[image: image22.png]JOASIS

[image: image23.jpg]

OASIS White Paper

An OASIS Emergency Management Technical Committee White Paper

Best Practices for Message Routing Using the Distribution Element
[image: image24.jpg]

By Hans Jespersen and Jeff Waters
On behalf of the OASIS Emergency Management Technical Committee
Date: 21 June 2010

This paper provides a detailed description of how to use the Distribution Element (DE), in message routing networks. The DE serves two primary purposes: (1) the DE allows an organization to wrap important pieces of emergency information into a single easy-to-distribute XML "package", and (2) the DE allows an organization to "address" the package in flexible ways to support intelligent routing, including specifying recipients by role, by geographic area, or by keywords. Some functions of a message routing network are not part of the EDXL-DE specification and are up to the implementer to deside. This paper points out which message routing functions are part of the DE spec and which are not, including examples and alternative where possible.
This white paper was produced and approved by the OASIS Emergency Management Technical Committee as a Committee Draft. It has not been reviewed and/or approved by the OASIS membership at-large.

Copyright © 2010 OASIS. All rights reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Table of Contents

5Introduction

6Basic Messaging Terminology

6Message Channel

7Message Broker

9Message Bus

10Messaging Bridge

10Message

11Message Endpoint

12Channel Adapter

14Publish-Subscribe Channel

15Polling Consumer

15Event-Driven Consumer

16Guaranteed Delivery

17Dead Letter Channel

18Invalid Message Channel

20Message Router Functions

20Recipient List

21Return Address

22Correlation Identifier

23Content-Based Router

24Message Filter

25Pipes and Filters

26Dynamic Router

27Control Bus

28Use Cases

28Simple Hub/Spoke System

28Federated System

28Secure Sender

28Classified Networks

29Conclusion

30References

Introduction
The purpose of this document is to explain the basic concepts of message routing and show how these concepts can be implemented using EDXL-DE. In some advanced scenarios the EDXL-DE 1.0 specification may not be entirely sufficient and so this paper discusses potential enhancements that may be implemented in a subsequent release or which may be implemented in the underlying middleware and transport levels.
This paper is meant to be a follow on to The Distribution Element: The Basic Steps to Package and Address Your Emergency Information by Jeff Waters and Rex Brooks (Date: 18 August 2009) which explains how to create an EDXL-DE formatted XML message. This paper focuses more on the routing of messages through an intermediate infrastructure, rather than on the process of sending or receiving.

In order to explore the most complete set of message routing functionality, this paper draws heavily upon the work of others in documenting Enterprise Integration Patterns. Terms and graphics are borrowed from the Creative Commons Attributionbook Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf [ISBN 0321200683, 650 pages, Addison-Wesley] and are made available under the license.

The goal is that the reader will gain confidence and understanding of the completeness of the EDXL-DE specification by showing how it can implement each of the applicable documented patterns.

Basic Messaging Terminology

Message Channel
How does one application communicate with another using messaging?

[image: image1.png]Message
Channel

e

Sender Messaging Receiver
Application System Application

Connect the applications using a Message Channel, where one application writes information to the channel and the other one reads that information from the channel.

A message channel is the communications mechanism that connects sending and receiving applications. You can think of a messaging channel as a virtual pipe (as it is often drawn) which connects the two applications on either end. These applications are said to be a sender and a receiver but they are computer systems not people and so they should not be confused with the person whose role it is to send or receive an Emergency Management message.

The actual implementation of a message channel varies widely and is not meant to be standardized in EDXL-DE. The Distribution Element is said to be “transport agnostic” because DE messages can be carried over any (or many) intermediate message channels. Examples include TCP/IP sockets, UDP Multicast, wireless data networks, or even email, flat files, and databases.

Since the message channel is not part of the DE specification, there are certain important properties of a given implementation that may or may not be implemented in this underlying layer. For example, certain message channels guarantee that data is never lost or duplicated while others do not. Some message channels are lightweight and can be implemented on mobile devices while others require significant datacenter equipment to operate. As there are tradeoffs to using one or another message channel it is up to the designer of the system to select an infrastructure that fits the needs of their users and use cases.
A sender of an EDXL-DE message may influence or suggest the use if a particular type of Message Channel. For example by indicating a specific <explicitAddress> such as an email address.

<explicitAddress>

 <scheme>e-mail</scheme>

 <value>joe.smith@myagency.gov</value>

</explicitAddress>
However even in the example above, the infrastructure may actually route the message using a variety of protocols (such as SMTP, POP3, or IMAP) or even choose a transport that is not based on e-mail, but otherwise is capable of getting the message to a person who might simply login and identify themselves as joe.smith@myagency.gov.
Message channels and applications can be combined to form networks of various topologies. The simplest (as pictured above) is a peer-to-peer network with the sending application directly connected to a receiver. In practice most networks have applications which act as intermediaries that can intelligently route, filter, and otherwise process the messages flowing through them.

