KMIP – Key Management Interoperability Protocol – Draft version 0.98
KMIP – Key Management Interoperability Protocol – Draft version 0.98

KMIP – Key Management Interoperability Protocol

Draft Version 0.98

Last revision February 10th, 2009

Editor: Robert Haas, IBM Zurich Research Laboratory

Permission to copy, display, perform, modify and distribute the “Key Management Interoperability Protocol Usage Guide v0.98” (the “Usage Guide”), and to authorize others to do the foregoing, in any medium without fee or royalty is hereby granted by Brocade, EMC, Hewlett Packard Development Corporation, IBM, NetApp and Thales (collectively, the “Authors”) for the purpose of developing and evaluating the Usage Guide by the OASIS Key Management Interoperability Protocol Technical Committee (the “KMIP TC”) members. The Authors each agree to grant licenses under the Intellectual Property Licensing operating mode of the KMIP TC, stipulated as the OASIS “Royalty-Free on RAND” IPR Mode, defined in sections 10.2.1 and 10.2.2 of the OASIS IPR terms dated 16 December 2008.

DISCLAIMERS:

THE USAGE GUIDE IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO

REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE USAGE GUIDE ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE USAGE GUIDE OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

You may remove these disclaimers from your modified versions of the Usage Guide provided that you effectively disclaim all warranties and liabilities on behalf of all Authors in the copies of any such modified versions you distribute. The name and trademarks of the Authors may NOT be used in any manner, including advertising or publicity pertaining to the Usage Guide or its contents without specific, written prior permission. Title to copyright in the Usage Guide will at all times remain with the Authors. No other rights are granted by implication, estoppel or otherwise.
Table of Contents
1 Introduction
8

2 Objects
8

2.1 Base Objects
8

2.1.1 Attribute
9

2.1.2 Credential
9

2.1.3 Key Block
9

2.1.4 Key Value
10

2.1.5 Key Wrapping Data
10

2.1.6 Key Wrapping Specification
12

2.1.7 Transparent Key Structures
12

2.1.7.1 Transparent Symmetric Key
12

2.1.7.2 Transparent DSA Private Key
13

2.1.7.3 Transparent DSA Public Key
13

2.1.7.4 Transparent RSA Private Key
13

2.1.7.5 Transparent RSA Public Key
14

2.1.7.6 Transparent DH Private Key
14

2.1.7.7 Transparent DH Public Key
14

2.1.7.8 Transparent ECDSA Private Key
14

2.1.7.9 Transparent ECDSA Public Key
15

2.1.7.10 Transparent ECDH Private Key
15

2.1.7.11 Transparent ECDH Public Key
15

2.1.8 Template-Attribute Structures
15

2.2 Managed Objects
16

2.2.1 Certificate
16

2.2.2 Symmetric Key
16

2.2.3 Public Key
16

2.2.4 Private Key
16

2.2.5 Split Key
17

2.2.6 Template
18

2.2.7 Policy Template
18

2.2.8 Secret Data
19

2.2.9 Opaque Object
19

3 Attributes
19

3.1 Unique Identifier
20

3.2 Name
20

3.3 Object Type
21

3.4 Cryptographic Algorithm
21

3.5 Cryptographic Length
22

3.6 Cryptographic Parameters
22

3.7 Certificate Type
23

3.8 Certificate Issuer
24

3.9 Certificate Subject
24

3.10 Digest
25

3.11 Operation Policy Name
26

3.11.1 Operations outside of operation policy control
26

3.11.2 Default Operation Policy
26

3.11.2.1 Default Operation Policy for Secret Objects
26

3.11.2.2 Default Operation Policy for Certificates and Public Key Objects
27

3.11.2.3 Default Operation Policy for Template and Policy Template Objects
28

3.12 Cryptographic Usage Mask
29

3.13 Lease Time
30

3.14 Usage Limits
30

3.15 State
31

3.16 Initial Date
33

3.17 Activation Date
33

3.18 Process Start Date
34

3.19 Protect Stop Date
34

3.20 Deactivation Date
35

3.21 Destroy Date
35

3.22 Compromise Occurrence Date
36

3.23 Compromise Date
36

3.24 Revocation Reason
37

3.25 Archive Date
37

3.26 Object Group
38

3.27 Link
38

3.28 Application Specific Identification
39

3.29 Contact Information
40

3.30 Last Changed Date
41

3.31 Custom Attribute
41

4 Client-to-Server Operations
42

4.1 Create
42

4.2 Create Key Pair
43

4.3 Register
45

4.4 Re-key
47

4.5 Derive Key
49

4.6 Certify
51

4.7 Re-certify
52

4.8 Locate
54

4.9 Check
55

4.10 Get
57

4.11 Get Attributes
58

4.12 Get Attribute List
58

4.13 Add Attribute
59

4.14 Modify Attribute
59

4.15 Delete Attribute
60

4.16 Obtain Lease
60

4.17 Get Usage Allocation
61

4.18 Activate
62

4.19 Revoke
63

4.20 Destroy
63

4.21 Archive
64

4.22 Recover
64

4.23 Validate
65

4.24 Query
65

4.25 Cancel
66

4.26 Poll
67

5 Server-to-Client Operations
67

5.1 Notify
67

5.2 Put
68

6 Message Contents
69

6.1 Protocol Version
69

6.2 Operation
69

6.3 Maximum Response Size
69

6.4 Unique Message ID
69

6.5 Time Stamp
69

6.6 Authentication
70

6.7 Asynchronous Indicator
70

6.8 Asynchronous Correlation Value
70

6.9 Result Status
70

6.10 Result Reason
71

6.11 Result Message
71

6.12 Batch Order Option
71

6.13 Batch Error Continuation Option
72

6.14 Batch Count
72

6.15 Batch Item
72

6.16 Message Extension
72

7 Message Format
73

7.1 Message Structure
73

7.2 Synchronous Operations
73

7.3 Asynchronous Operations
74

8 Authentication
75

9 Message Encoding
76

9.1 TTLV Encoding
76

9.1.1 TTLV Encoding Fields
76

9.1.1.1 Item Tag
76

9.1.1.2 Item Type
76

9.1.1.3 Item Length
77

9.1.1.4 Item Value
78

9.1.2 Examples
78

9.1.3 Defined Values
79

9.1.3.1 Tags
80

9.1.3.2 Enumerations
85

9.1.3.2.1 Credential Type Enumeration
85

9.1.3.2.2 Key Value Type Enumeration
85

9.1.3.2.3 Wrapping Method Enumeration
86

9.1.3.2.4 Recommended Curves for ECDSA and ECDH
86

9.1.3.2.5 Certificate Type Enumeration
86

9.1.3.2.6 Split Key Method Enumeration
87

9.1.3.2.7 Secret Data Type Enumeration
87

9.1.3.2.8 Opaque Data Type Enumeration
87

9.1.3.2.9 Name Type Enumeration
87

9.1.3.2.10 Object Type Enumeration
88

9.1.3.2.11 Cryptographic Algorithm Enumeration
88

9.1.3.2.12 Block Cipher Mode Enumeration
89

9.1.3.2.13 Padding Method Enumeration
89

9.1.3.2.14 Hashing Algorithm Enumeration
90

9.1.3.2.15 Role Type Enumeration
90

9.1.3.2.16 State Enumeration
91

9.1.3.2.17 Revocation Reason Code Enumeration
91

9.1.3.2.18 Link Type Enumeration
91

9.1.3.2.19 Derivation Method Enumeration
92

9.1.3.2.20 Certificate Request Type Enumeration
92

9.1.3.2.21 Validity Indicator Enumeration
92

9.1.3.2.22 Query Function Enumeration
92

9.1.3.2.23 Cancellation Result Enumeration
93

9.1.3.2.24 Put Function Enumeration
93

9.1.3.2.25 Operations Enumeration
94

9.1.3.2.26 Result Status Enumeration
95

9.1.3.2.27 Result Reason Enumeration
95

9.1.3.2.28 Batch Error Continuation Enumeration
95

9.1.3.3 Bit Masks
96

9.1.3.3.1 Cryptographic Usage Mask Values
96

9.1.3.3.2 Storage Status Mask
96

9.2 XML Encoding
96

10 Transport
96

11 Error Handling
97

11.1 General
97

11.2 Create
98

11.3 Create Key Pair
98

11.4 Register
98

11.5 Re-key
99

11.6 Derive Key
99

11.7 Certify
99

11.8 Re-certify
100

11.9 Locate
100

11.10 Check
100

11.11 Get
100

11.12 Get Attributes
101

11.13 Get Attribute List
101

11.14 Add Attribute
101

11.15 Modify Attribute
101

11.16 Delete Attribute
102

11.17 Obtain Lease
102

11.18 Get Usage Allocation
102

11.19 Activate
102

11.20 Revoke
103

11.21 Destroy
103

11.22 Archive
103

11.23 Recover
103

11.24 Validate
103

11.25 Query
103

11.26 Cancel
104

11.27 Poll
104

11.28 Batch Items
104

12 Attribute Cross-reference
104

13 Tag Cross-reference
106

14 Acronyms
110

15 Acknowledgments
111

1 Introduction

This document is intended as a specification of the protocol used for the communication between clients and servers to perform certain management operations on objects stored and maintained by a key management system. These objects will be referred to as Managed Objects in this specification. They include symmetric and asymmetric cryptographic keys, digital certificates, and templates used to simplify the creation of objects and control their use. Managed Objects are managed with operations that include the ability to generate cryptographic keys, register objects with the key management system, obtain objects from the system, destroy objects from the system, and search for objects maintained by the system. Managed Objects also have associated attributes, which are named values stored by the key management system and which can be obtained from the system via operations. Certain attributes may be changed, added or deleted, again by operations.

The protocol specified in this document includes several certificate-related functions for which there are a number of existing protocols – namely Validate (e.g. SVP or XKMS), Certify (e.g. CMP, CMC, SCEP) and Re-certify (e.g. CMP, CMC, SCEP). The protocol does not attempt to define a comprehensive certificate management protocol such as would be required for a certification authority. However, it does include functions that are needed in proxying certificate management functions through a key server.

In addition to the normative definitions for managed objects, operations and attributes, this specification also includes normative definitions for the following aspects of the protocol:

· Message contents and formats

· Authentication profiles for clients and servers

· Message encoding, including enumerations

· Error handling

This specification is complemented by two other documents. The Usage Guide provides illustrative information on using the protocol. The Test Specification provides samples of protocol messages corresponding to a set of defined test cases.

2 Objects

The following subsections describe the objects that are passed between the clients and servers of the key management system. Some of these object types, called Base Objects, are used only in the protocol itself, and are not considered Managed Objects. Key management systems may choose to support a subset of the Managed Objects. The object descriptions refer to the primitive data types they are composed of. These primitive data types are

· Integer

· Long Integer

· Big Integer

· Enumeration – choices from a predefined list of values

· Boolean

· Text String – string of characters representing human-readable text

· Octet String – sequence of unencoded byte values

· Date-Time – date and time, with a granularity of one second

· Interval – time interval expressed in seconds

Structures are composed of ordered lists of primitive data types or structures.

2.1 Base Objects

These objects are used within the messages of the protocol, but are not objects managed by the key management system. They may be components of Managed Objects.

2.1.1 Attribute
An object, used for sending and receiving Managed Object attributes. The Attribute Name is a text-string which is used to identify the attribute. The Attribute Index is an index number assigned by the key management server when a specified named attribute is allowed to have multiple instances. The index number is used to identify the particular instance. Index numbers start with 0. The index number of an attribute is never changed when other instances are added or deleted. For example, if a particular attribute has 4 instances with index numbers 0, 1, 2 and 3, and the instance with index 2 is deleted, the index number of instance 3 is not changed. Attributes which have a single instance have an Attribute Index of 0, which is assumed if the index is not specified. The Attribute Value is either a primitive data type, or structured object, depending on the attribute.

	Object
	Encoding
	Required

	Attribute
	Structure
	Yes

	Attribute Name
	Text String
	Yes

	Attribute Index
	Integer
	No

	Attribute Value
	Varies, depending on attribute. See Section 3
	Yes

2.1.2 Credential
A credential is a protocol-only object, used for client identification purposes and not managed by the key management system, e.g., user id/password pairs, Kerberos tokens, etc. See Section 8 .

	Object
	Encoding
	Required

	Credential
	Structure
	Yes

	Credential Type
	Enumeration
	Yes

	Credential Value
	Octet String
	Yes

2.1.3 Key Block
A Key Block object encapsulates all of the information that is closely associated with a cryptographic key. A Key Block object may contain different information depending on who it is sent to and when it is sent. It contains a Key Value of one of the following Key Value Types:

· Raw – This is a key which consists of “pure” cryptographic key material, encoded as a string of bytes.

· Opaque – This is an encoded key for which the encoding is unknown to the key management system. It is encoded as a string of bytes.

· PKCS1 – This is an encoded private key, expressed as a DER-encoded ASN.1 PKCS#1 object.

· PKCS8 – This is an encoded private key, expressed as a DER-encoded ASN.1 PKCS#8 object, supporting both RSAPrivateKey syntax and EncryptedPrivateKey.

· Several Transparent Key types – These are algorithm-specific structures containing defined values for the various key types, as defined in Section 2.1.6 .

· Extensions – These are vendor-specific extensions to allow for proprietary or legacy key formats.

It contains also the Cryptogtaphic Algorithm and the Cryptographic Length. Some example values are:

· RSA keys are typically 1024, 2048 or 3072 bits in length

· 3DES keys are typically 168 bits in length

· AES keys are typically 128 or 256 bits in length

The Key Block may optionally contain a Key Wrapping Data structure, which indicates that the key is wrapped, or MAC'ed/signed, or both.

	Object
	Encoding
	Required Field

	Key Block
	Structure
	Yes

	Key Value Type
	Enumeration
	Yes

	Key Value
	Octet String: for wrapped Key Value; Structure: for plaintext Key Value
	Yes

	Cryptographic Algorithm
	Enumeration
	Yes, may be omitted only if this information is encapsulated in the Key Value. Does not apply to Secret Data or Opaque Objects. If present, Cryptographic Length below must also be present.

