is a transitive property, it follows that “MyInsuranceService”
succeeds “MyAirReservationService” although this fact is not explicitly stated.

To make any use of this transitive property in ebXML registries, coding is necesary
to find out the related information. We provide the following stored procedure to
handle this semantics: Given a class which is a source of a transitive property, this
stored procedure retrieves not only the target of a given transitive property, but if
the target objects have the same property, it also retrieves their target objects too.

CREATE PROCEDURE findTransitiveRelationships($className,
$propertyName) BEGIN SELECT A2.targetObject FROM Association A1,
Association A2, Name_ N1,Name_ N2, Name_ N3 WHERE
A1.associationType LIKE ’transitiveProperty’ AND

A1.id = N1.parent AND

14 DOGAC ET. AL.

N1.value LIKE $propertyName AND
A1.sourceObject = N3.parent AND
N3.value LIKE $className AND
A2.sourceObject = A1.targetObject AND
A2.id = N2.parent AND
N2.value LIKE $propertyName AND
A2.associationType LIKE ’transitiveProperty’

UNION
SELECT A1.targetObject
FROM Association A1, Name_ N1, Name_ N3
WHERE A1.associationType LIKE ’transitiveProperty’ AND

A1.id = N1.parent AND
N1.value LIKE $propertyName AND
A1.sourceObject = N3.parent AND
N3.value LIKE $className

END;

4.1.6. OWL inverseOf Property

In OWL, if a property, P1, is tagged as the “owl:inverseOf” P2, then for all x and
y: P1(x,y) iff P2(y,x). Consider for example the “succeeds” property defined in
Section 4.1.5. To denote that a certain Web service instance precedes another, we
may define the “precedes” property as an inverse of the “succeeds” property as
follows:

<owl:ObjectProperty rdf:ID="precedes">
<owl:inverseOf rdf:resource="#succeeds" />

</owl:ObjectProperty>

Then, by using the following stored procedure, we can find all the services that
precede a given service by making use of its “succeeds” property.

CREATE PROCEDURE findInverseRanges($className, $propertyName)
BEGIN
SELECT C2.id
FROM Association A, Name_ N, Name_ N2, ClassificationNode C1, ClassificationNode C2
WHERE A.id=N2.parent AND

N2.value LIKE $propertyName AND
C1.id = N.parent AND
N.value LIKE $className AND
A.sourceObject = C1.id AND
A.targetObject = C2.id

UNION
SELECT A3.sourceObject
FROM Association A1, Association A2, Association A3, Name_ N, NAME_ N2, ClassificationNode C1
WHERE A2.associationType LIKE ’inverseOf’ AND

A1.id = N.parent AND
N.value LIKE $propertyName AND
A2.sourceObject = A1.id AND
A3.id=A2.targetObject AND
C1.id = N2.parent AND
N2.value LIKE $className AND
A3.targetObject = C1.id

END;

15

4.1.7. OWL Restriction

Another important construct of OWL is “owl:Restriction”. In RDF, a property
has a global scope, that is, no matter what class the property is applied to, the
range of the property is the same. “owl:Restriction”, on the other hand, has a
local scope; restriction is applied on the property within the scope of the class
where it is defined. The aim is to make ontologies more extendable and hence
more reusable. OWL provides the following language elements to indicate the type
of restriction: owl:allValuesFrom, owl:someValuesFrom, owl:hasValue. An owl:all-
ValuesFrom element defines the class of all objects for whom the values of property
all belong to the class expression.

Consider the following example:

<owl:Class rdf:ID="AirReservationServices">
<rdfs:subClassOf rdf:resource="&service"/>
<rdfs:subClassOf rdf:resource= "#AirServices"/>
<rdfs:subClassOf>
<owlRestriction>
<owl:onProperty rdf:resource="#paymentMethod"/>
<owl:allValuesFrom rdf:resource= "#PossiblePaymentMethods"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Here “owl:Restriction” defines an anonymous class, that is the class of all things
that satisfy this restriction. The restriction is that the property “paymentMethod”
should get all of its values from the class “PossiblePaymentMethods”. By defining
“AirReservationServices” class as a subclass of this anonymous class, its “payment-
Method” property is restricted to the elements of the “PossiblePaymentMethods”.