Two important such topologies are the Message Broker and Message Bus.

Message Broker
How can you decouple the destination of a message from the sender and maintain central control over the flow of messages?

[image: image2.png]0T

Use a central Message Broker that can receive messages from multiple destinations, determine the correct destination and route the message to the correct channel.

This pattern connects all sending applications via dedicated message channels to a central broker in a design often called Hub & Spoke. The advantage of this design is that there is a single central place where all intelligent message processing occurs. This is also the downside as a failure of the central hub renders the entire network disconnected.
In practice, there is rarely a single central system, but rather a fault tolerant pair of systems that implement the central hub. Should the primary hub fail, a secondary can be activated to take over in its place. The switchover process varies by implementation and a transition from primary to backup can be quick or slow, manual or automatic. A switchover may or may not result in the loss or duplication of messages depending on the design of the applications and choice of message channels.

Sometimes two or more Message brokers are connected in an active/active or distributed multi-broker architecture.

A common EDXL-DE Message Broker design is one that uses a central Application Server which exposes SOAP or REST-based Web Services over HTTP as the Message Channel connecting both senders and receivers to the “hub”.

Since the senders and receivers are not directly connected, this architecture allows for interactions in which the sender does not know in advance (or ever) who the eventual recipients of the message will be.
For example, to send a message to any interested recipients that are categorized as “Situational Awareness Apps” or “Warning Devices” you would do this:
<recipientRole>

<valueListUrn>urn:myagency:gov:sensors:recipientRole</valueListUrn>

<value>Situational Awareness Apps</value>

<value>Warning Devices</value>

</recipientRole>
It is the job of the Message Broker to maintain an understanding of valid values for the given valueListUrn and to map each recipientRole specified back into specific endpoints to which to deliver the message. For example, if there where 192 Warning Devices and 2 Situational Awareness Apps, then the Message Broker will attempt to deliver a total of 194 copies of the message. In the case of a multi-broker architecture it may not be possible to know how many endpoints exist as they are potentially resolved across many distributed message brokers.
Sometimes the <valueListUrn> will actually be a URL. This can cause confusion because architects sometimes assume that when a URL is included that it will become necessary to “call out” to that URL during run time. Adding an external HTTP request for every message is understandably a concern for two reasons: performance and security.
1) Performance - If the message brokers at each step between sender and receiver need to make HTTP requests to resolve each <valueListUrn> in a message then the overall throughput on the system is reduced and the latency of each message is increased by the time it takes to call out to the external system specified in the URL. If that system were not available (as may be expected in a large emergency such as an earthquake) then the message would become undeliverable. It is considered a best practice to have Message Brokers pre-fetch and cache any external <valueListUrn> or other metadata and to be configured with rules that handle messages with references to unreachable external resources. The specific ways to handle these messages depends on the use case of the overall system, but this issue should be documented and handled by the implementer.
2) Security – Message brokers may be transporting classified messages and the existence of a particular message, it’s contents, and the recipients may be confidential. Calling out to an external URL can expose information unnecessarily and should be avoided in order to preserve the overall security of the system.
Message Bus
What is an architecture that enables separate applications to work together, but in a decoupled fashion such that applications can be easily added or removed without affecting the others?

[image: image3.png]Application

Application —|

Message Application
Bus

Structure the connecting middleware between these applications as a Message Bus that enables them to work together using messaging.

The Message Bus architectural pattern seeks to eliminate the central bottleneck and vulnerability of the Hub & Spoke design of a Message Broker by implementing an entirely distributed messaging system. As with most concepts in enterprise architecture there are pros and cons to this approach. The distributed components of a Message Bus can survive the failure of any node in the network and for one to many style message distribution it can be very efficient to broadcast a single copy of a message to all recipients simultaneously (as in satellite networks or wireless broadcasts). However, unlike in the previous design, there is also no convenient central control point in this design for enforcing administrative rules such as security policies.
In practice, it is likely that EDXL-DE messages will be routed over a combination of both Message Bus (distributed) and Message Broker (centralized) middleware and the specification does not assume or dictate the use of any particular design pattern.

In fact, multiple messaging systems (of any design) can be connected using the concept of a Messaging Bridge.
Messaging Bridge
How can multiple messaging systems be connected so that messages available on one are also available on the others?

[image: image4.png]>
-

> >
«
Messaging Messaging Messaging

System 1 Bridge System 2

Use a Messaging Bridge, a connection between messaging systems, to replicate messages between systems.