	Cryptographic Length
	Integer
	Yes, may be omitted only if this information is encapsulated in the Key Value. Does not apply to Secret Data or Opaque Objects. If present, Cryptographic Algorithm above must also be present.

	Key Wrapping Data
	Structure
	No

2.1.4 Key Value
The Key Value is used only inside a Key Block and is either an Octet String or a structure:

· The Key Value structure contains the key material, either as an octet string or as a Transparent Key structure (see Section 2.1.7), and optional attribute information that is associated with and encapsulated with the key material. This attribute information differs from the attributes associated with Managed Objects, and which is obtained via the Get Attributes operation, only by the fact that it is encapsulated with, and may be wrapped, signed or MAC'ed along with the key material itself.

· The Key Value Octet String is the wrapped TTLV-encoded (see Section 9.1) Key Value structure.

	Object
	Encoding
	Required Field

	Key Value
	Structure
	Yes

	Key Material
	Octet String: for Raw, Opaque, PKCS1, PKCS8, or Vendor Extension Key Value types;

Structure: for Transparent, or Vendor Extension Key Value Types
	Yes

	Attribute
	Attribute Object, see Section 2.1.1
	No. May be repeated

2.1.5 Key Wrapping Data
The Key Block may also supply optional information about a cryptographic key wrapping mechanism used to wrap the Key Value. This consists of a Key Wrapping Data structure.

This structure contains:

· A Wrapping Method that indicates the method used to wrap the Key Value.

· An Encryption Key Information with the Unique Identifier value for the encryption key.

· A MAC/Signature Key Information with the Unique Identifier value for the MAC'ing or signing key.

· A MAC/Signature field with the MAC or signature of the Key Value.

· An IV/Counter/Nonce if required by the wrapping method.

If wrapping is used, the whole Key Value structure is wrapped with the wrapping key material unless otherwise specified by the Wrapping Method. The algorithm is determined by the Cryptographic Algorithm attribute set for the key. Similarly, the Cryptographic Parameters attribute of the key will identify the mode of operation or hashing algorithm to be used.

The following wrapping methods are currently defined:

· Encrypt only (possibly includes authenticated encryption algorithms that use a single key)

· MAC/sign only

· Encrypt then MAC/sign

· MAC/sign then encrypt

· TR-31

· Extensions

	Object
	Encoding
	Required Field

	Key Wrapping Data
	Structure
	Yes

	Wrapping Method
	Enumeration
	Yes

	Encryption Key Information
	Structure
	No

	MAC/Signature Key Information
	Structure
	No. Corresponds to the symmetric key used to MAC the Key Value or the private key used to sign the Key Value

	MAC/Signature
	Octet String
	No

	IV/Counter/Nonce
	Octet String
	No

The structures of the Encryption Key Information and the MAC/Signature Key Information are as follows:

	Object
	Encoding
	Required Field

	Encryption Key Information
	Structure
	Yes

	Unique Identifier
	Text string
	Yes

	Cryptographic Parameters
	Structure
	No

	Object
	Encoding
	Required Field

	MAC/Signature Key Information
	Structure
	Yes

	Unique Identifier
	Text string
	Yes. It can be the Unique Identifier of the Private or of the Public Key

	Cryptographic Parameters
	Structure
	No

2.1.6 Key Wrapping Specification
This is a separate structure defined for operations that provide the option to return wrapped keys. The Key Wrapping Specification must be specified inside the operation request, if clients wish the server to return a wrapped key. If Cryptographic Parameters are specified in the Encryption Key Information and the MAC/Signature Key Information, then the server can verify that they match one of the instances of the Cryptographic Parameters attribute of the corresponding key. If Cryptographic Parameters are omitted, the server can choose to use the Cryptographic Parameters attribute with the lowest index of the corresponding key. If the corresponding key does not have any Cryptographic Parameters attribute, or if no match is found, an error is returned.

This structure contains :

· A Wrapping Method that indicates the method used to wrap the Key Value.

· An Encryption Key Information with the Unique Identifier value of the encryption key and associated cryptographic parameters.

· A MAC/Signature Key Information with the Unique Identifier value of the MAC'ing or signing key and associated cryptographic parameters.

· Zero or more Attribute Names to indicate the attributes to be wrapped with the key material.

	Object
	Encoding
	Required Field

	Key Wrapping Specification
	Structure
	Yes

	Wrapping Method
	Enumeration
	Yes

	Encryption Key Information
	Structure
	No

	MAC/Signature Key Information
	Structure
	No

	Attribute Name
	Text String
	No, May be repeated

The structures of the Encryption Key Information and the MAC/Signature Key Information are defined in Section 2.1.5 .

2.1.7 Transparent Key Structures
Transparent Key structures describe key material in a form that can easily be interpreted by all participants in the protocol. They are used in the Key Value structure.

2.1.7.1 Transparent Symmetric Key

If the Key Value Type in the Key Block is Transparent Symmetric Key, then Key Material is a structure as follows:

	Object
	Encoding
	Required Field

	Key Material
	Structure
	Yes

	Key
	Octet String
	Yes

2.1.7.2 Transparent DSA Private Key

If the Key Value Type in the Key Block is Transparent DSA Private Key, then Key Material is a structure as follows:

	Object
	Encoding
	Required Field

	Key Material
	Structure
	Yes

	P
	Big Integer
	Yes

	Q
	Big Integer
	Yes

	G
	Big Integer
	Yes

	X
	Big Integer
	Yes

2.1.7.3 Transparent DSA Public Key

If the Key Value Type in the Key Block is Transparent DSA Public Key, then Key Material is a structure as follows:

	Object
	Encoding
	Required Field

	Key Material
	Structure
	Yes

	P
	Big Integer
	Yes

	Q
	Big Integer
	Yes

	G
	Big Integer
	Yes

	Y
	Big Integer
	Yes

2.1.7.4 Transparent RSA Private Key

If the Key Value Type in the Key Block is Transparent RSA Private Key, then Key Material is a structure as follows:

	Object
	Encoding
	Required Field

	Key Material
	Structure
	Yes

	Modulus
	Big Integer
	Yes

	Private Exponent
	Big Integer
	No

	Public Exponent
	Big Integer
	No

	P
	Big Integer
	No

	Q
	Big Integer
	No

	Prime Exponent P
	Big Integer
	No

	Prime Exponent Q
	Big Integer
	No

	CRT Coefficient
	Big Integer
	No

Note: One of the following must be present:

· Private Exponent

· P and Q

· Prime Exponent P and Prime Exponent Q.

2.1.7.5 Transparent RSA Public Key

If the Key Value Type in the Key Block is Transparent Rsa Public Key, then Key Material is a structure as follows:

	Object
	Encoding
	Required Field

	Key Material
	Structure
	Yes

	Modulus
	Big Integer
	Yes

	Public Exponent
	Big Integer
	Yes

2.1.7.6 Transparent DH Private Key

If the Key Value Type in the Key Block is Transparent DH Private Key, then Key Material is a structure as follows:

	Object
	Encoding
	Required Field

	Key Material
	Structure
	Yes

	P
	Big Integer
	Yes

	G
	Big Integer
	Yes

	Q
	Big Integer
	No

	J
	Big Integer
	No

	X
	Big Integer
	Yes

Note: Q=P-1, J where P=JQ+1

2.1.7.7 Transparent DH Public Key

If the Key Value Type in the Key Block is Transparent DH Public Key, then Key Material is a structure as follows:

	Object
	Encoding
	Required Field

	Key Material
	Structure
	Yes

	P
	Big Integer
	Yes

	G
	Big Integer
	Yes

	Q
	Big Integer
	No

	J
	Big Integer
	No

	Y
	Big Integer
	Yes

Y=GX mod P, Q=P-1, J where P=JQ+1

2.1.7.8 Transparent ECDSA Private Key

If the Key Value Type in the Key Block is Transparent ECDSA Private Key, then Key Material is a structure as follows:

	Object
	Encoding
	Required Field

	Key Material
	Structure
	Yes

	Recommended Curve
	Enumeration
	Yes

	D
	Big Integer
	Yes

2.1.7.9 Transparent ECDSA Public Key

If the Key Value Type in the Key Block is Transparent ECDSA Public Key, then Key Material is a structure as follows:

	Object
	Encoding
	Required Field

	Key Material
	Structure
	Yes

	Recommended Curve
	Enumeration
	Yes

	Q String
	Octet String
	Yes

2.1.7.10 Transparent ECDH Private Key

If the Key Value Type in the Key Block is Transparent ECDH Private Key, then Key Material is a structure as follows:

	Object
	Encoding
	Required Field

	Key Material
	Structure
	Yes

	Recommended Curve
	Enumeration
	Yes

	D
	Big Integer
	Yes

2.1.7.11 Transparent ECDH Public Key

If the Key Value Type in the Key Block is Transparent ECDH Public Key, then Key Material is a structure as follows:

	Object
	Encoding
	Required Field

	Key Material
	Structure
	Yes

	Recommended Curve
	Enumeration
	Yes

	Q String
	Octet String
	Yes

2.1.8 Template-Attribute Structures
These structures are used in various operations to provide the desired attributes values and/or template names in the request and to return the actual attributes values in the response.

The Template-Attribute, Common Template-Attribute, Private Key Template-Attribute, and Public Key Template-Attribute structures are defined identically as follows:

	Object
	Encoding
	Required Field

	Template-Attribute,

Common Template-Attribute, Private Key Template-Attribute,

Public Key Template-Attribute
	Structure
	Yes

	Template Name
	Text String
	No, May be repeated.

	Attribute
	Attribute Object, see Section 2.1.1
	No, May be repeated

The Template Name is the Name of a Template object or a Policy Template object, as defined in Sections 2.2.6 and 2.2.7 .

2.2 Managed Objects

Managed Objects are objects that are the subjects of key management operations, which are described in Section 4 . Managed Objects include all objects that may be registered with the system. Managed Cryptographic Objects are the subset of Managed Objects that contain cryptographic material, e.g. certificates, keys, and secret data. Managed Cryptographic Objects may have operations performed on them, and may have attributes that do not apply to all Managed Objects.

2.2.1 Certificate
A Managed Cryptographic Object, which is a digital certificate, such as an encoded X.509 certificate.

	Object
	Encoding
	Required Field

	Certificate
	Structure
	Yes

	Certificate Type
	Enumeration
	Yes

	Certificate Value
	Octet String
	Yes

2.2.2 Symmetric Key
A Managed Cryptographic Object, which is a symmetric key.

	Object
	Encoding
	Required Field

	Symmetric Key
	Structure
	Yes

	Key Block
	Structure
	Yes

2.2.3 Public Key
A Managed Cryptographic Object, which is the public portion of an asymmetric key pair. This is a “raw” public key, not a certificate.

	Object
	Encoding
	Required Field

	Public Key
	Structure
	Yes

	Key Block
	Structure
	Yes

2.2.4 Private Key
A Managed Cryptographic Object, which is a the private portion of an asymmetric key pair.

	Object
	Encoding
	Required Field

	Private Key
	Structure
	Yes

	Key Block
	Structure
	Yes

2.2.5 Split Key
A Managed Cryptographic Object, which is a split key. A split key is a secret, usually a symmetric key or a private key that has been split into a number of parts, each of which can then be distributed to several key holders, for additional security. The Split Key Parts field contains the total number of parts, and the Split Key Threshold field contains the minimum number of parts needed to reconstruct the entire key. The Key Part Identifier indicates which key part is contained in the cryptographic object, and must be at least 1 and less than or equal to Split Key Parts.

	Object
	Encoding
	Required Field

	Split Key
	Structure
	Yes

	Split Key Parts
	Integer
	Yes

	Key Part Identifier
	Integer
	Yes

	Split Key Threshold
	Integer
	Yes

	Split Key Method
	Enumeration
	Yes

	Prime Field Size
	Big Integer
	No, required only if Split Key Method is Polynomial Sharing Prime Field.

	Key Block
	Structure
	Yes

There are three Split Key Methods for secret sharing: the first one is based on XOR and the other two are based on polynomial secret sharing, according to [Adi Shamir, "How to share a secret", Communications of the ACM, vol. 22, no. 11, pp. 612-613], as explained further in the Usage Guide. Let L be the minimum number of bits needed to represent all values of the secret.

· When the Split Key Method is XOR, the Key Material in the Key Value of the Key Block is of length L bits. The number of split keys is Split Key Parts (identical to Split Key Threshold), and the secret is reconstructed by XOR'ing all of them

· When the Split Key Method is Polynomial Sharing Prime Field, secret sharing is performed in the field GF(Prime Field Size), represented as integers, where Prime Field Size is a prime bigger than 2L.

· When the Split Key Method is Polynomial Sharing GF(216), secret sharing is performed in the field GF(216). The Key Material in the Key Value of the Key Block is a bit string of length L, and when L is bigger than 216 , then secret sharing is applied piecewise in pieces of 16 bits each. The Key Material in the Key Value of the Key Block is the concatenation of the corresponding shares of all pieces of the secret.

Secret sharing is performed in the field GF(216), which is represented as an algebraic extension of GF(28):

GF(216) ≈ GF(28) [y]/(y2+y+m), where m is defined later.

An element of this field then consists of a linear combination uy + v, where u and v are elements of the smaller field GF(28).

The representation of field elements and the notation in this section rely on FIPS PUB 197, Sections 3 and 4. The field GF(28) is as described in FIPS PUB 197,

GF(28) ≈ GF(2) [x]/(x8+x4+x3+x+1).

An element of GF(28) is represented as an octet. Addition and subtraction in GF(28) can be performed as a bitwise XOR of the octets. Multiplication and inversion are more complex: see FIPS PUB 197 Section 4.1 and 4.2 for details.

An element of GF(216) is represented as a pair of octets (u, v). The element m is given by

m = x5+x4+x3+x,

which is represented by the octet 0x3A (or {3A} in notation according to FIPS PUB 197).

Addition and subtraction in GF(216) both correspond to simply XORing the octets. The product of two elements ry + s and uy + v is given by

(ry + s) (uy + v) = ((r + s)(u + v) + sv)y + (ru + svm).