In ebXML class hierarchies, on the other hand, an association (which represents
a property) is already defined in a local scope by associating two nodes of the class
hierarchy. The type of the restriction can be expressed by special slot values. Figure
5 shows how the example above is represented through ebXML RIM constructs.

true

Association

type

name

sourceObject

objectProperty

paymentMethod

targetObject

Slot

ClassificationNode

AirReservationServicesid

ClassificationNode

PossiblePaymentMethodsid

Slot

name

value

allValuesFrom

Figure 5. Representing an Example OWL Restriction in ebXML Registry

16 DOGAC ET. AL.

4.1.8. OWL Class Intersection

OWL provides the means to manipulate class extensions using basic set operators.
In OWL Lite, only “owl:intersectionOf” is available which defines a class that con-
sists of exactly all objects that do not belong to both of the classes. Consider the
following example:

<owl:Class rdf:ID="AirReservationServices">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AirServices" />
<owl:Class rdf:about="#ReservationServices" />

</owl:intersectionOf>
</owl:Class>

In ebXML RIM “owl:intersectionOf” set operator can be expressed as follows:

• A new association type called “intersectionOf” is created.

• The classes constituting the intersection are represented as members of a Reg-
istryPackage.

• The source object of the set operator is assigned as the sourceObject of the
“intersectionOf” association.

• The target object of the “intersectionOf” association is set to be the newly
created RegistryPackage.

The RIM representation of the OWL example presented above is as follows:

<rim:ClassificationNode id = ’AirServices’ parent= ’TravelServices’>
<rim:Name> <rim:LocalizedString value = ’AirServices’ /> </rim:Name>

</rim:ClassificationNode>

<rim:ClassificationNode id = ’ReservationServices’ parent= ’TravelServices’>
<rim:Name> <rim:LocalizedString value = ’ReservationServices’ /> </rim:Name>

</rim:ClassificationNode>

<rim:ClassificationNode id = ’AirReservationServices’ parent= ’TravelServices’>
<rim:Name> <rim:LocalizedString value = ’AirReservationServices’ /> </rim:Name>

</rim:ClassificationNode>

<rim:RegistryPackage id = ’RP-AirServicesANDReservationServices’>
<rim:Name> <rim:LocalizedString value = ’RP-AirServicesANDReservationServices’/>
</rim:Name>

</rim:RegistryPackage>

<rim:Association id = ’firstMember’ associationType = ’HasMember’
sourceObject = ’RP-AirServicesANDReservationServices’ targetObject = ’AirServices’ >
<rim:Name> <rim:LocalizedString value = ’firstMember’ /> </rim:Name>

</rim:Association>

<rim:Association id = ’secondMember’ associationType = ’HasMember’
sourceObject = ’RP-AirServicesANDReservationServices’ targetObject = ’ReservationServices’ >
<rim:Name> <rim:LocalizedString value = ’secondMember’ /> </rim:Name>

</rim:Association>

<rim:Association id = ’intersectionOf’ associationType = ’intersectionOf’
sourceObject = ’AirReservationServices’ targetObject = ’RP-AirServicesANDReservationServices’ >
<rim:Name> <rim:LocalizedString value = ’intersectionOf’ /> </rim:Name>

</rim:Association>

17

When such a representation is used to create a complex class in RIM, it becomes
possible to infer that the objects classified by both of the classes constituting the
intersection are also the instances of this complex class. The following stored pro-
cedure retrieves the direct instances of the complex class and also the intersection
of the instances of the member classes:

CREATE PROCEDURE findInstances($className) AS
BEGIN
SELECT N1.value
FROM Name_ N1, Service S, (

SELECT A.targetObject AS id
FROM RegistryPackage R, Association A
WHERE R.id=A.sourceObject AND

A.associationType = ’HasMember’ AND
R.id IN (
SELECT A.targetObject

FROM Association A, Name_ N, ClassificationNode C
WHERE A.associationType LIKE ’intersectionOf’ AND

C.id = N.parent AND
N.value LIKE $className AND
A.sourceObject = C.id

)
) AS T1, (
SELECT A.targetObject AS id
FROM RegistryPackage R, Association A
WHERE R.id=A.sourceObject AND