The concept of a Messaging Bridge spans the divide between two otherwise disconnected messaging systems. This is most commonly used between organizational boundaries or when connected private systems over the internet. Messaging Bridges are the gateways that expand a single message routing domain into a system of systems. The bridge also represents a convenient point in which to define and enforce administrative policies that apply only to messages that cross organizational boundaries. For example, Organization 1 operates Messaging Systems 1 (on the left of the diagram above) and wanted to share a subset of its messages with Organization 2 which operates and controls Messaging Systems 2 (on the right of the diagram). Even though System 1 and System 2 are based on different topologies or vendors they can agree to exchange messages via a common messaging bridge (which might even be based on yet another independent message transport or middleware).
Specific rules which allow or deny the exchange of EDXL-DE messages between System 1 and 2 can be created and enforced independently at either end of a Messaging Bridge. The way in which these rules (sometimes called “policies” or “policy vectors”) are written, distributed, and stored, is not currently specified in an EDXL standard. However all of the hooks are there in the EDXL-DE message header to make them happen and we will specifically discuss this topic in the later sections entitled Dynamic Router and Control Bus.
Now that we have the framework of the important architectural terms defined, it is time to talk about the messages themselves.

Message
How can two applications connected by a message channel exchange a piece of information?

[image: image5.png][gl

Sender Message Receiver

Package the information into a Message, a data record that the messaging system can transmit through a message channel.
Messages are the data objects that are exchanged over message channels. In the case of EDXL-DE they are XML messages which are self-describing and conform to the EDXL-DE schema. To understand how to create an EDXL-DE message see the document The Distribution Element: The Basic Steps to Package and Address Your Emergency Information. It can sometimes be confusing because an EDXL-DE message can contain one or more content objects inside (the green and orange boxes in the picture above) and these are also commonly called “messages”. The contents of an EDXL-DE message can be XML or non-XML objects. Since this paper is focused on the routing of EDXL-DE we will use the term “Message” to mean an EDXL-DE message and we will refer to the objects inside the DE envelope as “content” unless otherwise explicitly stated.
The purpose of the EDXL-DE is to provide both the mechanism to package message as well as to describe them with the metadata required for routing. To use a postal analogy, EDXL-DE is both a standard envelop as well as a mailing label. Both packaging and addressing are necessary to successfully send and deliver messages.

While there exist today a mechanism to include multiple objects in an EDXL-DE wrapped envelop, there is no capability to describe any relationships between the contained objects. This is also similar to the postal analogy where three forms in an envelop sent to your insurance company may actually be delivered to more than one recipient once opened, even though the label in the outside is addressed to a single address. If it is necessary for your application to understand the relationships between the various content objects in an EDXL-DE envelop you will have to include an electronic “cover letter” along with the objects which indicates their relationships using unique identifiers in the content data themselves.

Message Endpoint
How does an application connect to a messaging channel to send and receive messages?

[image: image6.png]Data
Message Message
E Message Channel Endpoint

Sender Receiver

Application Application

Connect an application to a messaging channel using a Message Endpoint, a client of the messaging system that the application can then use to send or receive messages.

It is important to note that EDXL-DE is designed for applications to send messages to other applications. Actual people (who are users of the sending and receiving applications) may, or may not, ever see or use EDXL-DE. A Message Endpoint is the sending or receiving application that must understand EDXL-DE in order to package and handle the messages flowing through the Message Channel.

Often data comes from sources that do not understand EDXL-DE. This could be first responders in the field or automated sensors. These people and systems do not represent EDXL-DE message endpoints since they are using another message format. It is the function of Channel Adapters to intermediate between an application that does not speak EDXL-DE one one side, to the other side that is the Message Endpoint.
Channel Adapter
How can you connect an application to the messaging system so that it can send and receive messages?

[image: image7.png]Application ...Eg <« @D

Channel Message Message
Adapter Channel

Use a Channel Adapter that can access the application's API or data and publish messages on a channel based on this data, and that likewise can receive messages and invoke functionality inside the application.

Channel Adapters come is many forms depending on the application being integrated. Some are one way adapters that only publish or subscribe. Some are real-time and event driven, while others must periodically poll the application API (or message channel) and may batch up messages into larger updates.
Often the target application does not use XML natively and so it is the function of the Channel Adapter to either convert the information into XML or place it into the EDXL-DE envelop as a non-XML content object. In either case, the data must be at a minimum be converted into a base-64 encoded text form before it can be placed into EDXL-DE as in the example below of a JPEG image.
For example:

...