The inverse of an element uy + v is given by

(uy + v)-1 = ud-1y + (u + v)d-1, where d = (u + v)v + mu2.

2.2.6 Template
A Template is a named Managed Object containing the client-settable attributes of a Managed Cryptographic Object. It is essentially a stored, named list of attributes. A Template is used to specify the attributes of a new Managed Cryptographic Object in various operations. It is intended to be used to specify the cryptographic attributes of new objects in a standardized or convenient way. None of the attributes specified in a Template except the Name attribute apply to the template object itself, but instead apply to any object created or registered using the Template.

The Template may be the subject of the Register, Locate, Get, Get Attributes, Get Attribute List, Add Attribute, Modify Attribute, Delete Attribute, and Destroy operations.

 The attributes that may be contained in a Template are:

· Name (This is the name of the Template, not the name of its target object.)

· Cryptographic Algorithm

· Cryptographic Length

· Object Group

· Application Specific Identification

· Contact Information

· Custom Attribute

	Object
	Encoding
	Required Field

	Template
	Structure
	Yes

	Attribute
	Attribute Object, see Section 2.1.1
	Yes. May be repeated.

2.2.7 Policy Template
A Policy Template is a named Managed Object containing attributes. The purpose of a Policy Template is to encapsulate all of the policy-related attributes into a Managed Object which may be independent of any single Managed Cryptographic Object, and may be managed and transmitted independently. Only policy-related attributes may be stored in a Policy Template. The Policy Template may be the subject of the Register, Locate, Get, get Attributes, Get Attribute List, Add Attribute, Modify Attribute, Delete Attribute, and Destroy operations. The attributes which may be contained in a Policy Template are:

· Name (This is the name of the Policy Template, not the name of any object to which it is applied.)

· Cryptographic Algorithm

· Cryptographic Parameters

· Operation Policy Name

· Cryptographic Usage Mask

· Usage Limits

· Activation Date

· Process Start Date

· Protect Stop Date

· Deactivation Date

· Custom Attribute

	Object
	Encoding
	Required Field

	Policy Template
	Structure
	Yes

	Attribute
	Attribute Object, see Section 2.1.1
	Yes. May be repeated

2.2.8 Secret Data
A Managed Cryptographic Object containing a shared secret that is not a key or certificate, e.g., a password. The Key Block used to contain Secret Data should contain a (possibly wrapped) Key Value of the Opaque type.

	Object
	Encoding
	Required Field

	Secret Data
	Structure
	Yes

	Secret Data Type
	Enumeration
	Yes

	Key Block
	Structure
	Yes

2.2.9 Opaque Object
A Managed Object that the key management server may not be able to interpret, but will store. The context information for this object can be stored and retrieved using Custom Attributes.

	Object
	Encoding
	Required Field

	Opaque Object
	Structure
	Yes

	Opaque Data Type
	Enumeration
	Yes

	Opaque Data Value
	Octet String
	Yes

3 Attributes

The following subsections describe the attributes that are associated with Managed Objects. These attributes may be obtained by a client from the server using the Get Attribute operation. Some attributes may be set by the Add Attribute operation or updated by the Modify Attribute operation, and some may be deleted by the Delete Attribute operation if they no longer apply to the Managed Object.

When attributes are returned by the server, e.g. via a Get Attributes operation, the returned attribute value may differ depending on the client. For example, the Cryptographic Usage Mask value may be different for different clients, depending on the policy of the server. Similarly, when a client modifies an attribute, this is merely a mechanism for sending information to the server. The server may store the attribute as received, or modify the attribute before saving it, or combine it with information from other sources, or merely use it as advice on how to modify its internal knowledge of the cryptographic object. The choice depends on server functionality, policy, and the kind of attribute being modified.

The attribute name contained in the first row of the Object column of the first table in each subsection is the canonical name used when managing attributes using the Get Attributes, Get Attribute List, Add Attribute, Modify Attribute, and Delete Attribute operations.

The second table in each subsection lists certain attribute characteristics, such as “Must always have a value”. The “When implicitly set” characteristic indicates which operations (other than operations that manage attributes) can implicitly result in adding or modifying the attribute of the object. They can be object(s) on which the operation is performed or object(s) created as a result of the operation. Implicit attribute changes occur even if the attribute is not specified in the operation request itself.

3.1 Unique Identifier
The Unique Identifier is generated by the key management system to uniquely identify a Managed Object. It is only required to be unique within the identifier space managed by a single key management system, however it is recommended that this identifier be globally unique, to allow for key management domain export of such objects. This attribute is assigned by the key management system at creation or registration time, and may never be changed or deleted by any entity at any time.

	Object
	Encoding
	Required Field

	Unique Identifier
	Text String
	Yes

	Must always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key

	Applies to Object Types
	All Objects

3.2 Name
The Name attribute is used to identify and locate the object, assigned by the client. The key management system may specify rules for valid names which may be created by the client. Clients will be informed of such rules by a mechanism which is not specified here. Names must be unique within a given key management domain, but are not required to be globally unique.

	Object
	Encoding
	Required Field

	Name
	Structure
	Yes

	Name Value
	Text String
	Yes

	Name Type
	Enumeration
	Yes

	Must always have a value
	No

	Initially set by
	Client

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	Yes

	When implicitly set
	Re-key, Re-certify

	Applies to Object Types
	All Objects

3.3 Object Type
The type of a Managed Object, e.g. public key, private key, symmetric key, etc. This attribute is set by the server when the object is created or registered and is never changed.

	Object
	Encoding
	Required Field

	Object Type
	Enumeration
	Yes

	Must always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key

	Applies to Object Types
	All Objects

3.4 Cryptographic Algorithm
The cryptographic algorithm used by the object, e.g. RSA, DSA, DES, 3DES, AES, etc. This attribute is set by the server when the object is created or registered and is never changed.

	Object
	Encoding
	Required Field

	Cryptographic Algorithm
	Enumeration
	Yes

	Must always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Re-key

	Applies to Object Types
	All Cryptographic Objects

3.5 Cryptographic Length
Cryptographic Length is the length in bits of the cryptographic key material of the Managed Cryptographic Object. This attribute is set by the server when the object is created or registered, and is never changed.

	Object
	Encoding
	Required Field

	Cryptographic Length
	Integer
	Yes

	Must always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Re-key

	Applies to Object Types
	All Cryptographic Objects

3.6 Cryptographic Parameters
The Cryptographic Parameters attribute is a structure that contains a set of optional fields that describe certain cryptographic parameters to be used when performing cryptographic operations using the object. Specific fields may only pertain to certain types of Managed Cryptographic Objects.

	Object
	Encoding
	Required Field

	Cryptographic Parameters
	Structure
	Yes

	Block Cipher Mode
	Enumeration
	No

	Padding Method
	Enumeration
	No

	Hashing Algorithm
	Enumeration
	No

	Role Type
	Enumeration
	No

	Must always have a value
	No

	Initially set by
	Client

	Modifiable by server
	No

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	Yes

	When implicitly set
	Re-key, Re-certify

	Applies to Object Types
	All Cryptographic Objects

Role Types are defined as follows:

	ZMK – Shared key to allow transfer of subordinate keys between two entities

	ZPK – Shared key to allow transfer of PINs between two entities

	MAC – MAC key, specifically X9.9/19 retail MAC

	CVK – Key for generating/verifying 3-digit VISA/Mastercard signature strip codes (CVV/CVC)

	CSC – Key for generating/verifying 4-digit American Express Card Security Codes

	PVKIBM – Derivation key for derived PINs checked with the IBM offset method

	PVKPVV – Verification key for random PINs checked with the PVV method

	MKCVC – Master key for dynamic CVC calculations

	MKSMI – Master key for smart card secure messaging integrity

	MKSMC – Master key for smart card secure messaging confidentiality

	MKIDN – Master key for Card Dynamic Number

	MKAC – Master key for Chip card cryptogram

	MKCAP – Master key for Cardholder Authentication Programme

	BDK – Base derivation key for DUKPT

3.7 Certificate Type
The type of a certificate, e.g. X.509, PGP, etc. This value is set by the server when the certificate is created or registered and is never changed.

	Object
	Encoding
	Required Field

	Certificate Type
	Enumeration
	Yes

	Must always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Register, Certify, Re-certify

	Applies to Object Types
	Certificates

3.8 Certificate Issuer
An identification of a certificate, containing the Issuer Distinguished Name (from the Issuer field of the certificate) and the Certificate Serial Number (from the Serial Number field of the certificate). This value is set by the server when the certificate is created or registered and is never changed.

	Object
	Encoding
	Required Field

	Certificate Issuer
	Structure
	Yes

	Issuer
	Text String
	Yes

	Serial Number
	Text String
	Yes (for X.509 certificates) / No (for PGP certificates since they don’t contain a serial number)

	Must always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Register, Certify, Re-certify

	Applies to Object Types
	Certificates

3.9 Certificate Subject
Identifies the subject of a certificate, containing the Subject Distinguished Name (from the Subject field of the certificate). It may optionally include one or more alternative names (e.g. email address, IP address, DNS name) for the subject of the certificate (from the Subject Alternative Name extension within the certificate). These values are set by the server when the certificate is created or registered and are not changed until the certificate is renewed.

It is possible to issue an X.509 certificate where the subject field is left blank as long as the Subject Alternative Name extension is included in the certificate and is marked CRITICAL. Therefore an empty string is an acceptable value for Certificate Subject.

	Object
	Encoding
	Required Field

	Certificate Subject
	Structure
	Yes

	Certificate Subject Distinguished Name
	Text String
	Yes

	Certificate Subject Alternative Name
	Text String
	No, May be repeated

	Must always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Register, Certify, Re-certify

	Applies to Object Types
	Certificates

3.10 Digest
A digest of the key (digest of the Key Material), certificate (digest of the Certificate Value), or opaque object (digest of the Opaque Data Value). Multiple digests may be calculated using different algorithms. The mandatory digest is computed with the SHA-256 hashing algorithm, the server can store additional optional digests. The digest(s) are static and generated by the server when the object is created or registered.

	Object
	Encoding
	Required Field

	Digest
	Structure
	Yes

	Hashing Algorithm
	Enumeration
	Yes

	Digest Value
	Octet String
	Yes

	Must always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	Yes

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key

	Applies to Object Types
	All Cryptographic Objects

3.11 Operation Policy Name
An indication of what entities may perform which key management operations on the object. The contents of the Operation Policy Name attribute is the name of a policy object known to the key management system and therefore server dependent. The named policy objects are created and managed using mechanisms outside the scope of the protocol. The policies determine who may perform specified operations on the object, and which of the objects' attributes may be modified, or deleted, and by whom. It is expected that the Operation Policy Name attribute will be set when operations such as Create or Register are executed. It is set either explicitly or via some default set by the server, and will then apply to all subsequent operations on the object.

	Object
	Encoding
	Required Field

	Operation Policy Name
	Text String
	Yes

	Must always have a value
	No

	Initially set by
	Server or Client

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key

	Applies to Object Types
	All Objects

3.11.1 Operations outside of operation policy control

Some of the operations should be allowed to any client at any time, without respect to operation policy. These operations are:

· Create

· Create Key Pair

· Register

· Certify

· Validate

· Query

· Cancel

· Poll

3.11.2 Default Operation Policy

A key management system implementation should implement at least one named operation policy, which is used for objects where the Operation Policy attribute is not specified by the Client in a Create or Register operation, or in a template specified in these operations. This policy is named default. It specifies the following rules for operations on objects created or registered with this policy, depending on the object type.

3.11.2.1 Default Operation Policy for Secret Objects

This policy applies to Symmetric Keys, Private Keys, Split Keys, Secret Data, and Opaque Objects.

	Default Operation Policy for Secret Objects

	Operation
	Policy

	Re-Key
	Allowed to creator only

	Derive Key
	Allowed to creator only

	Locate
	Allowed to creator only

	Check
	Allowed to creator only

	Get
	Allowed to creator only

	Get Attributes
	Allowed to creator only

	Get Attribute List
	Allowed to creator only

	Add Attribute
	Allowed to creator only

	Modify Attribute
	Allowed to creator only

	Delete Attribute
	Allowed to creator only

	Obtain Lease
	Allowed to creator only

	Get Usage Allocation
	Allowed to creator only

	Activate
	Allowed to creator only

	Revoke
	Allowed to creator only

	Destroy
	Allowed to creator only

	Archive
	Allowed to creator only

	Recover
	Allowed to creator only

For mandatory profiles, the creator must be the transport-layer identification (see Usage Guide) provided at the Create or Register operation time.

3.11.2.2 Default Operation Policy for Certificates and Public Key Objects

This policy applies to Certificates and Public Keys.

	Default Operation Policy for Certificates and Public Key Objects

	Operation
	Policy

	Certify
	Allowed to creator only

	Re-certify
	Allowed to creator only

	Locate
	Allowed to all

	Check
	Allowed to all

	Get
	Allowed to all

	Get Attributes
	Allowed to all

	Get Attribute List
	Allowed to all

	Add Attribute
	Allowed to creator only

	Modify Attribute
	Allowed to creator only

	Delete Attribute
	Allowed to creator only

	Obtain Lease
	Allowed to all

	Activate
	Allowed to creator only

	Revoke
	Allowed to creator only

	Destroy
	Allowed to creator only

	Archive
	Allowed to creator only

	Recover
	Allowed to creator only

3.11.2.3 Default Operation Policy for Template and Policy Template Objects

The operation policy specified as an attribute in the Create operation for a template object is the operation policy used for objects that will be created using that template, and is not the policy used to control operations on the template itself. There is no mechanism provided for specifying a policy used to control operations on template objects, so the default policy for template objects themselves is always used for templates created by clients using the Register operation to create template objects.