A.associationType = ’HasMember’ AND
R.id IN (
SELECT A.targetObject

FROM Association A, Name_ N, ClassificationNode C
WHERE A.associationType LIKE ’intersectionOf’ AND

C.id = N.parent AND
N.value LIKE $className AND
A.sourceObject = C.id

)
) AS T2

WHERE S.id IN (
SELECT classifiedObject
FROM Classification
WHERE classificationNode=T1.id
INTERSECT
SELECT classifiedObject
FROM Classification
WHERE classificationNode=T2.id
) AND T1.id!=T2.id AND
N1.parent=S.id

UNION
SELECT N.value
FROM Service S, Name_ N
WHERE S.id IN (

SELECT classifiedObject
FROM Classification
WHERE classificationNode IN (

SELECT id
FROM ClassificationNode
WHERE id IN (

SELECT parent
FROM name_
WHERE value LIKE $className
)

)
) AND S.id=N.parent

END;

Table 3 provides a summary of how OWL language elements are mapped to
ebXML class hierarchies. In this section, only some of these mappings are explained
due to space limitations.

18 DOGAC ET. AL.

OWL ebXML
owl:Class ClassificationNode
individual RegistryObject

rdf:Property Association

rdfs:domain sourceObject

rdfs:range targetObject

owl:equivalentTo An association with a predefined association type of

owl:samePropertyAs “EquivalentTo”.

owl:sameAs
owl:differentFrom An new association type of “differentFrom”

is defined.
owl:AllDifferent A new association type “distinctMembers” is defined

owl:distinctMembers to add members to a Registry Package.

An association with a new
association type is defined.

rdfs:subClassOf “subClassOf”
owl:ObjectProperty “objectProperty”

owl:disjointWith “disjointWith”

owl:TransitiveProperty “transitiveProperty”

owl:FunctionalProperty “functionalProperty”

owl:InverseFunctionalProperty “inverseFunctionalProperty”

owl:SymetricProperty “symetricProperty”

owl:DataTypeProperty XML Schema datatypes are used by providing an

external link from the registry.

rdfs:subPropertyOf An association between associations with a new

owl:inverseOf association type “subPropertyOf”/“inverseOf”

is defined.
owl:intersectionOf A registry package is created by associating the

classes (i.e. the classification nodes) to be

intersected through a new association type

of “intersectionOf”.
owl:Restriction Since ebXML RIM associations have local scope,

only the type of the Restriction needs

to be specified.

A slot type is defined for the

association representing a restriction.

owl:allValuesFrom “allValuesFrom”
owl:someValuesFrom “someValuesFrom”
owl:hasValue “hasValue”
An association with a new
association type is defined.

owl:cardinality “cardinality”

owl:minCardinality “minCardinality”

owl:maxCardinality “maxCardinality”

Table 3. Mapping OWL Ontologies to ebXML Classification Hierarchies without Affecting the
Registry

19

4.2. How to Exploit OWL Lite Semantics for Service Discovery and
Composition in ebXML Registry

In this section, in order to demonstrate the benefits of the proposed enhancements
to the ebXML registry, we describe a semantic-based service composition tool. This
tool partially automates service discovery and composition in OWL aware ebXML
registries.

Through a graphical user interface provided, the tool allows the ebXML classifi-
cation hierarchies to be depicted graphically, as presented in Figure 6. When a user
clicks on a node in the classification hierarchy, the generic properties of the service
are revealed to the user. The user can fill in the desired properties of services she is
looking for through this GUI. The tool queries the ebXML registry automatically
to find the services that satisfy user constraints. Then, through a graphical com-
position tool, the user is allowed to provide choreography of the selected services.

Consider for instance the OWL enriched ontology example given in Figure 7 for
the travel domain. Assuming that we want to find all the air reservation services
in the registry, it is possible to query the services that are classified under the
generic “AirReservationServices” node. In doing this, it is necessary to retrieve the
properties of this class so that the user can provide her preferred values for the
properties.