<contentObject>

 <nonXMLContent>

 <mimeType>image/jpeg</mimeType>
<contentData>/9j/4AAQSkZJRgABAQEAYABgAAD/4QAWRXhpZgAASUkqAAgAAAAAAAAAAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAAqACsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1fxNfz27xW8LlNy7mKnB9KxdLmll1O3R55SpcZBc81f8AFeft8Of+ef8AU1Q0rTbjUJy0DeX5ZyZD2PbFfG4qdWeYcq96z28j1qSgsPrY6LxdqtzovhXUNQs4vMuYIsouMgHIG4j0Gc/hXzpeeJtd1CUvdavey5JIUzMAPoo4H/6q9zvvHumaHcmw1ydVuAo3CEeZwf7wH3fp1rG1zwD4f8WaS2reG5IYrhsshgOIpT/dZf4T7jGM5Oa+6wVWMYqU42ucEbQfvHklh4l1rTLpLm21O7V1OcGQspHoQTyK+m9Lu/7S0iyvs7PtMCTbfTcoP9a+U54JbW4kt50ZJonMbowwVYcEY9fWvqDwt/yKOi/9eEH/AKLWunGqOjQVo3szK8W/8f8AD/1y/qa0fC5T+zGC43eYd31rN8W/8f8AD6eV/U1n6Zqc2mzl0BeNvvoe/wBK+BeKhh8ylOW2x2qlKphkkeI63BeW+uX0WoBvtYnfzSeSzbiSffOfx/GvWPgpBexabqc8qsLOWSPySTwzgEOR/wCOj8Pautu9N8N+L123tlDLMB95vlkA9mBB/WuJ8X2/iLwHpRGlatNNpEv7hVmUNJanqNpx0xkZr7eni6eLpRjTOSTb9xqzOB8czQ3HjfV5ICDGbhhx3I4P6g/nX0L4V/5FDRf+vCD/ANFrXy0Tlsnk565/z7V9S+Ff+RQ0T/rwg/8ARa1ti48sYoVTRJFfxFpU96Yp7cbnQEMmeornho+okgfZJOfUV6GKBXzGKyehXm6jbTZdLFzpx5UcpomhXVvepdXC+WEzhQQSeMdqr/EuyvtR8IyWWnWUl3PNNGAsYzsAO7d+mPxrs+1Fd+Cw8MLFKmY1K0py5mfNth8NPFN7dRwPpsltGxG6WYgKg7nrn8ua+hdPshp+m2tkmWW3hSIH1CgD+lXRS13VK8qnxEym3uf/2Q==</contentData>

 </nonXMLContent>

</contentObject>

Alternatively binary data can be passed by reference such as by sending a URL or other pointer for the recipient to fetch.
For example:

...

<contentObject>

 <nonXMLContent>

 <mimeType>image/jpeg</mimeType>

 <uri>http://www.myhost.com/pictures/pic333</uri>

 </nonXMLContent>

</contentObject>

In order to maximize the interoperability of the system it is recommended that the EDXL Suite of standards (or other XML standard-based content objects) be used whenever possible.

Publish-Subscribe Channel
How can the sender broadcast an event to all interested receivers?

[image: image8.png]Y

Publisher

Address Subscriber
Changed
Address Address Subscriber
Changed Changed

— %]

Publish-Subscribe Address Subscriber

Channel

Changed

Send the event on a Publish-Subscribe Channel, which delivers a copy of a particular event to each receiver.

The EDXL-DE specification was originally designed with the Publish-Subscribe model of message distribution in mind. In this model, the Publisher sends messages to a channel and addresses the message with metadata that describes the channel itself and not necessarily the indented recipients. For example, if the Publish-Subscribe Channel is a Java Message Service (JMS) Topic, then the Publisher may specify a topic name such as “chlorine.sensor”.
<explicitAddress>

 <scheme>topic</scheme>

 <value>jms://chlorine.sensor</value>

</explicitAddress>
Subscribers listen in to channels in a way similar to listening to a radio or television broadcast. They “subscribe” to the interested channel and they all receive the messages on that channel, even though they may not need to know which application is sending the messages. Indeed in this example there may be many sensors all sending data to the common topic “chlorine.sensor”.

Since EDXL-DE is transport agnostic any type of publish/subscribe transport meta-data can be specified. In fact, sometimes this meta-data would be stored as configuration information for a Channel Adapter or Message Broker and may not even be present in the EDXL-DE message itself.
Polling Consumer
How can an application consume a message when the application is ready?

[image: image9.png][%

Polling
Sender Message | Consumer

Receiver

The application should use a Polling Consumer, one that explicitly makes a call when it wants to receive a message.