	Default Operation Policy for Private Template Objects

	Operation
	Policy

	Locate
	Allowed to creator only

	Get
	Allowed to creator only

	Get Attributes
	Allowed to creator only

	Get Attribute List
	Allowed to creator only

	Add Attribute
	Allowed to creator only

	Modify Attribute
	Allowed to creator only

	Delete Attribute
	Allowed to creator only

	Destroy
	Allowed to creator only

In addition to private template objects, which are controlled by the above policy which can be created by clients or the server, publicly known and usable templates may be created and managed by the server, with a different default policy for these template objects.

	Default Operation Policy for Public Template Objects

	Operation
	Policy

	Locate
	Allowed to all

	Get
	Allowed to all

	Get Attributes
	Allowed to all

	Get Attribute List
	Allowed to all

	Add Attribute
	Disallowed to all

	Modify Attribute
	Disallowed to all

	Delete Attribute
	Disallowed to all

	Destroy
	Disallowed to all

3.12 Cryptographic Usage Mask
The Cryptographic Usage Mask defines the cryptographic usage of a key. This is a bit mask which indicates to the client which cryptographic functions may be performed using the key.

· Sign

· Verify

· Encrypt

· Decrypt

· Wrap

· Unwrap

· Export

· MAC

· MAC Verify

· Derive Key

· Content Commitment

· Key Agreement

· Certificate Sign

· CRL Sign

This list takes into consideration values which may appear in the Key Usage extension in an X.509 certificate. However, the list does not consider the more fined grained usages which may appear in the Extended Key Usage extension.

X.509 Key Usage values shall be mapped to Cryptographic Usage Mask values in the following manner:

	X.509 Key Usage to Cryptographic Usage Mask Mapping

	X.509 Key Usage Value
	Cryptographic Usage Mask Value

	digitalSignature
	Sign and Verify

	contentCommitment
	Content Commitment

(Non Repudiation)

	keyEncipherment
	Wrap and Unwrap

	dataEncipherment
	Encrypt and Decrypt

	keyAgreement
	Key Agreement

	keyCertSign
	Certificate Sign

	cRLSign
	CRL Sign

	encipherOnly
	Encrypt

	decipherOnly
	Decrypt

The Content Commitment (Non-Repudiation) Cryptographic Usage Mask value shall be set for public keys used to verify digital signatures for non-repudiation purposes (to protect against a signing entity denying an action). Public keys used to verify digital signatures for other purposes such as authentication and integrity shall be set with the Sign, Verify or both Cryptographic Usage Mask values.

	Object
	Encoding
	Required Field

	Cryptographic Usage Mask
	Integer
	Yes

	Must always have a value
	Yes

	Initially set by
	Server or Client

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key

	Applies to Object Types
	All Cryptographic Objects

3.13 Lease Time
The Lease Time attribute defines a time interval for a Managed Object that indicates how long a client should use the object. This attribute always holds the initial value of a lease, and not the actual remaining time. Note that once the lease expires, the client must renew the lease by calling Obtain Lease. A server should store in this attribute the maximum Lease Time it is willing to serve and a client must request lease times (with Obtain Lease) which are less than, or equal. This attribute is read-only for clients. It can be modified by the server only.

	Object
	Encoding
	Required Field

	Lease Time
	Interval
	Yes

	Must always have a value
	No

	Initially set by
	Server

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key

	Applies to Object Types
	All Keys

3.14 Usage Limits
This is a mechanism for limiting the usage of a Managed Cryptographic Object. It only applies to Managed Cryptographic Objects that can be used for protection purposes (symmetric keys, private keys, public keys, etc.) and it must only reflect their usage for protection (encryption, signing, etc.). This attribute may not exist for all Managed Cryptographic Objects, since some objects may be used without limit, depending on client/server policies. Usage for process purposes (decryption, verification, etc.) is not limited. The attribute has four fields for two different types of limits. Exactly one of these two types (either bytes or objects) must be present. These limits are:

· Usage Limits Total Bytes – the total number of bytes allowed to be protected. This is the total value for the entire life of the object, and is never changed once the object begins to be used for protection purposes.

· Usage Limits Total Objects – the total number of objects allowed to be protected. This is the total value for the entire life of the object, and is never changed once the object begins to be used for protection purposes.

· Usage Limits Byte Count – the currently remaining number of bytes allowed to be protected.

· Usage Limits Object Count – the currently remaining number of objects allowed to be protected.

When the attribute is initially set, usually during object creation or registration, the values set are the Total values allowed for the useful life of the object. The count values must be ignored by the server if the attribute is specified in a operation that creates a new object. Changes made via the Modify Attribute operation reflect corrections to these Total values, but they cannot be changed once the count values have changed by a Get Usage Allocation operation. The count values cannot be set or modified by the client via the Add Attribute or Modify Attribute operations.

	Object
	Encoding
	Required Field

	Usage Limits
	Structure
	Yes

	Usage Limits Total Bytes
	Big Integer
	No. Must be present if Usage Limits Byte Count is present

	Usage Limits Total Objects
	Big Integer
	No. Must be present if Usage Limits Object Count is present

	Usage Limits Byte Count
	Big Integer
	No. May only be present if Usage Limits Object Count is not present

	Usage Limits Object Count
	Big Integer
	No. May only be present if Usage Limits Byte Count is not present

	Must always have a value
	No

	Initially set by
	Server or Client

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Re-key, Get Usage Allocation

	Applies to Object Types
	Symmetric Keys, Private Keys, Split Keys, Public Keys

3.15 State
This attribute is an indication of the state of an object as known to the key management server. The state may not be changed by using the Modify Attribute operation on this attribute. The state may only be changed by the server as a side effect of other operations or other server processes. An object may be in one of the following states at any given time. (Note: These states correspond to those described in NIST Special Publication 800-57).

· Pre-Active: The object exists but is not yet usable for any cryptographic purpose.

· Active: The object may be used for all cryptographic purposes which are allowed by its Cryptographic Usage Mask attribute.

· Deactivated: The object may not be used for protection purpose, e.g. encryption or signing, but, if permitted by the Cryptographic Usage Mask attribute, may be used for process purposes, e.g. decryption or verification, but only under extraordinary circumstances and when special permission is granted.

· Compromised: The object may have been compromised, and may only be used for process purposes in a client that is trusted to handle compromised cryptographic objects.

· Destroyed: The object is no longer usable for any purpose.

· Destroyed Compromised: The object is no longer usable for any purpose, however its compromised status may be retained for audit or security purposes.

State transitions occur as follows:[image: image1.emf]Pre-Active

Active

Deactivated

Destroyed

Compromised

Destroyed

Compromised

1

2 3

4

5

6

7 8

9

10

1. The transition from a non-existent key to Pre-Active is determined by the creation of the object. When an object is created or registered, it automatically goes from non-existent to Pre-Active. If, however, the operation that creates or registers the object contains an Activation Date that has already occurred, the state immediately transitions to Active. In this case, the server may set the Activation Date attribute to the time when the operation is received, depending on server policy. If the operation contains an Activation Date attribute in the future, or contains no Activation Date, it becomes initialized in the key management system in the Pre-Active state.

2. The transition from Pre-Active to Destroyed cannot be directly made by request of a client. The client may issue a Destroy operation. This will allow the server to destroy the object at the server's discretion.

3. The transition from Pre-Active to Compromised is performed by a client issuing a Revoke operation with a Revocation Reason of Compromised.

4. The transition from Pre-Active to Active can occur in one of two ways:

· The object has an Activation Date in the future. At the time the Activation Date is reached, the server may change the state to Active.

· A client issues a Modify Attribute operation, modifying the Activation Date to a date in the past, or the current date. In this case, the server may set the Activation Date attribute to the time when the operation that created or registered the object was received, depending on server policy.

· A client issues an Activate operation on the object. The server will set the Activation Date to the time the Activate operation is received.

5. The transition from Active to Compromised is performed by a client issuing a Revoke operation with a Revocation Reason of Compromised.

6. The transition from Active to Deactivated can occur in one of two ways:

· The object's Deactivation Date is reached. The server may change the state to Deactivated.

· A client issues a Revoke operation, with a Revocation Reason other than Compromised.

· The client issues a Modify Attribute operation, modifying the Deactivation Date to a date in the past, or the current date. In this case, the server may set the Deactivation Date attribute to the date in the past or the current date, depending on server policy.

7. The transition from Deactivated to Destroyed is requested by a client issuing a Destroy operation. The server will destroy the object when and if server policy dictates.

8. The transition from Deactivated to Compromised is performed by a client issuing a Revoke operation with a Revocation Reason of Compromised.

9. The transition from Compromised to Destroyed Compromised is requested by a client issuing a Destroy operation. The server will destroy the object when and if server policy dictates.

10. The transition from Destroyed to Destroyed Compromised is performed by a client issuing a Revoke operation with a Revocation Reason of Compromised.

Only the transitions described above are permitted.

	Object
	Encoding
	Required Field

	State
	Enumeration
	Yes

	Must always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Activate, Revoke, Destroy, Certify, Re-certify, Re-key

	Applies to Object Types
	All Cryptographic Objects

3.16 Initial Date
The date and time when the Managed Cryptographic Object was first created or registered at the server. This time corresponds to state transition 1 (see Section 3.15). This attribute is set by the server when the object is created or registered, and is never changed. This attribute is also set for non-cryptographic objects (e.g. templates) when then are first registered with the server.

	Object
	Encoding
	Required Field

	Initial Date
	Date-Time
	Yes

	Must always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key

	Applies to Object Types
	All Objects

3.17 Activation Date
The date and time when the Managed Cryptographic Object may begin to be used. This time corresponds to state transition 4 (see Section 3.15). The object may not be used for any cryptographic purpose before the Activation Date has been reached. Once the state transition has occurred, this attribute may no longer be modified by the server or client. If a client attempts to set this value to a time in the past, the server may set it to the current time instead, depending on server policy.

	Object
	Encoding
	Required Field

	Activation Date
	Date-Time
	Yes

	Must always have a value
	No

	Initially set by
	Server or Client

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Activate Certify, Re-certify, Re-key

	Applies to Object Types
	All Objects

3.18 Process Start Date
The date and time when a Managed Symmetric Key Object may begin to be used for process purposes, e.g. decryption or unwrapping, depending on the value of its Cryptographic Usage Mask attribute. The object may not be used for these cryptographic purposes before the Process Start Date has been reached. This value may be equal to, but may not precede, Activation Date. Once the Process Start Date has occurred, this attribute may no longer be modified by the server or the client. If a client attempts to set this value to a time in the past, the server may set it to the current time instead, depending on server policy.

	Object
	Encoding
	Required Field

	Process Start Date
	Date-Time
	Yes

	Must always have a value
	No

	Initially set by
	Server or Client

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Re-key

	Applies to Object Types
	Symmetric Keys

3.19 Protect Stop Date
The date and time when a Managed Symmetric Key Object may no longer be used for protect purposes, e.g. encryption or wrapping, depending on the value of its Cryptographic Usage Mask attribute. This value may be equal to, but may not be later than Deactivation Date. Once the Protect Stop Date has occurred, this attribute may no longer be modified by the server or the client. If a client attempts to set this value to a time in the past, the server may set it to the current time instead, depending on server policy.

	Object
	Encoding
	Required Field

	Protect Stop Date
	Date-Time
	Yes

	Must always have a value
	No

	Initially set by
	Server or Client

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Re-key

	Applies to Object Types
	Symmetric Keys

3.20 Deactivation Date
The date and time when the Managed Cryptographic Object may no longer be used for any purpose, except for decryption, signature verification, or unwrapping, but only under extraordinary circumstances and when special permission is granted. This time corresponds to state transition 6 (see Section 3.15). Once this transition has occurred, this attribute may no longer be modified by the server or client. If a client attempts to set this value to a time in the past, the server may set it to the current time instead, depending on server policy.

	Object
	Encoding
	Required Field

	Deactivation Date
	Date-Time
	Yes

	Must always have a value
	No

	Initially set by
	Server or Client

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Revoke Certify, Re-certify, Re-key

	Applies to Object Types
	All Cryptographic Objects

3.21 Destroy Date
The date and time when the Managed Cryptographic Object was destroyed. This time corresponds to state transitions 2, 7, or 9 (see Section 3.15). This value is set by the server when the object is destroyed due to reception of a Destroy operation, or due to server policy or out-of-band administrative action.

	Object
	Encoding
	Required Field

	Destroy Date
	Date-Time
	Yes

	Must always have a value
	No

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Destroy

	Applies to Object Types
	All Objects

3.22 Compromise Occurrence Date
The date and time when the Managed Cryptographic Object was first believed to be compromised. If it is not possible to estimate when the compromise occurred, this value should be set to the Initial Date for the object.

	Object
	Encoding
	Required Field

	Compromise Occurrence Date
	Date-Time
	Yes

	Must always have a value
	No

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Revoke

	Applies to Object Types
	Symmetric Keys, Private Keys, Split Keys, Secret Data, Opaque Object

3.23 Compromise Date
The date and time when the Managed Cryptographic Object is entered into the compromised state. This time corresponds to state transitions 3, 5, 8, or 10 (see Section 3.15). This time represents when the key management system was made aware of the compromise, not necessarily when the compromise occurred. This attribute is set by the server when it receives a Revoke operation with a Revocation Reason of Compromised.

	Object
	Encoding
	Required Field

	Compromise Date
	Date-Time
	Yes

	Must always have a value
	No

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Revoke

	Applies to Object Types
	Symmetric Keys, Private Keys, Split Keys, Secret Data, Opaque Object

3.24 Revocation Reason
An indication of why the Managed Cryptographic Object was revoked, e.g. “compromised”, “expired”, “no longer used”, etc. This attribute is only changed by the server as a side effect of the Revoke Operation.

The Revocation Message is an optional field which is used exclusively for audit trail/logging purposes and may contain additional information about why the object was revoked, for example “Laptop stolen”, or “Machine decommissioned”.

	Object
	Encoding
	Required Field

	Revocation Reason
	Structure
	Yes

	Revocation Reason Code
	Enumeration
	Yes

	Revocation Message
	Text String
	No

	Must always have a value
	No

	Initially set by
	Server

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Revoke

	Applies to Object Types
	All Cryptographic Objects

3.25 Archive Date
The date and time when the Managed Object was placed in archival storage. This value is set by the server as a side effect of the Archive operation. This attribute is deleted whenever a Recover operation is performed.