Assume that “AirReservationServices” are defined as a subclass of both “OWL-S
Profile” class and the “AirServices” class. In conventional ebXML, when a user
submits a query to the ebXML registry to get the object properties of the “Air-
ReservationServices”, only the immediate associations that are of type “objectProp-
erty” are returned as presented in Figure 8. However by exploiting the semantic
capabilities of the OWL aware ebXML, the user can call the stored procedure
“findInheritedObjectProperties” defined in Section 4.1.2 to retrieve the properties
inherited from the parent classes too (Figure 8).

These properties are shown to the user through the GUI depicted in Figure 9.
Once the user provides the preferred values, the instances satisfying these values
can be retrieved through the ebXML Filter query shown in Figure 10 which is
automatically issued in our tool. Note that while storing the Web service instances,
the values of their properties are represented through “slot” values.

Assume further that the AirReservationServices node in the ebXML registry is
declared to be equivalent with “OTA AirReservationServices” through the “Equiv-
alentTo” type association of ebXML.

Without OWL semantic support, when the user issues the Filter Query presented
in Figure 10, the ebXML Query Manager will retrieve the services classified only
by the AirReservationServices as presented in Figure 11, using the SQL query
presented in Figure 12.

With OWL semantic support, our tool processes the semantics of the “Equiva-
lentTo” property to retrieve the instances of the AirReservationServices by using
the “findEquivalentInstances(AirReservationServices)” stored procedure defined in

20 DOGAC ET. AL.

Figure 6. A Snapshot of the GUI tool for semantics-based Web service Composition for ebXML
registries

Section 4.1.4. Note that the use of these stored procedures is not restricted to our
tool; any ebXML client can also use these stored procedures.

Assuming that the user chooses the “MyAirReservationService” instance among
the Web services presented to her, the user may wish to retrieve the “succeeding”
services of this instance. Consider the example given in Section 4.1.5. When a
user wishes to retrieve the “succeeding” services of the “MyAirReservationService”
instance and issues a query to the ebXML registry, without OWL semantic support
only “MyHotelAvailabilityService” instance will be returned as presented in Figure
13, although “succeeds” has been declared to be transitive.

21

InsurancePlanSearchServices

AirServices CarServices HotelServices GolfServices InsuranceServices

TravelWebServices

HotelSearchServices

HotelAvailabilityServices

OWL−S Profile

IMHO_AirReservationServices

AirReservationServices

AirDetailsServices

EquivalentTo

succeeds
succeeds

Figure 7. An example Travel Ontology

AirServices OWL−S Profile

AirReservationServices

milageSupport qualityRating

paymentMethod

subClassOf subClassOf

Results returned by native ebXML

Results returned by OWL−aware ebXML

Figure 8. ebXML Semantic support for Class Hierarchies

Figure 9. A GUI tool to obtain the service property values from the user

22 DOGAC ET. AL.

<AdhocQueryRequest >
<ResponseOption returnType = "LeafClass" returnComposedObjects = "true" />
<FilterQuery> <ServiceQuery>
<ClassifiedByBranch>

<ClassificationNodeQuery> <NameBranch> <LocalizedStringFilter>
<Clause>

<SimpleClause leftArgument = "value">
<StringClause stringPredicate = "Equal">AirReservationServices </StringClause>

</SimpleClause>
</Clause>

</LocalizedStringFilter>
</NameBranch>

</ClassificationNodeQuery>
</ClassifiedByBranch>

<SlotBranch> <SlotFilter> <Clause> <SimpleClause leftArgument = "name_">
<StringClause stringPredicate = "Equal">paymentMethod</StringClause>

</SimpleClause> </Clause> </SlotFilter>
<SlotValueFilter> <Clause> <SimpleClause leftArgument = "value">
<StringClause stringPredicate = "Contains">CreditCard</StringClause>

</SimpleClause> </Clause> </SlotValueFilter>
</SlotBranch>
...
</ServiceQuery> </FilterQuery> </AdhocQueryRequest>

Figure 10. An Example Filter Query for Retrieving the Instances of the “AirReservationService”

EquivalentTo

OTA_ARS1, OTA_ARS2: OTA Air Reservation Service Instances

IMHO_ARS1: IMHO Ait Reservation Service Instances

Results returned by OWL−aware ebXML

classifiedBy classifiedBy

OTA_AirReservation
Services

IMHO_AirReservation
Services

OTA_ARS2OTA_ARS1 IMHO_ARS1

Results returned by native ebXML

Figure 11. ebXML Semantic support for Equivalent Classes

To be able to exploit the “transitivity” semantics, the user can use the “findTran-
sitiveRelationships(AirReservationServices,succeeds)” stored procedure defined in
Section 4.1.5, which will return the “MyInsuranceService” instance additionally.