Not all subscribers are constantly running and constantly connected. Itinerate systems need to be able to check in and request messages when they are able to consume them. This is called a Polling Consumer. In the case of the DM-OPEN systems all consumers are Polling Consumers. Sometimes the messaging infrastructure will be able to keep track of prior requests and only delivery new messages. In other cases the consumer may need to keep track of timestamps or sequence numbers in order to determine which messages are new and which have already been received previously.
Event-Driven Consumer
How can an application automatically consume messages as they become available?

[image: image10.png]L Fait%

Event-Driven
Sender Message | Consumer

Receiver

The application should use an Event-Driven Consumer, one that is automatically handed messages as they’re delivered on the channel.

For a more real-time or low latency use case, it may be necessary to use an Event-Driven Consumer that remains constantly connected to a message channel and immediately consumes messages as they become available. For example, seismic sensors, flash flood warning, or avalanche alerts would be implemented using this method in order to reduce the message distribution latency as much as possible.

Guaranteed Delivery
How can the sender make sure that a message will be delivered, even if the messaging system fails?

[image: image11.png](a

Sender

Disk

Disk

Receiver

Computer 1

Cormputer 2

Use Guaranteed Delivery to make messages persistent so that they are not lost even if the messaging system crashes.

EDXL-DE does not itself provide a mechanism to guarantee delivery of messages. This is a function that can be implemented by the underlying transport (if required). In practice, there are many Quality of Service (QoS) levels for guaranteed delivery. For example messages may be guaranteed to be delivered in the event of a system or network failure but not if the entire datacenter were to go down.

Also, the guarantee might be end-to-end or simply hop by hop. A hop by hop protocol will guarantee that the next broker gets the message but an end-to-end protocol would guarantee delivery even in the event that an broker in the middle of the delivery chain were to loose a message.
Currently there is no mechanism in EDXL-DE that communicates the delivery status of a message. Applications can include information in the message contents that would allow message brokers and message endpoints to acknowledge (ACK) receipt.

There is discussion of adding a <Reply-To> element into EDXL-DE 2.0 to allow for acknowledgement.
Any use of an ACKs in a protocol however should be carefully considered as they have the potential to add significantly to the traffic flowing through the systems. Improperly architected use of ACKs can lead to a situation known as an “ACK implosion” during which the messages sent to a large number of endpoints create a flurry of acknowledgements that overwhelm the sender and interfere with the processing of other messages.
Dead Letter Channel
What will the messaging system do with a message it cannot deliver?

[image: image12.png]| e

Sender

Message Channel

Reroute Delivery

Delivery Fails

~X [

Intended
Receiver

— — @
[]

Dead Dead Letter
Message Channel

When a messaging system determines that it cannot or should not deliver a message, it may elect to move the message to a Dead Letter Channel.

The concept of a Dead Letter Channel allows the system to handle errors more gracefully than by simply throwing away the message. Checking Dead Latter Channels is something that a person or system should do on a periodic basis to ensure that messages are not being lost due to configuration errors or addressing problems. Sometimes a message may end up in a Dead Letter Channel as a result of being undeliverable for an extended period of time. This is common when itinerate consumers subscribe to messages and then die or go away for long periods of time.
Sometimes receivers are simply unable to handle a given message. These kinds of messages are sometimes called “poison pill” messages because if they are not handled correctly they can bring a system down. For example, consider the situation where a receiver crashes whenever trying to consume a large message. If the message is being sent with Guaranteed Delivery then the Message Broker will try again to delivery the message as soon as the crashed receiver reboots and tried to come back online. This leads to another crash, and so on ad infinitum.

To avoid problems like the “poison pill” scenario, messaging systems can define a dead letter channel that will act as an overflow channel for messages that a receiver rejects or fails to consume after a configurable number of attempts.
Currently there is not a mechanism to specify a specific Dead Letter Channel in the EDXL-DE envelope. This is something that is typically configured at the transport level underneath EDXL-DE. The downside of this approach is that the sender may not ever receive the error messages if they occur in a message router downstream from the sending application.

There is discussion about adding an <Err-To> element to the EDXL-DE 2.0 specification in order to facilitate a mechanism for a sender to specify a place that errors should be communicated. However, since <Err-To> messages are created at run-time it is not possible to guarantee that any particular message broker will be able to send to the location of the <Err-To> field.
Consider the following example in which a hypothetical <Err-To> element describing an email address to send error reports.
<Err-To>

 <scheme>email</scheme>

 <value>errors@sender.com</value>

</Err-To>
If the message is sent from System A to intermediate System B and finally on to destination System C then errors may occur at either System A, B, or C. Even if System A can send email there is no guarantee that System C can do so.
Similar problems would occur if unregistered or private IP addresses or hostnames are used.