	Object
	Encoding
	Required Field

	Archive Date
	Date-Time
	Yes

	Must always have a value
	No

	Initially set by
	Server

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Archive

	Applies to Object Types
	All Objects

3.26 Object Group
An object may be part of a group of objects. An object may belong to more than one group. To assign an object to a group, the group name should be set into this attribute. The key management system may specify rules for the valid group names which may be created by the client. Clients will be informed of such rules by a mechanism which is not specified by this standard. In the protocol, the group names themselves are character strings of no specified format. Specific key management system implementations may choose to support hierarchical naming schemes or other syntax restrictions on the names. Groups may be used to associate objects for a variety of purposes. A set of keys used for a common purpose, but for different time intervals, may be linked by a common Object Group. Servers may create predefined groups and add objects to them independently of client requests.

	Object
	Encoding
	Required Field

	Object Group
	Text String
	Yes

	Must always have a value
	No

	Initially set by
	Client or Server

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	Yes

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key

	Applies to Object Types
	All Objects

3.27 Link
A link from a Managed Cryptographic Object to another, closely related target Managed Cryptographic Object. The link has a type and the allowed types differ depending on the Object Type of the Managed Cryptographic Object. The Linked Object Identifier identifies the target Managed Cryptographic Object by its Unique Identifier. The link can contain such information as the private key corresponding to a public key, the parent certificate for a certificate in a chain, or for a derived symmetric key, the base key from which it was derived.

Possible values of Link Type in accordance with the Object Type of the Managed Cryptographic Object are:

· Private Key Link. For a Public Key object: the private key corresponding to the public key

· Public Key Link. For a Private Key object: the public key corresponding to the private key. For a Certificate object: the public key certified by the certificate

· Certificate Link. For Certificate objects: the parent certificate for a certificate in a certificate chain. For Public Key objects: the corresponding certificate(s), containing the same public key

· Derivation Base Object Link for a derived Symmetric Key object: the object(s) from which the current symmetric key was derived

· Derived Key Link: the symmetric key(s) that were derived from the current object.

· Replacement Object Link. For a Symmetric Key, Private Key, or Public Key object: the key that resulted from the re-key of the current key. For a Certificate object: the certificate that resulted from the re-certify. Note there can only be one such replacement object.

· Replaced Object Link. For a Symmetric Key, Private Key, or Public Key object: the key that was re-keyed to obtain the current key. For a Certificate object: the certificate that was re-certified to obtain the current certificate

The Link attribute should be present for private keys and public keys for which a certificate chain is stored by the server, and for certificates in a certificate chain.

Note that a Managed Object may have a Link attribute which has multiple values. For example, a Private Key may have links to the associated certificate as well as the associated public key. As another example, a Certificate object may have a Link attribute value to both the public key and to the certificate of the certification authority which signed the certificate.

It is also possible that a Managed Object does not have Link attribute values for associated cryptographic objects. This can occur in cases where the associated key material is not available to the server or client (consider the registration of a CA Signer certificate with a server but the corresponding private key is held in a different manner).

	Object
	Encoding
	Required Field

	Link
	Structure
	Yes

	Link Type
	Enumeration
	Yes

	Linked Object Identifier
	Text String
	Yes

	Must always have a value
	No

	Initially set by
	Server

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	Yes

	When implicitly set
	Create Key Pair, Derive Key, Certify, Re-certify, Re-key

	Applies to Object Types
	All Objects

3.28 Application Specific Identification
The Application Specific Identification is used to specify the intended use of a Managed Object. It consists two parts: the application name space that the object will be used with, and an identification specific to that application name space. The application name spaces are arbitrary text strings so that new types of application identifiers can be used without requiring the standard to be updated.

Some examples of application name space and identifier pairs:

· SMIME, 'someuser@company.com'

· SSL, 'some.domain.name'

· Volume Identification, '123343434'

· File Name, 'secret.doc'

The following application names spaces are recommended:

· SMIME

· SSL

· IPSEC

· HTTPS

· PGP

· Volume Identification

· File Name

Other values may be used according to server policy. No extension mechanism is defined or needed as any text string is allowable.

	Object
	Encoding
	Required Field

	Application Specific Identification
	Structure
	Yes

	Application Name Space
	Text String
	Yes

	Application Identifier
	Text String
	Yes

	Must always have a value
	No

	Initially set by
	Client

	Modifiable by server
	No

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	Yes

	When implicitly set
	Re-key, Re-certify

	Applies to Object Types
	All Cryptographic Objects

3.29 Contact Information
The Contact Information attribute is optional and its content is used for contact purposes only. It is not used for policy enforcement. The attribute is set by the client or the server.

	Object
	Encoding
	Required Field

	Contact Information
	Text String
	Yes

	Must always have a value
	No

	Initially set by
	Client or Server

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key

	Applies to Object Types
	All Objects

3.30 Last Changed Date
A meta attribute that contains the date and time of the last change to the contents or attributes of the specified object.

	Object
	Encoding
	Required Field

	Last Changed Date
	Date-Time
	Yes

	Must always have a value
	No

	Initially set by
	Server

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Activate, Revoke, Destroy, Archive, Recover, Certify, Re-certify, Re-key, Get Usage Allocation

	Applies to Object Types
	All Objects

3.31 Custom Attribute
A Custom Attribute is user-defined attribute and intended for vendor-specific purposes. It is created by the client and not interpreted by the server, or created by the server and either understood or not understood by the client. All custom attributes created by the client must adhere to a naming scheme where the name of the attribute must have a prefix of 'x-', meaning extended. The key management server may create and manage custom attributes which have a prefix of 'y-'. The tag type Custom Attribute cannot identify the particular attribute, hence such an attribute can only appear in an Attribute Structure with its name as defined in Section 2.1.1 .

	Object
	Encoding
	Required Field

	Custom Attribute
	Any data type or structure
	Yes. The name of the attribute must start with 'x-' or 'y-'.

	Must always have a value
	No

	Initially set by
	Client or Server

	Modifiable by server
	Yes, for server-created attributes

	Modifiable by client
	Yes, for client-created attributes

	Deletable by client
	Yes, for client-created attributes

	Multiple instances permitted
	Yes

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Activate, Revoke, Destroy, Certify, Re-certify, Re-key

	Applies to Object Types
	All Objects

4 Client-to-Server Operations

The following subsections describe the operations that may be requested by a key management client. Not all clients have to be capable of issuing all operation requests; however any client that issues a specific request must be capable of understanding the response to the request. All Object Management operations are sent in requests from clients to servers, and in responses from servers to clients. These operations may be combined into a batch, which allows multiple operations to be contained in a single request/response message pair.

A number of the operations whose descriptions follow are affected by a mechanism referred to as the ID Placeholder.

The key management server must implement a temporary variable called the ID Placeholder. This value consists of a single Unique Identifier. It is a variable stored inside the server that is only valid and preserved during the execution of a batch of operations. Once the batch of operations has been completed, the ID Placeholder value is discarded and/or invalidated by the server, so that subsequent requests will not find this previous ID Placeholder available.

The ID Placeholder is obtained from the Unique Identifier returned by the Create, Create Pair, Register, Derive Key, Re-Key, Certify, Re-Certify, Locate, and Recover operations. If any of these operations successfully completes and returns a Unique Identifier, then the server must copy this Unique Identifier into the ID Placeholder variable, where it is held until the completion of the operations remaining in the batched request. Subsequent operations in the batched request that need a Unique Identidier may make use of the ID Placeholder. This is indicated by omitting the Unique Identifier field from the request payloads for these operations. This mechanism is only valid if the Batch Error Continuation Option is set to Stop and the Batch Order Option is set to true.

Requests may contain attribute values to be assigned to the object. This information is specified with a Template-Attribute (see Section 2.1.8) that contains zero or more template names and zero or more individual attributes. If more than one template is specified, and there is a conflict between the single-value attributes in the templates, the value in the subsequent template takes precedence. If there is a conflict between the single-value attributes in the request and the single-value attributes in a specified template, the attribute values in the request take precedence. For multi-value attributes, the union of attribute values is used when the attributes are specified more than once.

Responses may contain attribute values that have been set differently than specified in the request. This information is specified with a Template-Attribute that contains one or more individual attributes.

4.1 Create
This operation requests the server to generate a new key as a Managed Cryptographic Object. This operation is not used to create Template or Policy Template objects (see Register operation, Section 4.3).

The request contains information about the type of object being created, and some of the attributes to be assigned to the object, e.g. Cryptographic Algorithm, Cryptographic Length, etc. This information may be specified by the names of Template objects which already exist. The response contains the Unique Identifier of the created object. The server must copy the Unique Identifier returned by this operation into the ID Placeholder variable.

	Request Payload

	Object
	Required Field
	Description

	Object Type
	Yes
	Determines the type of object to be created

	Template-Attribute
	Yes
	Specifies desired object attributes using templates and/or as individual attributes

	Response Payload

	Object
	Required Field
	Description

	Object Type
	Yes
	Type of object created

	Unique Identifier
	Yes
	The Unique Identifier of the newly created object

	Template-Attribute
	No
	A list of object attributes with values that the key management server chose differently from those specified in the request (either explicitly or via template). Only those attributes that were specified in the request and were set to different values by the server are included here

The following attributes must be included in the Create request, either explicitly, or via specification of a template that contains the attribute.

	Attribute
	Required

	Cryptographic Algorithm
	Yes

	Cryptographic Usage Mask
	Yes

4.2 Create Key Pair
This operation requests the server to generate a new public/private key pair and register the two corresponding new Managed Cryptographic Objects.

The request contains attributes to be assigned to the objects, e.g. Cryptographic Algorithm, Cryptographic Length, etc. Attributes and Template Names can be specified for both keys at the same time, by specifying a Common Template-Attribute object in the request. Attributes not common to both keys (e.g., Name, Cryptographic Usage Mask) may be specified using the Private Key Template-Attribute and Public Key Template-Attribute objects in the request which take precedence over the Common Template-Attribute object. A Link Attribute is automatically created by the server for each object, pointing to the corresponding object. The response contains the Unique Identifiers of both created objects. The ID Placeholder value will be set to the Unique Identifier of the Private Key.

	Request Payload

	Object
	Required Field
	Description

	Common Template-Attribute
	No
	Specifies desired attributes in templates and/or as individual attributes that apply to both the Private and Public Key Objects

	Private Key Template-Attribute
	No
	Specifies templates and/or attributes that apply to the Private Key Object. Order of precedence applies

	Public Key Template-Attribute
	No
	Specifies templates and/or attributes that apply to the Public Key Object. Order of precedence applies

For multi-valued attributes, the union of the values found in the templates and attributes of the Common, Private , and Public Key Template-Attribute is used. For single-valued attributes, the order of precedence is as follows:

1. attributes specified explicitly in the Private and Public Key Template-Attribute, then

2. attributes specified via templates in the Private and Public Key Template-Attribute, then

3. attributes specified explicitly in the Common Template-Attribute, then

4. attributes specified via templates in the Common Template-Attribute

If there are multiple templates in the Common, Private, or Public Key Template-Attribute, then the subsequent value of the single-valued attribute takes precedence.

	Response Payload

	Object
	Required Field
	Description

	Private Key Unique Identifier
	Yes
	The Unique Identifier of the newly created Private Key object

	Public Key Unique Identifier
	Yes
	The Unique Identifier of the newly created Public Key object

	Private Key Template-Attribute
	No
	A list of attributes, for the Private Key Object, with values that the key management server chose differently from those specified in the request (either explicitly or via template). Only those attributes that were specified in the request and were set to different values by the server are included here

	Public Key Template-Attribute
	No
	A list of attributes, for the Public Key Object, with values that the key management server chose differently from those specified in the request (either explicitly or via template). Only those attributes that were specified in the request and were set to different values by the server are included here

The following attributes must be included and/or must have the same value in the Create Key Pair operation, either explicitly, or via specification of a template that contains the attribute.

	Attribute
	Required
	Must contain the same value for both Private and Public Key

	Cryptographic Algorithm
	Yes
	Yes

	Cryptographic Length
	Yes
	Yes

	Cryptographic Usage Mask
	Yes
	No

	Cryptographic Parameters
	No
	Yes

	Contact Information
	No
	Yes

4.3 Register
This operation requests the server to register a Managed Object (created by the client or obtained by the client through some other means), allowing the server to manage the object. The arguments in the request are similar to those in the Create operation, but also may contain the object itself, for storage by the server. Optionally, objects which the client does not wish to be stored by the key management system may be omitted from the request, for example, private keys.

The request contains information about the type of object being registered, and some of the attributes to be assigned to the object, e.g. Cryptographic Algorithm, Cryptographic Length, etc. This information may be specified by the use of a Template-Attribute object. The response contains the Unique Identifier assigned by the server to the registered object. The server must copy the Unique Identifier returned by this operations into the ID Placeholder variable. The Initial Date attribute of the object is set to the current time.

	Request Payload

	Object
	Required Field
	Description

	Object Type
	Yes
	Determines the type of object being registered

	Template-Attribute
	Yes
	Specifies desired object attributes using templates and/or as individual attributes

	Certificate, Symmetric Key, Private Key, Public Key, Split Key, Secret Data or Opaque Object
	No
	The cryptographic object being registered. The object and attributes may be wrapped. Some objects, e.g. Private Keys, may be omitted from the request

	Response Payload

	Object
	Required Field
	Description

	Object Type
	Yes
	Type of object registered

	Unique Identifier
	Yes
	The Unique Identifier of the newly registered object

	Template-Attribute
	No
	A list of object attributes with values that the key management server chose differently from those specified in the request (either explicitly or via template). Only those attributes that were specified in the request and were set to different values by the server are included here

If the Register operation is being used to register a new Template, or Policy Template, then the request payload will contain a single Template Name field, containing the name of the new template, and the Cryptographic Object field must be omitted. The contents of the new Template or Policy Template will be the attributes contained in the Template-Attribute object in the request.

