UNCLASSIFIED

Discussion on Technologies for Key Packaging

Adapted 20 June 2007 – S. Roddy

Background

Key Packaging technologies structure signed and encrypted material for standardized transmission and formal receipt. This enables automated on-demand transmission of keys, software/firmware updates, commands and other arbitrary signed/encrypted material through untrusted intermediaries, while maintaining integrity and confidentiality. This also allows for a mixture of message types (keys, software, firmware, receipts, etc.) within a single package to minimize transmission overhead.

Commercial Environment

Most commercial systems rely on asymmetric keys that are locally generated. By generating key at the end points the risks of key exposure are largely averted. Key distribution in the commercial world focuses on public encryption variables to enable communication between devices. Public variables for signature can accompany a message, however public encryption credentials must be in place before a message is sent, and must be signed themselves by some mutually trusted third party to establish identity and defeat man-in-the-middle attacks. This is the motivation for various Public Key Infrastructures (PKI's).

Even with the heavy reliance on end point key variable generation, there are still motivations in the commercial world for key distribution. Often times asymmetric techniques act as the bootstrap for more conventional symmetric cryptography. If the keys are not device generated (e.g. locally generated) then they may come through a custom gateway-to-client architecture. The prevailing trend here is in custom solutions and thus commercial key packages do not follow any single standard.

In terms of a general direction in industry, X.509 appears to be a permanent fixture in the key management field given the deployed base and the lack of a viable alternative. Almost every commercial PKI is based on X.509, as are most secure email systems, and other cryptographic applications.

We first present the major technology players in the debate: CMS, ASN.1 and XML. We layout their various attributes, shortcomings and interactions, then discuss challenges to, and potential systems built from, these technologies, and finally make our recommendation for the future key packaging specification for KMI.

CMS

The Cryptographic Message Syntax (CMS) is an Internet Engineering Task Force (IETF) standard designed to flexibly transmit cryptographic message structures. It provides encapsulation and security services and is used in many commercial email clients and public key infrastructures, largely in the form of the wildly popular X.509 certificate format.

Backus Naur Form (BNF)

CMS is defined in BNF, which is easily encoded in the most efficient ASN.1 formats. BNF is an expressive English-like language that allows developers to represent data structures in a largely human readable format, much like XML.

Color ::= INTEGER

{
red (0)

blue (1)

green (2)}

This example shows a field named “color,” which is encoded as an integer. Three potential values are further defined: red, blue, green.

CMS is a set of defined data structures already created in BNF, along with guidance on how they can be arranged to encapsulate signed and encrypted binary data. Essentially CMS lays out the necessary information that must accompany a block of seemingly random encrypted data to successfully decode it at the other end of its travels, or in the case of signed information, to successfully validate it against a trusted chain of certificates.

CMS and XML

CMS is a defined hierarchy of fields. It is defined in BNF. BNF is simply a language and is similar in many ways to XML. Thus CMS can easily be represented as XML. There exists a straightforward mapping of CMS functions to XML known as XCMS proposed by the ANSI X.9 working group but not updated to reflect changes in CMS. The security community largely ignores this standard as redundant since CMS structures written in BNF are easily translated directly into XML. An XML schema can be defined in BNF, or ASN.1 can encode it in XML using XER or CER.

With such similarities it seems that the two options are not mutually exclusive, and indeed a hybrid would not be impossible to produce. However, in combining the two you tend to absorb the weaknesses of each and shed their innate advantages. Developers love XML for its verbose labeling of fields and its loose typing. CMS finds its strengths in performance and tight controls.

Representing a CMS structure encoded in XER would produce a larger binary file than many other encoding schemes (e.g. DER), and once decoded into XML, it would render a very sparse and unreadable XML document. On the other hand creating a CMS schema in XML would greatly limit XML’s flexibility. The existing XML tools that solve many common problems would be largely incompatible with an XCMS-like implementation. It thus makes more sense to create a strong barrier between XML and CMS. This does not, however, then create a situation of mutual exclusivity. The possibility of hybrid systems exists, and in fact has been somewhat widely adopted with CMS packages (X.509 certificates) residing as XML payloads. This allows higher-level application developers to take advantage of all the great XML services we will later discuss, while maintaining compatibility and performance at lower levels.

ASN.1

ASN.1 is one of the most prevalent technologies in use today, and yet one of the least visible. It defines a number of encoding schemes that represent BNF data structures in a binary format for transmission across heterogeneous communication channels.

Encoding Schemes

The various encoding schemes each work in a slightly different way. The Basic Encryption Rules (BER) consists of a standard (t,l,v) tuple defining type, length and value. Packed Encoding Rules (PER) introduce some complexities that allow for a more efficient encoding in terms of space. Defining the length of certain types and operating as a stream of bits rather than bytes achieve this. For example rather than sending “Boolean, of length 1, true,” where each section is at least a byte long, you can simply send “Boolean, true,” the receiver will know from the type Boolean to expect a single bit for the value. Distinguished Encoding Rules (DER) define a subset of BER rules that limits the encoding of any given data source to a single representation. This is called canonicalization and is vital to signature verification.

