
Enterprise Key Management
Infrastructure Technical

Committee (EKMI TC)

IEEE 1619.3 Briefing

Arshad Noor
Chair, EKMI TC

arshad.noor@strongauth.com

www.oasis-open.org

mailto:arshad.noor@strongauth.com

The Encryption Problem

● Generate
● Encrypt
● Decrypt
● Escrow
● Authorize
● Recover
● Destroy

● Generate
● Encrypt
● Decrypt
● Escrow
● Authorize
● Recover
● Destroy

● Generate
● Encrypt
● Decrypt
● Escrow
● Authorize
● Recover
● Destroy

● Generate
● Encrypt
● Decrypt
● Escrow
● Authorize
● Recover
● Destroy

● Generate
● Encrypt
● Decrypt
● Escrow
● Authorize
● Recover
● Destroy

● Generate
● Encrypt
● Decrypt
● Escrow
● Authorize
● Recover
● Destroy

.........and on and on

The Encryption Solution

W A N

 SKS Server

• Generate
• Protect
• Escrow
• Authorize
• Recover
• Destroy

• Encrypt
• Decrypt

 SKS Server

• Encrypt
• Decrypt

• Encrypt
• Decrypt

• Encrypt
• Decrypt

• Encrypt
• Decrypt

• Encrypt
• Decrypt

What is an EKMI?

■ An Enterprise Key Management
Infrastructure is:

“A collection of technology, policies
and procedures for managing all
cryptographic keys in the enterprise.”

EKMI Characteristics

■ A single place to define EKM policy
■ A single place to manage all keys
■ Standard protocols for EKM services
■ Platform and Application-independent
■ Scalable to service millions of clients
■ Available even when network fails
■ Extremely secure

EKMI Components
■ Public Key Infrastructure

● For digital certificate management; used
for strong-authentication, and secure
storage & transport of symmetric
encryption keys

■ Symmetric Key Management System
● SKS Server for symmetric key management
● SKCL for client interactions with SKS Server

■ EKMI = PKI + SKMS

SKMS Big-Picture

DB Server

Crypto Module

Application
Server

Crypto Module

SKCL

C/C++
Application

RPG
Application

Java
Application

Key Cache

JNIRPGNI

ServerClient

Network
1

2

3

4

5

6

1. Client Application makes a request for a symmetric key
2. SKCL makes a digitally signed request to the SKS
3. SKS verifies SKCL request, generates, encrypts, digitally signs & escrows key in DB
4. Crypto HSM provides security for RSA Signing & Encryption keys of SKS
5. SKS responds to SKCL with signed and encrypted symmetric key
6. SKCL verifies response, decrypts key and hands it to the Client Application
7. Native (non-Java) applications make requests through Java Native Interface

7 7

EKMI TC Goals

■ Standardize on a Symmetric Key
Services Markup Language (SKSML)

■ Create Implementation & Operations
Guidelines

■ Create Audit Guidelines
■ Create Interoperability Test-Suite

EKMI TC Members/Observers

■ FundServ, PA Consulting, PrimeKey,
Red Hat, StrongAuth, US DoD, Visa,
Wave Systems

■ Many large companies as Observers
● Security, Database, Consulting, Non-US

Government Agency
■ Individuals representing Audit and

Security backgrounds

Potential Encryption Layers

Disk/Tape Firmware

Device Driver in OS

File-system Driver in OS

Inside Database

Database Driver

Network
(Typically, already encrypted with SSL or IPSec)

Inside ApplicationData-in-Use

Data-at-Rest

Data-in-Motion

Exposure Spread

Vulnerability due to exposure of unencrypted data

Database or
DB Driver

Operating System
and its Drivers

Disk

Application

Network

Potential IEEE & OASIS integration?

■ Incorporate SKSML into management
consoles (MC) that control devices

● MC becomes an SKSML Client
● Use SKSML to acquire keys and policies

from SKS Server
● Use IEEE standards/protocols for pushing

keys from MC to devices
■ Other mechanisms?

Resources

■ OASIS EKMI TC Resources
● Use Cases, SKSML Schema, Presentations,

White Papers, Guidelines, etc.
■ www.strongkey.org - Open Source SKMS

implementation
■ www.issa.org - Article on SKMS in

February 2007 issue of ISSA Journal

http://www.strongkey.org/
http://www.issa.org/