5. ebXML Semantic Standardization Work

In this section, we briefly summarize the ebXML semantic standardization efforts, in
order to put the work described in this paper into perspective. This paper addresses
making the ebXML registry OWL aware. There are several other key semantic re-
quirements being addressed within the OASIS open source standards body [26].

23

SELECT * FROM Service WHERE id IN (
SELECT classifiedObject FROM Classification
WHERE classificationNode IN (

SELECT id FROM ClassificationNode
WHERE id IN (

SELECT parent FROM name_
WHERE value=’AirReservationServices’

)
)

) AND id IN (
SELECT parent FROM Slot
WHERE name_=’paymentMethod’ AND
value LIKE ’%CreditCard%’)

Figure 12. SQL query to retrieve the services classifed with “AirReservationServices”

MyEntertainmentService

MyHotelAvailabilityService

MyAirReservationService

succeeds

succeeds

Results returned by native ebXML

Results returned by OWL−aware ebXML

Figure 13. ebXML Semantic support for Transitive Properties

This work is progressing through the committees including: The Business-Centric
Methodology (BCM) Technical Committee (TC) [27], The ebXML Registry Seman-
tic Content Management Sub-Committee (ebXMLR-SCM) [28], The UDDI Tech-
nical Committee [30] and the Topic Maps Published Subjects Technical Committee
[29]. In this section, we focus on the most relevant work by BCM and ebXMLR-
SCM:

• The Business-Centric Methodology (BCM) Technical Committee (TC) [27]:
BCM addresses a proper interpretation of the business language semantics found
in a SOA (Service Oriented Architecture) metadata framework/classification
system which is essential for harnessing tacit knowledge and facilitating shared
communications. Particularly, the BCM identifies a Conceptual Layer that en-
ables the exploitation of community-of-interest specific classifications, e-business
taxonomies and systemic patterns as key factors in semantic interoperability.

• The ebXMLRegistry Semantic Content Management Sub-Committee (ebXMLR-
SCM) [28]: A key factor of the ebXMLR-SCM work towards semantic exten-

24 DOGAC ET. AL.

sions of the Registry/Repository is the acknowledgment that the mapping of
e-business artifacts to a semantic structure can employ many types of registry
objects. For instance, a simple lexicon containing the definition of words used
by a particular group of professionals may be formatted as a data dictionary
that is referenced by other objects, such as, UN/CEFACT Core Components
[44]. Thesauri classification objects, employing terms of a controlled vocabulary
which are associated via parent-child relationships, are most likely to be used
for the indexing of community-of-interest specific information. Taxonomies sup-
porting the systemic cataloging of e-business components should be capable of
categorizing a mix of Nouns/Verbs, information-based structures (e.g. XML
Schemas), behavior-based definitions (e.g. WSDL) and process-based specifi-
cations (e.g. BPSS). Indeed, the ebXMLR-SCM recognized that, since these
and other semantic structures co-exist in the real-world, the Semantic Content
Management supporting a federation of Registries/Repositories must also allow
them to co-exist.

6. Related Work

In the early nineties, ontologies have been a research topic being addressed in a
rather small research community. This changed drastically in the late nineties
by the insight that a conceptual, yet executable model of an application domain
provides a significant value [17, 42]. The impact has increased with the Semantic
Web initiative and the Web Ontology Language (OWL) [31].

The importance of semantics is also recognized in the Web services area and there
have been several efforts to improve the semantics support for Web services. An
important effort is OWL-S [32] which defined an upper ontology to describe service
semantics.

The need for extending the UDDI [43] registries with semantic capabilities has
been addressed in the literature [9, 10, 34]. Note that UDDI registries use tModels
to represent compliance with a taxonomy such as Universal Standard Products
and Services Classification [45]. [9, 10] describe a mechanism to relate DAML-
S ontologies with services advertised in the UDDI registries. [34] also addresses
importing semantic to UDDI registries where DAML-S specific attributes such as
inputs, outputs and geographicRadius are represented using tModel mechanisms of
UDDI. The matching engine implemented is based on the algorithm described in
[33].