Finally there are the XML variants, XML Encoding Rules (XER) and Canonical Encoding Rules (CER). These generally represent ASN.1 structures in a verbose ASCII format that also satisfies the general requirements for XML tagging. However, these constructs do not often work well with other XML services, based as they are, on ASN.1. The result is a larger representation of an ASN.1 structure, without the advantages of building on the base of XML tools.

There are a number of existing commercial and open source interpreters of varying complexity and functionality available.

XML

XML is a standard language defined, for the most part, by subject matter experts participating in the OASIS working group [
] and the World Wide Web Consortium [
]. The standards encompass a variety of functions that revolve around the Encryption and Digital Signature services. Given the need to interoperate with external systems, and the drive to reduce costs through the adoption of COTS technologies, the industry trend towards adoption of XML for all manner of workflow processes bears consideration. XML is attractive to developers as its human readable form is easy to debug, and a large number of tools have been developed to manipulate it. However the very flexibility that it provides may give rise to security and interoperability issues, and certainly has an effect on performance, particularly in resource-constrained devices.

Xpath Vulnerability

Xpath is an optional extension to XML that enables the addressing of XML elements, called nodes. Additionally it provides methods for pattern matching and searching over these nodes, and plays into Xquery and XSLT. There exist vulnerabilities similar to SQL insertion attacks, which, if the programmer is security-aware, can be mitigated. A reasonable set of programming assumptions may be found in [
].

Canonical Serialization

Serialization, canonical or not, is a challenge of its own for XML. XML is designed for an HTTP environment where files are generally passed around in ASCII or Unicode text format. This does not lend itself to low bandwidth situations or resource-constrained devices. There are some efforts under way to construct a binary serialization of XML, motivated by WAP for instance.

There are also schemes in consideration for more efficient encoding of binary payload data. Currently XML encodes binary objects, be they image files or encrypted keys, in base64, which adds a 33% overhead since each byte is represented as an ASCII character. Further discussion of bandwidth and processing requirements, for all technologies is included below in the performance section.

DSIG outlines a standard for the conversion of an XML document into a repeatable byte stream. Canonicalization is not a requirement for most XML implementations. It is, however, vital when attempting to verify signatures over unencrypted XML elements. DSIG is discussed further in the next section. ASN.1 also offers a canonical XML encoding similar to that used in DSIG as part of the CER encoding rules.

In summary canonical serialization, while not initially designed into XML, is available through various means.

Security Services

XMLENC and DSIG provide the basic encryption and signature services needed for a key packaging specification. These specifications are stable in most experts’ opinions, however issues of interoperability are still murky and are being reexamined in the W3C. There exists a set of example cases that implementations must test against in order to claim interoperability. However, incorporating functionality beyond these samples puts you into uncharted territory. Limiting the number of “unused degrees of freedom” within the standards may resolve some of these problems.

These two specifications import elements from the XML standards, to include the Domain Name URI (which is widely used as a reference point in XML). The lack of standardization in the internationalized Domain Name (DN) space could lead to non-interoperable implementations, unless great specificity (to include DN construct requirements) are defined and accepted.

Tagging Specification Development (vs. CMS)

A CMS tagging specification has been proposed in [
]. It also discusses the various fields required by CMS to implement encryptions and signatures. It would be straightforward to take the attributes identified in this document, and create an XML schema to represent them. Most of the CMS tagging could be discarded in favor of XMLENC and DSIG to provide the packaging, or used in place of those standards to provide security services. However the choices between security services should be carefully researched and implemented.

Readability and Programmability

One of the factors that XML has in its favor is human readability. XML elements are designed to be self-documenting, in that the labels can be chosen for descriptiveness. The labels are part of the reason XML encodes larger than ASN.1. Arguably, XML’s readability benefit is minimized by the fact that cryptographic data representations tend to be too complex to be visualized directly. Because of the complexity and existing tools for viewing and manipulating both XML and ASN.1 representations, XML’s human readability benefit is minimal in this context.

Performance Requirements for Key Management Functions

In looking to adopt a new, more flexible, key packaging technology the additional processing requirements levied by such a change must be considered. In some scenarios this should not present a challenge as computing resources are ample. However, in resource constrained scenarios every available resource may be dedicated to performing mission functions if sufficient resources are even present on the device at all. The first step to addressing this problem is to identify the various categories into which future cryptographic key consuming devices will fall.

It is also important to identify the issues surrounding what type of processing can occur where, given the security boundaries within a device and other security design principles. While the HOST side of the device may be quite capable, the load on the cryptographic module is likely to be the limiting factor in any implementation.

Compilers or translators take up precious resources on devices, which may limit the utility. XML is a verbose language, as it’s primarily used by humans to code functions and is not designed for devices such as wireless or battery-operated devices. Further exploration into use of ASN.1 with XML, or creation of templates for resource-limited devices may be appropriate.