	Request Payload

	Object
	Required Field
	Description

	Object Type
	Yes
	Template or Policy Template

	Template Name
	Yes
	Specifies the name of the Template being registered

	Template-Attribute
	Yes, May be repeated
	Specifies the attributes of the new Template using templates and/or as individual attributes

When registering a new Template or a Policy Template, the attributes that may be included in the request are specified in Section 2.2.6 and 2.2.7 , respectively (note however that the Name attribute may not be specified). For all other object types that can be registered, the following attributes must be included in the Register request, either explicitly, or via specification of a template that contains the attribute.

	Attribute
	Required

	Cryptographic Algorithm
	Yes, may be omitted only if this information is encapsulated in the Key Block. Does not apply to Secret Data or Opaque Objects. If present, Cryptographic Length below must also be present.

	Cryptographic Length

	Yes, may be omitted only if this information is encapsulated in the Key Block. Does not apply to Secret Data or Opaque Objects. If present, Cryptographic Algorithm above must also be present.

	Cryptographic Usage Mask
	Yes

4.4 Re-key
This request is used to generate a replacement key for an existing symmetric key. It is analogous to the Create operation, except that many of the attributes of the new key are unchanged from the original key.

As the replacement key takes over the name attribute of the existing key, Re-key should only be performed once on a given key.

The server must copy the Unique Identifier of the replacement key returned by this operation into the ID Placeholder variable.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

As a result of Re-key, attributes of the existing key are changed similarly to performing a Revoke on that key with a Revocation Reason of Superseded, and the Link attribute is set to point to the replacement key.

If Offset is set, then the times of the new key will be set based on the times of the existing key (if such times exist) as follows:

	Attribute in Existing Key
	Attribute in New Key

	Initial Date (IT1)
	Initial Date (IT2) > IT1

	Activation Date (AT1)
	Activation Date (AT2) = IT2+ Offset

	Process Start Date (CT1)
	Process Start Date (CT1+(AT2- AT1))

	Protect Stop Date (TT1)
	Protect Stop Date (TT1+(AT2- AT1))

	Deactivation Date (DT1)
	Deactivation Date (DT1+(AT2- AT1))

Attributes that are not copied from the existing key and are handled in a specific way are:

	Attribute
	Action

	Initial Date
	Set to current time

	Destroy Date
	Not set

	Compromise Occurrence Date
	Not set

	Compromise Date
	Not set

	Revocation Reason
	Not set

	Unique Identifier
	New value generated

	Usage Limits
	The Total Bytes/Total Objects value is copied from the existing key, while the Byte Count/Object Count values are set to the Total Bytes/Total Objects.

	Name
	Set to the name(s) of the existing key; all name attributes of the existing key are removed.

	State
	Set based on attributes

	Digest
	Recomputed from the new key value

	Link
	Set to point to the existing key as the replaced key

	Last Change Date
	Set to current time

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object being re-keyed. If omitted, the ID Placeholder is substituted by the server

	Offset
	No
	An Interval object indicating the difference between the Initialization Time of the new key and the Activation Date of the new key

	Template-Attribute
	No
	Specifies desired object attributes using templates and/or as individual attributes

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the new object

	Template-Attribute
	No
	A list of object attributes with values that the key management server chose differently from those specified in the request (either explicitly or via template). Only those attributes that were specified in the request and were set to different values by the server are included here

4.5 Derive Key
This request is used to derive a symmetric key using a key or secret that is already known to the key management system. It only applies to Managed Objects that can be used for key derivation (The Derive Key bit must be set in the Cryptographic Usage Mask attribute of the specified Managed Object). If the operation is issued for an object that does not have this bit set, the server must return a response with a Result Reason of Operation Not Supported. For all derivation methods, the client must specify the desired length of the derived key or secret using the Cryptographic Length attribute. If a key is created, the client must specify both the Cryptographic Length and Cryptographic Algorithm. If the specified length exceeds the output of the derivation method, the server must return an error. Clients have the option to derive multiple keys and IVs by creating a Secret Data object and specifying a Cryptographic Length that is the total length of the derived object. The length must not exceed the length of the output that is returned by the chosen derivation method.

The fields in the request specify the Unique Identifiers of the keys or secrets to be used for derivation (some derivation methods may require multiple keys or secrets to derive the result), the method to be used to perform the derivation, and any parameters needed by the specified method. The method is specified as an enumerated value. Currently defined derivation methods include:

· PBKDF2 – This method is used to derive a symmetric key from a password or pass phrase. The PBKDF2 method is published in RSA Laboratories' Public-Key Cryptography Standards (PKCS) series, specifically PKCS #5 v2.0, and also published as Internet Engineering Task Force's RFC 2898.

· HASH – This method derives a key by computing a hash over the derivation key or the derivation data.

· HMAC – This method derives a key by computing an HMAC over the derivation data.

· ENCRYPT – This method derives a key by encrypting the derivation data.

· NIST800-108-C – This method derives a key by computing the KDF in Counter Mode as specified in NIST SP 800-108.

· NIST800-108-F – This method derives a key by computing the KDF in Feedback Mode as specified in NIST SP 800-108.

· NIST800-108-DPI – This method derives a key by computing the KDF in Double-Pipeline Iteration Mode as specified in NIST SP 800-108.

· Extensions

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified. The server must perform the derivation function, and then register the derived object as a new Managed Object, returning the new Unique Identifier for the new object in the response. The server must copy the Unique Identifier returned by this operation into the ID Placeholder variable.

	Request Payload

	Object
	Required Field
	Description

	Object Type
	Yes
	Determines the type of object to be created

	Unique Identifier
	Yes. May be repeated
	Determines the object or objects to be used to derive a new key from. At most two can be specified: one for the derivation key and another for the secret data. Note that the ID Placeholder cannot be used here.

	Derivation Method
	Yes
	An Enumeration object specifying the method to be used to derive the new key

	Derivation Parameters
	Yes
	A Structure object containing the parameters needed by the specified derivation method

	Template-Attribute
	Yes
	Specifies desired object attributes using templates and/or as individual attributes; length must always be specified and algorithm is required for the creation of symmetric keys.

	Response Payload

	Object
	Required Field
	Description

	Object Type
	Yes
	Type of object created

	Unique Identifier
	Yes
	The Unique Identifier of the newly derived key

	Template-Attribute
	No, May be repeated
	A list of object attributes with values that the key management server chose differently from those specified in the request (either explicitly or via template). Only those attributes that were specified in the request and were set to different values by the server are included here

The Derivation Parameters for all derivation methods consist of the following parameters, except PBKDF2 that requires two additional parameters.

	Object
	Encoding
	Required Field

	Derivation Parameters
	Structure
	Yes

	Cryptographic Parameters
	Structure
	Yes, except for HMAC derivation keys

	Initialization Vector
	Octet String
	No, depends on PRF and mode of operation: empty IV is assumed if not provided.

	Derivation Data
	Octet String
	Yes, unless the Unique Identifier of a Secret Data object is provided

Cryptographic Parameters identify the Pseudorandom Function (PRF) or the mode of operation of the PRF. For example, if a key is derived using the HASH derivation method, clients are required to provide the hash algorithm inside Cryptographic Parameters. Similarly, if a key is derived using AES in CBC mode, clients are required to provide the Block Cipher Mode. The server will verify that the specified mode matches one of the instances of Cryptographic Parameters set for the corresponding key. If Cryptographic Parameters are omitted, the server will pick the Cryptographic Parameters set with the lowest index for the specified key. If the corresponding key does not have any Cryptographic Parameters attribute, or if no match is found, an error is returned.

If a key is derived using HMAC, the attributes of the derivation key provides enough information about the PRF and Cryptographic Parameters are ignored.

Derivation Data can either be the data to be encrypted, hashed, or HMACed. For NIST SP 800-108 methods, Derivation Data is Label||{0x00}||Context, where the all-zero octet is optional.

Most derivation methods, such as ENCRYPT, require a derivation key and the derivation data to be encrypted. The HASH derivation method requires either a derivation key or derivation data. Derivation data can either be explicitly provided by the client with the Derivation Data field or implicitly by providing the Unique Identifier of a Secret Data object. An error is returned if both are provided.

The PBKDF2 derivation method requires two additional parameters:

	Object
	Encoding
	Required Field

	Derivation Parameters
	Structure
	Yes

	Cryptographic Parameters
	Structure
	No, depends on the PRF

	Initialization Vector
	Octet String
	No, depends on PRF and mode of operation: empty IV is assumed if not provided.

	Derivation Data
	Octet String
	Yes, unless the Unique Identifier of a Secret Data object is provided

	Salt
	Octet String
	Yes

	Iteration Count
	Integer
	Yes

4.6 Certify
This request is used to obtain a new certificate for a public key. Only a single certificate can be requested at a time. Server support for this operation is optional, as it requires that the key management system have access to a certification authority.

Requests are passed as Octet Strings, which allow multiple certificate request types for X.509 certificates (e.g. PKCS#10, PEM, etc) or PGP certificates to be submitted to the server.

The server must copy the Unique Identifier of the certificate returned by this operation into the ID Placeholder variable. The new Certificate object whose Unique Identifier is returned may be obtained by the client via a Get operation in the same batch, using the ID Placeholder mechanism.

As a result of Certify, the Link attribute of the Public Key and of the new Certificate are set to point at each other.

The server must copy the Unique Identifier of the new certificate returned by this operation into the ID Placeholder variable.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

If the information in the Certificate Request conflicts with the attributes specified in the Template-Attribute, then the information in the Certificate Request takes precedence.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	The Unique Identifier of the Public Key being certified. If omitted, the ID Placeholder is substituted by the server

	Certificate Request Type
	Yes
	An Enumeration object specifying the type of certificate request

	Certificate Request
	Yes
	An Octet String object with the certificate request

	Template-Attribute
	No
	Specifies desired object attributes using templates and/or as individual attributes

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the new certificate

	Template-Attribute
	No
	A list of object attributes with values that the key management server chose differently from those specified in the request (either explicitly or via template). Only those attributes that were specified in the request and were set to different values by the server are included here

4.7 Re-certify
This request is used to renew an existing certificate with the same key pair. Only a single certificate can be renewed at a time. Server support for this operation is optional, as it requires that the key management system have access to a certification authority.

Requests are passed as Octet Strings, which allow multiple certificate request types for X.509 certificates (e.g. PKCS#10, PEM, etc) or PGP certificates to be submitted to the server.

The server must copy the Unique Identifier of the certificate returned by this operation into the ID Placeholder variable.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

If the information in the Certificate Request conflicts with the attributes specified in the Template-Attribute, then the information in the Certificate Request takes precedence.

As the new certificate takes over the name attribute of the existing certificate, Re-certify should only be performed once on a given certificate.

As a result of Re-certify, attributes of the existing certificate are changed similarly to performing a Revoke on that key with a Revocation Reason of Superseded.

In addition, the Link attribute of the existing certificate and of the new certificate are set to point at each other. In addition, the Link attribute of the Public Key is changed to point to the new certificate. If Offset is set, then the times of the new certificate will be set based on the times of the existing certificate (if such times exist) as follows:

	Attribute in Existing Certificate
	Attribute in New Certificate

	Initial Date (IT1)
	Initial Date (IT2) > IT1

	Activation Date (AT1)
	Activation Date (AT2) = IT2+ Offset

	Deactivation Date (DT1)
	Deactivation Date (DT1+(AT2- AT1))

Attributes that are not copied from the existing certificate and are handled in a specific way are:

	Attribute
	Action

	Initial Date
	Set to current time

	Destroy Date
	Not set

	Revocation Reason
	Not set

	Unique Identifier
	New value generated

	Name
	Set to the name(s) of the existing certificate; all name attributes of the existing certificate are removed.

	State
	Set based on attributes

	Digest
	Recomputed from the new certificate value

	Link
	Set to point to the existing certificate as the replaced certificate

	Last Change Date
	Set to current time

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	The Unique Identifier of the Certificate being renewed. If omitted, the ID Placeholder is substituted by the server

	Certificate Request Type
	Yes
	An Enumeration object specifying the type of certificate request

	Certificate Request
	Yes
	An Octet String object with the certificate request

	Offset
	No
	An Interval object indicating the difference between the Initialization Time of the new certificate and the Activation Date of the new certificate

	Template-Attribute
	No
	Specifies desired object attributes using templates and/or as individual attributes

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the new certificate

	Template-Attribute
	No
	A list of object attributes with values that the key management server chose differently from those specified in the request (either explicitly or via template). Only those attributes that were specified in the request and were set to different values by the server are included here

4.8 Locate
This operation requests that the server searches for one or more Managed Objects, specified by one or more attributes. All attributes are allowed to be used. However, no attributes specified in the request should contain index values. Attribute Index values will be ignored by the Locate operation. The request may also contain a Maximum Items field, which specifies the maximum number of objects that the client wishes returned by Locate. If the Maximum Items field is omitted, then the server may return all objects matched, or may impose an internal maximum limit due to resource limitations.

The response may contain Unique Identifiers for multiple Managed Objects, if more than one object satisfies the identification criteria specified in the request. Returned objects must match all of the attributes in the request. If no objects match, an empty response payload is returned.

The server returns a list of Unique Identifiers of the found objects, which then must be retrieved using the Get operation, or if the objects are archived, then the Recover and Get operations must be used. The server must copy the Unique Identifier returned by this operation into the ID Placeholder variable. If the Locate operation matches more than one object, and the Maximum Items value is omitted in the request, or is set to a value larger than one, then the server must not set the ID Placeholder value, so that any subsequent operations that are batched with the Locate, and which do not specify a Unique Identifier explicitly will fail. This ensures that these batched operations will be allowed to proceed only if a single object is returned by Locate.

When using the Name or Object Group attributes for identification, wild-cards or regular expressions may be supported by specific key management system implementations. The protocol neither requires nor disallows such use.

The Date attributes (Initial Date, Activation Date, etc) may be used to specify a time or a time range. If a single instance of a given Date attribute is used, such as Activation Date, then objects with the same Activation Date are matching candidate objects. If two instances of the same Date attribute are used (with two different values specifying a range), then objects for which the Activation Date is inside or on the range are matching candidate objects. If a Date attribute is set to its largest possible value, then it is equivalent to an undefined attribute.