<Err-To>

 <scheme>URL</scheme>

 <value>http://192.168.1.1</value>

</Err-To>

Or

<Err-To>

 <scheme>URL</scheme>

 <value>http://localhost:8080/errorhandler</value>

</Err-To>
Each Message Broker should define a Dead Letter Channel of their own and place all messages (including <Err-To> message if implemented in a future release) into a private log for periodic administrative review by a person.

Invalid Message Channel
How can a messaging receiver gracefully handle receiving a message that makes no sense?

[image: image13.png]» U —aEm

- %t .

Sender Messages Channel Receiver invalid Invalid
Message Message
Channel

The receiver should move the improper message to an Invalid Message Channel, a special channel for messages that could not be processed by their receivers.

Sometimes messages are delivered but are nonsensical to the recipient. For example if a sender encrypts a message using an algorithm that the receiver does not understand or does not have the keys to decrypt. The message cannot be said to be a Dead Letter or an undelivered message, because it was successfully delivered to the intended recipient. In these cases there needs to be a graceful way to mark the message as invalid and store it in an Invalid Message Channel for an administrator to investigate. Access to the Invalid Message Channel may be restricted to the local administrator or it may be open to other people and application to subscribe. An open Invalid Message Channel allows the sender to monitor the receivers’ processing or rejection of messages and handle any observed problems automatically.
There is currently no way to specify an Invalid Message Channel in EDXL-DE and it is currently done at the transport level on each individual Message Broker or grid (collection) of Message Brokers.

Message Router Functions

Recipient List
How do we route a message to a list of dynamically specified recipients?

[image: image14.png].=

Recipient List

(=] [] [][-]

Define a channel for each recipient. Then use a Recipient List to inspect an incoming message, determine the list of desired recipients, and forward the message to all channels associated with the recipients in the list.

The recipient list function of a message router is often confused with the situation in which a sender explicitly lists recipients in a message before sending. In fact, one of the biggest values of a message broker is that it allows the sender to publish messages without listing the recipients at all. This is sometimes called “anonymous publish/subscribe”. Let’s examine the difference between explicit addressing and anonymous addressing of messages.
When a publisher explicitly addresses an EDXL-DE message then the element <explicitAddress> is used

<explicitAddress>

 <scheme>e-mail</scheme>

 <value>joe.smith@myagency.gov</value>

</explicitAddress>
However if there is no <explicitAddress> in the EDXL-DE header it is up to the message broker to determine who to send the message to based on all the other information in the header including any of the following:

· distributionID (string)

· senderID (string)

· dateTimeSent (dateTime)

· distributionStatus (enumerated type)

· distributionType (enumerated type)

· combinedConfidentiality (string)

· language (string)

· targetArea

· recipientRole

· keyword
Consider the example where a message is sent to a <recipientRole>
<recipientRole>

 <valueListUrn>urn:myagency:gov:sensors:recipientRole</valueListUrn>

 <value>Situational Awareness Apps</value>

 <value>Warning Devices</value>

 </recipientRole>

It is the function of the message broker to maintain an understanding of the roles of each recipient and to dynamically route messages to all the members of the Recipient List for that role. Recipient Lists act like email aliases that can be changed at any time. In the picture above A, and B might be “Situational Awareness Apps”, C might be a “Sensor”, and D might be a “Warning Device”. The message broker would look at the EDXL-DE message and cross reference the recipientRoles of A,B,C, and D and deliver the message to only A, B, and D.
At some point a new Warning Device, say E, is added and the message broker is configured to understand what role(s) E has been assigned. The same message would now be delivered to A, B, D, and E, all without the sender being aware of the change.
Return Address
How does a replier know where to send the reply?

[image: image15.png]Reply Reply
Channe 1 Channel 2

Reqest
Chanrel Repler
— — @

Rectiests

Requestor 1

Requestor 2

oo
Chandi2 Ry

The request message should contain a Return Address that indicates where to send the reply message.

EDXL-DE was initially envisioned as a publish/subscribe system as does not include request/reply addressing directly in the distribution header. <Reply-To> is an element that is proposed to be added to EDXL-DE 2.0 but it is used for acknowledging receipt of a message and not, for example, for returning the results of a query.
If you want to implement a request/reply message exchange pattern in EDXL-DE you can build it by using two uni-directional publish/subscribe messages. However, every message broker implementation may be different and you cannot expect responses to be delivered properly if all participating systems are not aware of your proprietary scheme for implementing this functionality.

For example you may define certain roles that expect responses or you may insert keywords in the header or in the content object that instructs a replier to respond either to the requestor, to a third party, or to a group of recipients.

If you implement request/reply it will be necessary to uniquely identify the message to which the reply applies. To do this you will need a correlation identifier.
Correlation Identifier
How does a requestor that has received a reply know which request this is the reply for?