Flexible ASN.1 interpreters can become fairly complex, particularly if they support multiple encoding schemes. If, on the other hand, the goal is only to interpret a bounded set of possible messages, templating can be used to greatly simply the processing requirements. Essentially a template treats an ASN.1 bit stream as a fixed bit format and interprets it accordingly. This of course destroys the flexibility that ASN.1 provides, and yet retains the larger (than fixed bit) space requirements. Thus templating is only advisable in the most constrained devices, while a range of options exists for more capable devices that might support a limited set of ASN.1 functionalities.

Desktop PCs or commercial server arrays have no shortage of performance capability even when processing large amounts of data. Thus they could easily handle both a CMS based key packaging specification, and an XML-based workflow management system containing such key packages. The use of XML as a wrapper would not effect the underlying security of the key packages, nor would it compromise compatibility or performance for end devices.

Perhaps the most compelling argument for performance comes in the secure wireless arena. As anyone who has used a secure telephone product will attest to, the time between initiating a secure call, “going secure” and the establishment of the connection is a huge barrier to adoption. The time it takes to transfer credentials over a potentially noisy cellular connection plays a large roll in defining this establishment time. Anything that can be done to shave microseconds off this time would lead to greater use of a secure mode of communications.

Constrained Resource Options

Simple Structures

By reducing the generality available to a given construct, more efficient decoders can be built. For instance if you limit the possible population of messages to only a few key packages for a given consuming device, and simply ignore any non-conforming messages, the complexity of your interpreter can be greatly reduced. This is at the cost of flexibility and could cause issues with future compatibility if fielded units can only handle a certain type of key package.

SAX vs. DOM in XML

XML offers two general ways to store and parse an XML data structure. The first way, SAX, passes through a document linearly in a sweep for each data object that is requested. This offers a simple method to access information in a once through environment. DOM on the other hand pulls the XML document into an addressable structure, which allows repeated queries and manipulation. DOM obviously is a more complex interpreter and requires considerably more memory overhead, however in instances where the data needs to be repeatedly accessed, it can be the most efficient method.

Templates

Extending the idea of a limited parser it is possible to use a template to identify byte addresses in a given binary string as in and out points for capturing data. This must be implemented carefully as it has to potential to strip the very flexibility sought from the system. If a new attribute is added to a key package, it may become incompatible with a given class of template-driven consuming devices. It would not be acceptable to produce customized key formats for every flavor of device.

A (Flawed) XML vs. CMS Comparison

The IEE, an English equivalent to the IEEE, published a paper [
] on the various performance characteristics of XML vice ASN.1 in February 2004. This paper showed XML to be much slower than the ASN.1 equivalents and more alarmingly showed a much more rapid increase in size and processing requirements with increased complexity. These results confirmed what most experts we consulted thought about the relative performance characteristics of the two technologies, however the exact degree to which ASN.1 beats XML is still in doubt. Many of the assumptions used in this paper favor ASN.1. For one the authors hand-coded the ASN.1 constructs, whereas they used a generalized XML encoder (XSS) to produce the tested XML. Thus while the ASN.1 was highly customized the XML tests could have been more of a reflection of the XSS encoder, than XML as a technology. Further they used the slowest yet most capable DOM technique for XML interpretation, rather than the potentially faster, and more equivalent to ASN.1 SAX methods. They also did not run comparisons of the time differences between ASN.1 and XML against the time it took for cryptographic operations, or in any other way give a sense that the times they were talking about (ms) were necessarily relevant. In the end it is shown that ASN.1 has better performance characteristics than XML.

Recommendation

While there are hurdles to overcome in the implementation of these technologies, both seem to be viable in terms of security, interoperability, extensibility and stability. XML offers somewhat more programmability in the long term, but it is performance that is of the utmost importance to the future key packaging specification. The time it takes to transfer and verify credentials between two secure wireless devices will have a direct and noticeable impact on users and their willingness to “go secure” during mobile phone communications.

That is not to say that there is no place for a secure version of XML as well. Higher-level transport and management mechanisms may see great dividends by utilizing XML. Additionally. It is highly likely that management entities will continue to use XML as the backbone of their systems, and to pass around our ASN.1 key packages. However, when it comes to the consuming devices themselves ASN.1 and CMS are the technologies they are most likely to support inside the security boundary.

References

� Organization for the Advancement of Structured Information Standards (OASIS) homepage: http://� HYPERLINK "http://www.oasis-open.org" ��www.oasis-open.org�

� World Wide Web Consortium (W3C) homepage: http://www.w3c.org/

� Jeff Ryan, “Ten Lessons Learned from an XML Developer.” http://� HYPERLINK "http://www.developer.com/xml/article.php/2194491" ��www.developer.com/xml/article.php/2194491�

� Russ Housley, Vigil Security LLC, 25 February 2005, “Using CMS to Protect Key Packages.”

� Darren Mundy and David W. Chadwick, February 2004, “An XML Alternative for Performance and Security: ASN.1”

UNCLASSIFIED

2