An extended UDDI registry is reported in [39] which allows to record user defined
properties associated with a service and then to enable discovery of services based
on these.

In [40], the authors discuss adding semantics to WSDL using DAML+OIL on-
tologies. Their approach also uses UDDI to store these semantic annotations and
search for Web services based on them.

[23] discusses the applicability of the DAML-S profile, process model, and ground-
ing ontologies to the Web service lifecycle.

25

In [47], DAML-S is extended to describe bioinformatics Web services and the
services are matched by subsumption reasoning over the service descriptions.

Since the semantic support provided by UDDI and ebXML registries differ con-
siderably, it is not possible to repeat the previous work in UDDI for ebXML.

Related with ebXML, exploiting the class hierarchies in ebXML registries for
service discovery and composition is described in [11]. In [12], some initial ideas
about enriching ebXML registries with OWL semantics is presented.

In [4], a conceptual architecture called Web Service Modeling Framework (WSMF)
is described based on the principles of strong decoupling and mediation of services.

A tutorial on semantic of Web services is available at [3] where a detailed overview
of Web Service Modeling Framework (WSMF) is given. The WSMF consists of four
main elements:

• Ontologies that provide the terminology used by other elements,

• Goal repositories that define the problems that should be solved by web services,

• Web services descriptions that define various aspects of a web service, and

• Mediators which bypass interoperability problems.

[5] describes an algorithm to discover Web services and resolve heterogeneity
among their interfaces and the workflow host.

[24] proposes an ontology-based framework for the automatic composition of Web
services. The authors present a technique to generate composite services from high-
level declarative descriptions. For this purpose, they extend WSDL with semantic
capabilities.

An insightful description of Web services is given in [25] where the authors put
the Web service technologies into perspective in Business-to-Business interaction
domain.

7. Conclusions and Future Work

This paper describes an engineering effort on how an ebXML registry can be made
OWL aware. The work presented provides the foundation for OWL representations
to be expressed in the registry. The representation of OWL semantics directly in the
RIM enables the standard ebXML query facility to use stored procedures that can
return a richer set of results based on explicit OWL constructs. As demonstrated,
the queries of this type provide new capabilities to the ebXML client applications.

In this work, we use OWL Lite, since we are using ontologies to get knowledge
through querying rather than reasoning. We investigate the possible ways of making
the registry OWL aware and describe an approach that minimizes the changes on
the ebXML specification.

There are two observations resulting from this experience:

26 DOGAC ET. AL.

AirReservation
Services

Reservation
Services

AirServices

Registry
Package

ARS1 AS&RS1

Results returned by native ebXML

Results returned by OWL−aware ebXML ARS1: Air Reservation Service Instances

AS&RS1: Service Instances classified by

ReservationServices and AirServices

intersectionOf

HasMember

HasMemberclassifiedBy

classifiedBy

Figure 14. ebXML Semantic support for Class Intersection

• Ontologies can play two major roles: one is to provide a source of shared and
precisely defined terms which can be used formalizing knowledge and relation-
ship among objects in a domain of interest. The other is to reason about the
ontologies. When an ontology language like OWL is mapped to a class hier-
archy like the one in ebXML, the first role can directly be achieved. However,
when we want to infer new information from the existing knowledge, we need
reasoners. And reasoners can not directly run on the ebXML registry because
all the registry information is stored in relational databases. Hence, there is a
need to reconstruct the ontology from its representation in the ebXML registry.

• An ebXML registry client can use stored procedures that we have introduced
to handle the OWL semantics. However, handling this semantics through the
filter query in a transparent way to the user requires some modifications in the
Query Manager Component of the registry. ebXML filter query, is designed to
retrieve the registry objects as specified in the original RIM. It falls short to
retrieve additional semantics introduced in this work.

In “filter query”, the user expresses what is to be retrieved from the registry as
an XML message and the current syntax of ebXML query uses the conventional
ebXML registry constructs. In order to retrieve extended semantics from in
an OWL aware ebXML registry, through a “filter query”, the Query Manager
component needs to be extended.