[image: image16.png]Carrelation Message 1D

3] |

Requestor Replies . Replier

Correlation ID

Each reply message should contain a Correlation Identifier, a unique identifier that indicates which request message this reply is for.

Every message is uniquely identified by the combination of <distributionID> + <senderID> +<dateTimeSent>. You might at first think that <senderID> + <dateTimeSent> would be enough to uniquely identify a message but it is not. Time is specified to a resolution of 1 second and so two messages sent within one second from the same senderID would be indistinguishable without the third element <distributionID>. <distributionID> is often implemented as a simple counter that increments each time the sender generates a new message. Inserting a <distributionID> may be required by the publishing application or automatically generated by the message broker.
There is no way for the entire system to guarantee that all requestors (or publishers) are implementing these elements properly because in a system of systems there is no global ordering or sequence numbers. If a sender incorrectly uses the same <distributionID> twice then message brokers may consider the second use as a duplicate message and discard it entirely or refuse to allow it to be published.
Content-Based Router
How do we handle a situation where the implementation of a single logical function (e.g., inventory check) is spread across multiple physical systems?
[image: image17.png]Widget

"\me .l Inventory
Gadget
New Ord .

oot Router PO @ @ mventory

Use a Content-Based Router to route each message to the correct recipient based on message content.
Consider a system with 4 potential recipients named A, B, C, and D.

· recipient A may want to receive all messages containing the <keyword> “fire”

· recipient B may want to receive all messages in a <targetArea> of the state of California

· recipient C may want to receive all messages in a <targetArea> of the state of New York

· recipient D may want to receive all messages with the following selection criteria

· <distributionStatus> is “Actual”

· AND <distributionType> is “Dispatch”

· AND <recipientRole> contains either the string “Chief” OR “Supervisor”

Consider the following EDXL-DE message header which has no <explicitAddress> and therefore the recipients are unknown to the sender.

<EDXLDistribution xmlns="urn:oasis:names:tc:emergency:EDXL:DE:1.0">

 <distributionID>http://myhost.com/packages/17</distributionID>

 <senderID>mary.thompson@myagency.gov</senderID>

 <dateTimeSent>2005-11-15T16:53:00-05:00</dateTimeSent>

 <distributionStatus>Actual</distributionStatus>

 <distributionType>Dispatch</distributionType>

 <combinedConfidentiality>unclassified</combinedConfidentiality>

 <language>EN</language>

 <recipientRole>

 <valueListUrn>urn:myagency:gov:sensors:recipientRole</valueListUrn>

 <value>Situational Awareness Apps</value>

 <value>Fire Chief</value>

 </recipientRole>

 <keyword>

 <valueListUrn>urn:myagency:gov:sensors:keywords</valueListUrn>

 <value>SNM Detection</value>

 <value>fire</value>

 </keyword>

<targetArea>

 <polygon>37.771936,-122.454042 37.773666,-122.440996 37.77275,-122.440739 37.771054,-122.453914</polygon>

</targetArea>

…

This message will be delivered to A, B, and D (but not C) because it matches the content routing criteria pre-registered in the message broker for each recipient. C does not receive the message because the <polygon> specified in the message is for Golden Gate Park in San Francisco and so it does not overlap with the State of New York.

It is the function of the message broker to allow for the configuration of content routing criteria. This selection data (sometime called “business rules”, “subscriptions”, or “distribution policies”) are not standardized in EDXL-DE because the DE specification focuses on the message envelope itself and not all the other ancillary meta-data controlling the configuration and operation of the message broker itself.
Message Filter
How can a component avoid receiving uninteresting messages?

[image: image18.png]Widget Gadgst Widget n W\dget

Quote Quote Quote

W\duet

Message Quote Quate

Filter

Use a special kind of Message Router, a Message Filter, to eliminate undesired messages from a channel based on a set of criteria.

The subscription rules discussed in the previous Content-Based Routing example illustrate how to specify which messages are attracted to a Message Channel. Message Filters do the opposite. That is, they specify which messages should be removed (filtered out) from a message channel.
The purpose of a message filter could be a security policy (i.e. remove all classified messages), or an administrative rule (i.e. filter out large messages).

Message filters may be defined by the recipient, the administrator of the message broker, or an external governing organization.

EDXL-DE does not specify how Message Filters are expressed, created, distributed, or stored. When Message Filters are used for security it is strongly advised that they be distributed using and out-of-band communication mechanism (that is using a datapath other than the one used for EDXL-DE messages) and that they be signed using a trusted source so as to provide non-repudiation.
Pipes and Filters
How can we perform complex processing on a message while maintaining independence and flexibility?
[image: image19.png]Incoming Fiter Fiter Fiter Clean’
Order Order

Use the Pipes and Filters architectural style to divide a larger processing task into a sequence of smaller, independent processing steps (Filters) that are connected by channels (Pipes).