When the Cryptographic Usage Mask attribute is specified in the request, candidate objects are matched against this field via an operation which consists of a logical AND of the requested mask with the mask in the candidate object and then a straight comparison of the resulting value with the requested mask. For example, if the request contains a mask value of 1000110001 and a candidate object mask contains 1000010001, the logical AND of the two masks is 1000010001 which is compared against 1000110001 and fails the match. This means that a matching candidate object must have all of the bits set in its mask that are set in the requested mask, but may have additional bits set.

When the Usage Allocation attribute is specified in the request, matching candidate objects must have an Object or Byte Count and Total Objects or Bytes equal or larger than the values specified in the request.

When an attribute defined as a structure is specified, not all of the structure fields must be specified. For instance, for the Link attribute, the Linked Object Identifier value may be specified without the Link Type value, and matching candidate objects must have the Linked Object Identifier as specified, irrespective of their Link Type.

The Storage Status Mask field (see Section 9.1.3.3.2) is used to indicate whether only on-line objects, or only archived objects, or both on-line and archived objects must be searched. Note that the server may store attributes of archived objects in order to expedite Locate operations searching through archived objects.

	Request Payload

	Object
	Required Field
	Description

	Maximum Items
	No
	An Integer object that indicates the maximum number of object identifiers the server should return

	Storage Status Mask
	No
	An Integer object (used as a bit mask) that indicates whether only on-line objects, or only archived objects, or both on-line and archived objects must be searched. If omitted, on-line only is assumed.

	Attribute
	Yes, may be repeated
	Specifies an attribute and its value that must match the desired object

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	No, May be repeated
	The Unique Identifier of the located objects

4.9 Check
This operation requests that the server checks for the use of a Managed Object according to policy-related values specified in the request. This operation should only be used when placed in a batched set of operations, usually following a Locate, Create, Create Pair, Derive Key, Certify, Re-Certify or Re-Key operation and followed by a Get operation. The Unique Identifier field in the request may be omitted if the operation is in a batched set of operations and follows an operation that sets the ID Placeholder variable.

If the server determines that the client is allowed to use the object specified according to the given policy attributes , the server returns the Unique Identifier of the object. If the server determines that the specified attributes fall outside allowed policy, then the server returns no Unique Identifier, the server invalidates the ID Placeholder value, and the operation returns the set of attributes specified in the request that caused the server policy denial. Only those attributes that the server judged to be out of policy are returned, allowing the client to determine how to proceed. The operation also returns a failure, thus causing any subsequent operations in the batch to be ignored.

The additional objects that may be specified in the request are limited to (note that these objects are not encoded in an Attribute structure as shown in Section 2.1.1):

· Usage Limits Byte Count or Usage Limits Object Count (see Section 3.14)– The request may contain the usage amount that the client deems necessary to complete its needed function. This does not require that any subsequent Get Usage Allocation operations request this amount. It only means that the client is ensuring that the amount specified is available.

· Cryptographic Usage Mask – This is used to specify the cryptographic operations that the client intends to use the object for (see Section 3.12). This allows the server to determine if the policy allows this client to perform these operations with the object. Note that this may be a different value from the one specified in a Locate operation that precedes this operation. Locate, for example, may specify a Cryptographic Usage Mask requesting a key that can be used for both Encryption and Decryption, but the value in the Check operation may specify that the the client is only using the key for Encryption at this time.

· Lease Time – This specifies a desired lease time (see Section 3.13). The client may use this to determine if the server will allow the client to use the object with the specified lease or longer. Including this attribute in the Check operation does not actually cause the server to grant a lease, but only indicates that the requested lease time value will be granted if requested by a subsequent, batched, Obtain Lease operation.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object being requested. If omitted, the ID Placeholder is substituted by the server

	Usage Limits Byte Count
	No
	Specifies the number of bytes to be protected to be checked against server policy. May only be present if Usage Limits Object Count is not present

	Usage Limits Object Count
	No
	Specifies the number of objects to be protected to be checked against server policy. May only be present if Usage Limits Byte Count is not present

	Cryptographic Usage Mask
	No
	Specifies the Cryptographic Usage that the client will use the object for

	Lease Time
	No
	Specifies a Lease Time value that the Client is asking the server to validate against server policy

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

	Usage Limits Byte Count
	No
	Returned by the Server if the Usage Limits value specified in the Request Payload was larger than the value that the server policy would allow. May only be present if Usage Limits Object Count is not present

	Usage Limits Object Count
	No
	Returned by the Server if the Usage Limits value specified in the Request Payload was larger than the value that the server policy would allow. May only be present if Usage Limits Byte Count is not present

	Cryptographic Usage Mask
	No
	Returned by the Server if the Cryptographic Usage Mask specified in the Request Payload was rejected by the server for policy violation

	Lease Time
	No
	Returned by the Server if the Lease Time value in the Request Payload was larger than a valid Lease Time that the server would grant

The encodings of the Usage limits Byte and Object Counts is as shown in Section 3.14 .

4.10 Get
This operation requests that the server returns a Managed Object, which is specified in the request by its Unique Identifier. The Unique Identifier field in the request may be omitted if the Get operation is in a batched set of operations and follows an operation that sets the ID Placeholder variable.

Only a single object is returned. Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified. The response contains the Unique Identifier of the object along with the object itself, which may be optionally wrapped using a wrapping key specified in the request.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object being requested. If omitted, the ID Placeholder is substituted by the server

	Key Wrapping Specification
	No
	Specifies keys and other information for wrapping the returned object. This field may not be specified if the returned object is a Template or Policy Template

	Response Payload

	Object
	Required Field
	Description

	Object Type
	Yes
	Type of object

	Unique Identifier
	Yes
	The Unique Identifier of the object

	Certificate, Symmetric Key, Private Key, Public Key, Split Key, Template, Policy Template, Secret Data, or Opaque Object
	Yes
	The cryptographic object being returned

4.11 Get Attributes
Return one or more attributes of a Managed Object. The object is specified by its Unique Identifier. The desired attributes are specified by name in the request. If a specified attribute has multiple instances, all instances are returned. If a specified attribute does not exist (i.e. has no value) it must not be present in the returned response. If no requested attributes exist, the response should consist only of the Unique Identifier. Note that the response payload is empty if there are no attribute values to return.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object whose attributes are being requested. If omitted, the ID Placeholder is substituted by the server

	Attribute Name
	Yes, May be repeated
	Specifies a desired attribute of the object

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

	Attribute
	No, May be repeated
	The requested attribute for the object

4.12 Get Attribute List
Returns a list of the attribute names associated with a specified object. The object is specified by its Unique Identifier.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object whose attribute names are being requested. If omitted, the ID Placeholder is substituted by the server

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

	Attribute Name
	Yes, May be repeated
	The requested attribute names for the object

4.13 Add Attribute
This request adds a new attribute (with possibly multiple values) and sets its value. The request contains the Unique Identifier of the Managed Object which the attribute pertains to, and the name and new value of the attribute. Only non-existing attributes may be set via this operation. Existing attributes must be changed by the Modify Attribute operation. Read-Only attributes may not be added using this operation. No Attribute Index may be specified in the request. The response will return a new Attribute Index if the attribute being added is allowed to have multiple instances. Multiple Add Attribute requests may be included in a single batched request to add multiple attributes.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	The Unique Identifier of the object. If omitted, the ID Placeholder is substituted by the server

	Attribute
	Yes
	Specifies the attribute of the object to be added

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

	Attribute
	Yes
	The added attribute

4.14 Modify Attribute
This request modifies the value of an existing attribute. The request contains the Unique Identifier of the Managed Object which the attribute pertains to, and the name, optional index, and new value of the attribute. Only existing attributes may be changed via this operation. New attributes must be added by the Add Attribute operation. Read-Only attributes may not be changed using this operation. If an attribute index is specified, only the specified instance is modified. If the attribute has multiple instances and no index is specified in the request, then the index is assumed to be 0. If the attribute does not support multiple instances, the attribute index must not be specified.

The Attribute returned in the response may have a value different from the one sent in the request, if the server policy so dictates. The value returned is the value set by the server.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	The Unique Identifier of the object. If omitted, the ID Placeholder is substituted by the server

	Attribute
	Yes
	Specifies the attribute of the object to be modified

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

	Attribute
	Yes
	The modified attribute

4.15 Delete Attribute
This request deletes an attribute. The request contains the Unique Identifier of the Managed Object which the attribute pertains to, and the name, and optionally the Attribute Index of the attribute. Required attributes and Read-Only attributes may not be deleted by this operation. If no Attribute Index is specified, and the Attribute whose name is specified has multiple instances, the operation is rejected. Note that only a single attribute can be deleted at a time. Multiple delete operations (possible batched) are necessary to delete several attributes. Deleting non-existing attributes will result in an error. Using a non-existing attribute index in a delete operation will also result in an error.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object whose attributes are being updated. If omitted, the ID Placeholder is substituted by the server

	Attribute Name
	Yes
	Specifies the name of the attribute of the object to be deleted

	Attribute Index
	No
	Specifies the Index of the Attribute

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

	Attribute
	Yes
	The deleted attribute

4.16 Obtain Lease
This request is used to request a new Lease Time for a specified cryptographic object. The Lease Time is an interval value that determines when the client's internal cache of information about the object expires and must be renewed. If the returned value of the lease time is zero, then the server is indicating that no lease interval is effective and the client may use the object without any lease time limit. If a client's lease expires, the client must not use the associated cryptographic object until a new lease is obtained. If the server determines that a new lease should not be issued for the specified cryptographic object, then the server should respond to the Obtain Lease request with a Result Status of Failure, and a Result Reason of General Failure.

The response payload for the operation also contains the current value of the Last Changed Date attribute for the object. This may be used by the client to determine if any of the attributes cached by the client need to be refreshed, by comparing this time to the time when the attributes were previously obtained.

The Unique Identifier field in the request may be omitted if the operation is in a batched set of operations and follows an operation that sets the ID Placeholder variable.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object for which the lease is being obtained. If omitted, the ID Placeholder is substituted by the server

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

	Lease Time
	Yes
	An interval (in seconds) determining the amount of time that the object can be used until a new lease needs to be obtained

	Last Changed Date
	Yes
	The date and time indicating when the latest change was made to the contents or any attribute of the specified object.

4.17 Get Usage Allocation
This request is used to obtain an allocation from the current Usage Limits values, to allow the client to use the Managed Cryptographic Object for protection purposes. It only applies to Managed Cryptographic Objects that can be used for protection purposes (symmetric keys, private keys and public keys) and is only valid if the Managed Cryptographic Object has a Usage Limits attribute. Usage for process purposes (decryption, verification, etc.) is not limited and cannot be allocated. A Managed Cryptographic Object that has a Usage Limits attribute may not be used by a client for protection purposes unless an allocation has been obtained using this operation. The operation may only be issued during the time that protection is enabled for these objects, i.e. after the Activation Date and before the Protect Stop Date. If the operation is issued for an object that has no Usage Limits attribute, or is not an object that can be used for protection purposes, the server must return a response with a Result Reason of Operation Not Supported.

The fields in the request specify the number of bytes, or number of objects that the client needs to protect. Exactly one of the two count fields must be specified in the request. The corresponding field, containing the number of bytes, or number of objects that may be protected, is returned in the response. If the requested amount is not available, the server may return a smaller amount, or may return 0, indicating that the Managed Object may not be used for protection purposes at this time. The server must assume that the entire allocated amount has been consumed. Server policy may allow the value returned in the response to be different from the value requested. Once the entire allocated amount has been consumed, the client may not continue to use the Managed Cryptographic Object for protection purposes until a new allocation is obtained.

The Unique Identifier field in the request may be omitted if the operation is in a batched set of operations and follows an operation that sets the ID Placeholder variable.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object whose usage allocation is being requested. If omitted, the ID Placeholder is substituted by the server

	Usage Limits Byte Count
	No
	The number of bytes to be protected. May only be present if Usage Limits Object Count is not present

	Usage Limits Object Count
	No
	The number of objects to be protected. May only be present if Usage Limits Byte Count is not present

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

	Usage Limits Byte Count
	No
	The number of bytes that may be protected. May only be present if Usage Limits Object Count is not present

	Usage Limits Object Count
	No
	The number of objects that may be protected. May only be present if Usage Limits Byte Count is not present

The encodings of the Usage limits Byte and Object Counts is as shown in Section 3.14 .

4.18 Activate
This request is used to activate a Managed Cryptographic Object. The request may not specify a Template or Policy Template object. The request contains the unique identifier of the Managed Cryptographic Object . The operation can be performed only on an object in the Pre-Active state and has the effect of changing its state to Active and its Activation Date will be set to the current date and time.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object being activated. If omitted, the ID Placeholder is substituted by the server

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

4.19 Revoke
This request is used to revoke a Managed Cryptographic Object. The request may not specify a Template or Policy Template object. The request contains the unique identifier of the Managed Cryptographic Object and a reason for the revocation, e.g. “compromised”, “no longer used”, etc. Special authentication and authorization is required to issue this request (see Usage Guide). Only the object creator or an authorized security officer should be allowed to issue this request. The operation will have one of two effects. If the revocation reason is “compromised”, then the object will be placed into the “compromised” state, and the Compromise Date attribute will be set to the current date and time. Otherwise, the object will be placed into the “deactivated” state, and the Deactivation Date attribute will be set to the current date and time.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object being revoked. If omitted, the ID Placeholder is substituted by the server

	Revocation Reason
	Yes
	Specifies the reason for revocation

	Compromise Occurrence Date
	No
	Only specified, and required, if the Revocation Reason is 'compromised'

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

4.20 Destroy
This request is used to indicate to the server that the key material for the specified Managed Cryptographic Object should be destroyed. The meta-data for the key material may be retained by the server. This is used for example, to ensure that copies of an expired or revoked private signing key are no longer available. Special authentication and authorization is required to issue this request (see Usage Guide). Only the object creator or an authorized security officer should be allowed to issue this request. If the Unique Identifier specifies a Template or Policy Template object, then the object itself, including all meta-data may be destroyed.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object being destroyed. If omitted, the ID Placeholder is substituted by the server

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

4.21 Archive
This request is used to specify that a Managed Object is now permitted to be placed in archival storage. The actual time when the object is placed in archival storage and the location of the archive or level of archive hierarchy is determined by the policies within the key management system, and is not specified by the client. The request contains the unique identifier of the object. Special authentication and authorization is required to issue this request (see Usage Guide). Only the object creator or an authorized security officer should be allowed to issue this request. This request may be considered only a “hint” to the key management system, which may or may not choose to act upon this request.