Consider the example defined in Section 4.1.8, where “AirReservationServices”
is defined to be the intersection of the classes “AirServices” and “Reservation-
Services”. When a user sends a Filter query to retrieve services classified by the
“AirReservationServices” node, normally the ebXML Query Manager will re-
turn the services directly classified by “AirReservationServices” node. However
with OWL support it is possible to retrieve the services classified by both of the

27

“AirServices” and “ReservationServices” at the same time, and thus retrieving
the instances of “AirReservationServices”, as presented in Figure 14.

To handle such a semantics, the ebXML Query Manager should be updated
to execute the “findInstances($className) stored procedure defined in Section
4.1.8 whenever it receives such a filter query. In fact, the Query Manager needs
to consider all such possibilities and this can only be handled through reasoning.

There are a number of public domain and commercial OWL reasoners such
as [6, 13, 36]. As a future work, we intend to improve the Query Manager
component with reasoning capabilities by exploiting one of the existing OWL
reasoners.

References

1. Antoniou, G., Harmalen, F., “Web Ontology Language: OWL”, in Handbook on Ontologies,
Springer, 2004.

2. Berners-Lee, T., Hendler, J., Lassila, O., “The Semantic Web”, Scientific American, May
2001.

3. Bussler, C., Fensel, D., Payne, T., Sycara, K., “ISWC Tutorial: Semantic Web Services”,
http://www.daml.ri.cmu.edu/tutorial/iswc-t3.html#2b

4. Bussler, C., Fensel, D., Maedche, A., “A Conceptual Architecture for Semantic Web Enabled
Web Services”, ACM Sigmod Record, Vol. 31, No. 4, December 2002.

5. Cardoso, J., Sheth, A., “Semantic e-Workflow Composition”, Journal of Intelligent Informa-
tion Systems (JIIS), Vol. 12, No. 3, 2003.

6. Cerebra OWL Reasoner, http://www.networkinference.com/Products/Cerebra Server.html
7. DAML+OIL Reference Description, W3C Note, http://www.w3.org/2001/10/daml+oil, De-

cember 2001.
8. DAML Services Coalition (A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, S.

McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, H. Zeng), “DAML-S: Seman-
tic Markup for Web Services”, in Proceedings of the International Semantic Web Working
Symposium (SWWS), July 2001.

9. Dogac, A., Cingil, I., Laleci, G. B., Kabak, Y., “Improving the Functionality of UDDI
Registries through Web Service Semantics”, 3rd VLDB Workshop on Technologies for E-
Services (TES-02), Hong Kong, China, August 23-24, 2002.

10. Dogac, A., Laleci, G., Kabak, Y., Cingil, I., “Exploiting Web Service Semantics: Taxonomies
vs. Ontologies”, IEEE Data Engineering Bulletin, Vol. 25, No. 4, December 2002.

11. Dogac, A., Kabak, Y., Laleci, G., “A Semantic-Based Web Service Composition Facility
for ebXML Registries”, 9th International Conference of Concurrent Enterprising, Espoo,
Finland, June 2003.

12. Dogac, A., Kabak, Y., Laleci, G., “Enriching ebXML Registries with OWL Ontologies for
Efficient Service Discovery”, in Proc. of RIDE’04, Boston, March 2004.

13. F-OWL Reasoner, http://fowl.sourceforge.net
14. ebXML, http://www.ebxml.org/
15. ebXML Registry Information Model v2.5, http://www.oasis-open.org/committees/regrep/-

documents/2.5/specs/ebRIM.pdf
16. ebXML Registry Services Specification v2.5, http://www.oasis-open.org/committees/-

regrep/documents/2.5/specs/ebRIM.pdf
17. Fensel, D., Ontologies: A Silver Bullet for Knowledge Management and Electronic Com-

merce, Springer, 2001.
18. freebXML Registry Open Source Project http://ebxmlrr.sourceforge.net
19. Horrocks, I., “DAML+OIL: A Description Logic for the Semantic Web”, IEEE Data Engi-

neering Bulletin, Vol. 25, No. 1, March 2002.