So far we have discussed simple content-based routing and filtering rules. In practice there are needs for more complex, multi-step message processing rules (sometimes called a message processing “pipeline”). Often these filters modify the data that flows through them as is the case when defining a security policy such as encryption for example. Other non-security related examples include message compression, or transformation.
The Pipes and Filters style allows administrators to control the order of steps as well. You may choose to write a message to an audit logfile before, or after it has been decrypted for example.

EDXL-DE does not specify how to describe a pipeline of message filters but it is important that the fields in an EDXL-DE message be complete enough to enable the wide variety of filtering steps required by different systems.
Dynamic Router
How can you avoid the dependency of the router on all possible destinations while maintaining its efficiency?

[image: image20.png]Dynarnic Router Output Channel

— G|

Output Channel

— G|

Output Channel

— G|

Message Router

t. Input Channel

Dynaric fuls Base

Control Channel

Use a Dynamic Router, a Router that can self-configure based on special configuration messages from participating destinations.

A dynamic router gets feedback from the message endpoints and changes its configuration and behavior based on that feedback. For example, is the output channel for endpoint C in the picture above is backing up because of a large volume of incoming data, then the system be divert traffic to endpoint C or start another copy of C and begin load balancing across the two instances.

EDXL-DE does not specify how control channel messages are sent. Control Channels are often implemented within a single vendors network (or grid) of dynamic message routers. At some point in the future the EDXL technical committees may seek to define an interoperable communications mechanism for multi-vendor control channel signaling (just as SS7 is to the phone system) but it does not exist today. Such a network-wide control channel is called a Control Bus.
Control Bus
How can we effectively administer a messaging system that is distributed across multiple platforms and a wide geographic area?
[image: image21.png]Message Flow

Control Bus

Use a Control Bus to manage an enterprise integration system. The Control Bus uses the same messaging mechanism used by the application data, but uses separate channels to transmit data that is relevant to the management of components involved in the message flow.

In order to implement a truly distributed multi-vendor control bus, EDXL-DE or another EDXL standard needs to be defined which specifies a language for describing control messages as well as a mechanism to version them, distribute them, and resolve conflicting or ambiguous instructions.
A number of vendors have built proprietary mechanism which implement Control Bus functionality across many nodes in a distributed grid.

Current best practice for multi-vendor multi-agency EDXL-DE networks is to have each agency use a single vendors product to implement a control bus within the agency’s own domain, up to and including the point of interconnect between other organizations and their respective domains of control.

Interconnect points typically have a few important additional functions which implement the rules defined in the parties partnership agreements. These typically include things such as which messages are being shared, timeliness and accuracy of the data, scope of distribution rights, how each party will certify the authenticity of messages, service level agreements, etc.

Use Cases
Describe 2-3 real scenarios. Show how the Message Router Functions can be combined to address the routing requirements of the scenarios.

Simple Hub/Spoke System
Simplest scenario is a single hub/spoke system (one central administrative domain)

Federated System

Federated system, as in Cross Border / Cross Agency communications (multiple administrative domains)
Secure Sender
Simpler security model. Public Warning use case

Classified Networks

Hardest/most complex. Military or classified networks.
Conclusion

The DE is

References

[1] OASIS Standard, “Emergency Data Exchange Language Distribution Element, v. 1.0” May 2006. (http://docs.oasis-open.org/emergency/edxl-de/v1.0/EDXL-DE_Spec_v1.0.pdf)

[2] Robin Cover, editor, “Emergency Data Exchange Language” OASIS CoverPages Report, June 2006. (http://xml.coverpages.org/edxl.html)

[3] Tim Grapes, “Emergency Data Exchange Language Overview and Phased Approach” OASIS CoverPages Report, March 2005. (http://xml.coverpages.org/EDXL-OverviewApproachSummary200503.pdf)

[4] Renato Iannella and Karen Henricksen, “Managing Information in the Disaster Coordination Centre: Lessons and Opportunities” Proceedings of the 4th International ISCRAM Conference (B. Van de Walle, P. Burghardt and C. Nieuwenhuis, eds.) Delft, the Netherlands, May 2007 (http://nicta.com.au/__data/assets/pdf_file/0009/8658/ISCRAM10-final_2.pdf)

[5] Leonard Richardson and Sam Ruby, Restful Web Services, (O'Reilly 2007) ISBN: 9780596529260 (http://oreilly.com/catalog/9780596529260/)

Last revision 118 June 2010
The Distribution Element: The Basic Steps to Package and Address Your Emergency Information