28 DOGAC ET. AL.

20. IST-2104-SATINE Project, http://www.srdc.metu.edu.tr/webpage/projects/satine/
21. Jena2 Semantic Web Toolkit, http://www.hpl.hp.com/semweb/jena2.htm
22. McGuinness, D., Harmelen, F., “OWL Web Ontology Language Overview”, W3C Recom-

mendation, February 2004, http://www.w3.org/TR/owl-features/
23. McIlraith, S. A., Martin, D. L., “Bringing Semantics to Web Services”, IEEE Intelligent

Systems, Vol.18, No.1, 2003.
24. Medjahed, B., Bouguettaya, A., Elmagarmid, A., “Composing Web services on the Semantic

Web”, VLDB Journal, Vol.12, No.4, 2003.
25. Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A., Elmagarmid, A., “Business-to-

business interactions: issues and enabling technologies”, VLDB Journal, Vol.12, No.1, 2003.

26. OASIS, http://www.oasis-open.org/home/index.php
27. OASIS Business-Centric Methodology (BCM) Technical Committee (TC), http://www.oasis-

open.org/committees/tc home.php?wg abbrev=bcm
28. OASIS ebXML Registry Semantic Content Management SC, http://www.oasis-open.-

org/apps/org/workgroup/regrep-semantic/
29. OASIS Topic Maps Published Subjects TC, http://www.oasis-open.org/committees/tc-

home.php?wg abbrev=tm-pubsubj
30. OASIS UDDI Specification TC, http://www.oasis-open.org/committees/tc home.php?wg-

abbrev=uddi-spec
31. OWL Web Ontology Language 1.0 Reference http://www.w3.org/TR/2002/WD-owl-ref-

20020729/ref-daml
32. OWL-S, http://www.daml.org/services/daml-s/0.9/
33. Paolucci, M., Kawamura, T., Payne, T., Sycara, K., “Semantic Matching of Web Services

Capabilities”, in Proc. of Intl. Semantic Web Conference, Sardinia, Italy, June 2002.
34. Paolucci, M., Kawamura, T., Payne, T., Sycara, K., “Importing the Semantic Web in UDDI”,

in Web Services, E-Business and Semantic Web Workshop, 2002.
35. Registering web services in an ebXML Registry version 1.0. http://www.oasis-open.org/-

apps/org/workgroup/regrep/download.php/1636/OASIS-Registry
36. Pellet OWL Reasoner, http://www.mindswap.org/2003/pellet/
37. RDF Schema: Resource Description Framework Schema Specification, W3C Proposed Rec-

ommendation, 1999, http://www.w3.org/TR/PR-rdf-schema.
38. RDF Syntax: Resource Description Framework Model and Syntax Specification, W3C Rec-

ommendation, 1999, http://www.w3.org/TR/REC-rdf-syntax.

39. ShaikhAli, A., Rana, O., Al-Ali, R., Walker, D., “UDDIe: An Extended Registry for Web
Services”, Workshop on Service Oriented Computing: Models, Architectures and Applica-
tions at SAINT Conference, Florida, January 2003.

40. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J., “Adding Semantics to Web Services
Standards”, In proc. of ICWS, 2003.

41. Smith, M., Welty, C., McGuinnes, D., “OWL Web Ontology Language Guide”, W3C Rec-
ommendation, February 2004, http://www.w3.org/TR/owl-guide/

42. Staab, S., Studer, R., Handbook on Ontologies, Springer, 2004.
43. Universal Description, Discovery and Integration (UDDI), www.uddi.org
44. UN/CEFACT-ebXML

Core Components Technical Specification, www.oasis-open.org/committees/download.php/-
4259/CEFACT%20CCTS%20Version%202%20of%2011%20August.pdf

45. Universal Standard Products and Services Classification (UNSPSC)
http://eccma.org/unspsc

46. Web Content Management using ebXML Registry http://ebxmlrr.sourceforge.net/-
presentations/xmlEurope2004/04-02-02.pdf

47. Wroe, C., Stevens, R., Goble, C., Roberts. A., Greenwood, M., “A Suite of DAML+OIL
Ontologies to Describe Bioinformatics Web Services and Data”, Intl. Journal of Cooperative
Information Systems, to appear.