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object being archived. If omitted, the ID Placeholder is substituted by the server

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

4.22 Recover
This request is used to obtain access to a Managed Object that has been placed in archival storage. Due to the fact that the object is located in archival storage, this request may require asynchronous polling to obtain the response. Once the response is received, the object is now on-line, and may be obtained via a normal Get operation, for instance. Special authentication and authorization is required to issue this request (see Usage Guide).

	Request Payload

	Object
	Required Field
	Description

	Unique Identifier
	No
	Determines the object being recovered. If omitted, the ID Placeholder is substituted by the server

	Response Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

4.23 Validate
This requests that the server validate a certificate chain, and return information on its validity. Only a single certificate chain may be included in each request. Support for this operation at the server is optional.

The request may contain a list of certificate objects, and/or a list of Unique Identifiers which identify Managed Certificate objects. The two lists must together comprise a certificate chain to be validated. The request may also optionally contain a date for which the certificate chain must be valid.

The validation method or policy by which validation will be conducted is a decision of the server and is outside of the scope of this protocol. Likewise, the order in which the supplied certificate chain is validated and the specification of trust anchors used to terminate validation are also controlled by the server.

Only on-line objects can be specified. Archived objects must first be moved back on-line through a Recover operation before they can be specified.

	Request Payload

	Object
	Required Field
	Description

	Certificate
	No, May be repeated
	One or more Certificates

	Unique Identifier
	No, May be repeated
	One or more Unique Identifiers of Certificate Objects

	Validity Date
	No
	A Date-Time object indicating when the certificate chain must be valid

	Response Payload

	Object
	Required Field
	Description

	Validity Indicator
	Yes
	An Enumeration object indicating whether the certificate chain is valid, invalid, or unknown

4.24 Query
This request is used by the client to interrogate the server to determine its capabilities and/or protocol mechanisms. It is recommended that the Query operation, used to interrogate server features and functions, be invocable by unauthenticated clients. The Query Function field in the request may contain one of the following items:

· Query Operations

· Query Objects

· Query Server Information

One, two, or all three of the above functions may be specified.

The Operation fields in the response contain Operation enumerated values, which should list the optionally supported operations that the server supports. These fields should only be returned in the response if the request contains a Query Operations value in the Query Function field. The optional operations are:

· Validate

· Certify

· Re-Certify

· Notify

· Put

The Object Type fields in the response contain Object Type enumerated values, which should list the object types that the server supports. These fields should only be returned in the response if the request contains a Query Objects value in the Query Function field. The object types (any of which are optional) are:

· Certificate

· Symmetric Key

· Public Key

· Private Key

· Split Key

· Template

· Policy Template

· Secret Data

· Opaque Object

The Server Information field in the response is a structure containing vendor specific fields and/or substructures. This field should only be returned in the response if the request contains a Query Server Information value in the Query Function field.

Note that the response payload is empty if there are no values to return.

	Request Payload

	Object
	Required Field
	Description

	Query Function
	Yes, May be Repeated
	Determines the information being queried

	Response Payload

	Object
	Required Field
	Description

	Operation
	No, May be repeated
	Specifies an Operation that is supported by the server. Only optional operations should be listed

	Object Type
	No, May be repeated
	Specifies a Managed Object Type that is supported by the server

	Vendor Identification
	No
	Must be returned if Query Server Information is requested. The Vendor Identification must be a text string that uniquely identifies the vendor

	Server Information
	No
	Contains vendor-specific information that may be of interest to the client

4.25 Cancel
This request is used to cancel an outstanding asynchronous operation. The correlation value (see Section 6.8) of the original operation must be specified in the request. The server must respond with a Cancellation Result, which contains one of the following values:

· Canceled – The cancel operation succeeded in canceling the pending operation.

· Unable To Cancel – The cancel operation is unable to cancel the pending operation.

· Completed – The pending operation completed successfully before the cancellation operation was able to cancel it.

· Failed – The pending operation completed with a failure before the cancellation operation was able to cancel it.

· Unavailable – The specified correlation value did not match any recently pending or completed asynchronous operations.

 The response to this operation cannot be asynchronous.

	Request Payload

	Object
	Required Field
	Description

	Asynchronous Correlation Value
	Yes
	Specifies the request being canceled

	Response Payload

	Object
	Required Field
	Description

	Asynchronous Correlation Value
	Yes
	Specifies the request

	Cancellation Result
	Yes
	Enumeration indicating result of cancellation

4.26 Poll
This request is used to poll the server in order to obtain the status of an outstanding asynchronous operation. The correlation value (see Section 6.8) of the original operation must be specified in the request. The response to this operation cannot be asynchronous.

	Request Payload

	Object
	Required Field
	Description

	Asynchronous Correlation Value.
	Yes
	Specifies the request being polled

The server must reply with one of two responses:

· A response containing no payload and a Result Status of Pending, if the operation has not completed

· A response containing the appropriate payload for the operation, if the operation has completed. This response must be identical to the response that would have been sent if the operation had completed synchronously.

5 Server-to-Client Operations

Server-to-client operations are used by servers to send information or Managed Cryptographic Objects to clients outside of the normal client-server request-response mechanism. These operations are used to “push” Managed Cryptographic Objects directly to clients without a specific request from the client.

5.1 Notify
This operation is used to notify a client of events. This operation is only ever sent by a server to a client outside the normal client request/response protocol, using information known to the server via unspecified configuration or administrative mechanisms. It contains the Unique Identifier of the object to which the notification applies, and a list of the attributes whose changed values have triggered the notification. The message is sent as a normal Request message, except that the Maximum Response Size, Asynchronous Indicator, Batch Error Continuation Option, and Batch Order Option fields are not allowed. The client must send a response in the form of a Response Message containing no payload, unless both the client and server have prior knowledge (obtained via out-of-band mechanisms) that the client cannot respond. Server and Client support for this message is optional.

	Message Payload

	Object
	Required Field
	Description p

	Unique Identifier
	Yes
	The Unique Identifier of the object

	Attribute
	Yes, May be repeated
	The attributes which have changed. This includes at least the Last Changed Date attribute

5.2 Put
This operation is used to “push” Managed Cryptographic Objects to clients. This operation is only ever sent by a server to a client outside the normal client request/response protocol, using information known to the server via unspecified configuration or administrative mechanisms. It contains the Unique Identifier of the object which is being sent, and the object itself. The message is sent as a normal Request message, except that the Maximum Response Size, Asynchronous Indicator, Batch Error Continuation Option, and Batch Order Option fields are not allowed. The client must send a response in the form of a Response Message containing no payload, unless both the client and server have prior knowledge (obtained via out-of-band mechanisms) that the client cannot respond. Server and client support for this message is optional.

The Put Function field indicates whether the object being “pushed” is a new object, or a replacement for an object already known to the client. For example, when pushing a certificate to replace one that is about to expire, the Put Function field would be set to indicate replacement, and the Unique Identifier of the expiring certificate would be placed in the Replaced Unique Identifier field. The Put Function may contain one of the following values:

· New – which indicate that the object is not a replacement for another object

· Replace – which indicates that the object is a replacement for another object, and that the Replaced Unique Identifier field is present, and contains the identification of the replaced object.

The Attribute field contains one or more attributes that the server wishes to be pushed along with the object. In particular, the server may include policy attributes with the object to specify how the object is to be used by the client. The server may include a Lease Time attribute which grants a lease to the client.

If the Managed Object is a wrapped key, the key wrapping specification must be exchanged prior to the transfer via out-of-band mechanisms.

	Message Payload

	Object
	Required Field
	Description

	Unique Identifier
	Yes
	The Unique Identifier of the object

	Put Function
	Yes
	Indicates function for Put message

	Replaced Unique Identifier
	No
	Unique Identifier of replaced object. Must be present if the Put Function is Replace

	Certificate, Symmetric Key, Private Key, Public Key, Split Key, Template, Policy Template, Secret Data, or Opaque Object
	Yes
	The object being sent to the client

	Attribute
	No, May be repeated
	The additional attributes that the server wishes to push with the object

6 Message Contents

Messages in the protocol consist of a message header and one or more batch items which contain optional message payloads, and optional message extensions. The message headers contain fields whose presence is determined by the protocol features used, e.g. asynchronous responses. The field contents are also determined by whether the message is a request or a response. The message payload is determined by the specific operation being requested or replied to.

The message headers are structures which contain some of the following objects.

6.1 Protocol Version
This field contains the version number of the protocol, ensuring that the protocol is fully understood by both communicating parties. The version number is specified in two parts, major and minor. Servers and clients must support backward compatibility with versions of the protocol with the same major version but different minor versions. Support for backward compatibility with different major versions is optional.

	Object
	Encoding
	Required Field

	Protocol Version
	Structure
	Yes

	Protocol Version Major
	Integer
	Yes

	Protocol Version Minor
	Integer
	Yes

6.2 Operation
This field indicates the operation being requested or the operation for which the response is being returned. The operations are defined in Sections 4 and 5 .

	Object
	Encoding
	Required Field

	Operation
	Enumeration
	Yes

6.3 Maximum Response Size
This field is optionally contained in a request message, and is used to indicate the maximum size of a response that the requester can handle. It need only be sent in requests that may return large replies.

	Object
	Encoding
	Required Field

	Maximum Response Size
	Integer
	No

6.4 Unique Message ID
This field is optionally contained in a request, and is used as for correlation between requests and responses. If a request has a Unique Message ID, then responses to that request must have the same Unique Message ID.

	Object
	Encoding
	Required Field

	Unique Message ID
	Octet String
	No

6.5 Time Stamp
This field is optionally contained in a request and required in a response, and is used for time stamping and may be used to enforce reasonable time usage at a client, e.g. a server may choose to reject a request if a client's time stamp contains a value that is too far off the known correct time. It may also be used by a client, which has no real-time clock but only a countdown timer, to obtain useful “seconds from now” values from all of the Date attributes, by performing a subtraction.

	Object
	Encoding
	Required Field

	Time Stamp
	Date-Time
	No

6.6 Authentication
This is used to authenticate the requester. It is an optional information item, depending on the type of request being issued and on server policies. Servers may require authentication on no requests, a subset of the operations, or all requests, depending on policy. It is recommended that the Query operation, used to interrogate server features and functions, not require authentication.

The authentication mechanisms are described and discussed in Section 8 .

	Object
	Encoding
	Required Field

	Authentication
	Structure
	No

	Credential
	Structure
	Yes

The Credential structure is defined in Section 2.1.2 .

6.7 Asynchronous Indicator
This boolean flag indicates whether the client can accept an asynchronous response. It must have the boolean value True if the client can handle asynchronous responses, and the value False otherwise. If not present in a request, False is assumed. If a client indicates that it can’t handle asynchronous responses (flag is set to False) and the server is not capable to process the request synchronously, the server must reject the request with a failure status.

	Object
	Encoding
	Required Field

	Asynchronous Indicator
	Boolean
	No

6.8 Asynchronous Correlation Value
This is returned in the immediate response to an operation that will require asynchronous polling. It is a server generated correlation value that must be specified in any subsequent Poll, or Cancel operations that pertain to the original operation.

	Object
	Encoding
	Required Field

	Asynchronous Correlation Value
	Octet String
	No

6.9 Result Status
This indicates the success or failure of the request. The following values may be set in this field:

· Success – The requested operation completed successfully.

· Pending – The requested operation is in progress and the actual result must be obtained via asynchronous polling. The asynchronous correlation value must be used for the subsequent polling of the result status.

· Undone – The requested operation was performed but had to be undone (due to a failure in a batch for which the Error Continuation Option was set to Undo)

· Failure – The requested operation failed.

	Object
	Encoding
	Required Field

	Result Status
	Enumeration
	Yes

6.10 Result Reason
This field indicates a reason for failure or a modifier for a partially successful operation and must be present in responses that return a Result Status of Failure. It is optional in any response that returns a Result Status of Success. The following defined values may be set in this field:

· Item Not Found – A requested object was not found or did not exist.

· Response too large – The response to a request would have exceeded the Maximum Response Size in the request.

· Authentication not successful – The authentication in the request did not pass validation, or there was no authentication in the request when there should have been.

· Invalid Message – The request message was not understood by the server.

· Operation Not Supported – The operation requested by the request message was not supported by the server.

· Missing Data – The operation required additional optional information in the request, which was not present.

· Invalid Field – Some data item in the request had an invalid value.

· Feature not supported – An optional feature specified in the request was not supported.

· Operation canceled by requester – The operation was asynchronous and the operation was canceled by the Cancel operation before it completed successfully.

· Cryptographic failure – The operation failed due to a cryptographic error.

· Illegal Operation – The client requested an operation that could not be performed with the specified parameters.

· Permission Denied – The client did not have permission to perform the requested operation.

· Object archived – The object should be first recovered from the archive.

· General Failure – The request failed for a reason other than the defined reasons above.

	Object
	Encoding
	Required Field

	Result Reason
	Enumeration
	Yes

6.11 Result Message
This field may optionally be returned in a response. It contains a more descriptive error message, which may be used by the client to display to an end user or for logging/auditing purposes.

	Object
	Encoding
	Required Field

	Result Message
	Text String
	No

6.12 Batch Order Option
A Boolean value used in requests where the Batch Count is greater than 1. If true then batched operations must be executed in the order in which they appear within the request. If false, the server may choose to execute the batched operations in any order. If not specified, false is assumed (i.e. no implied ordering). Server support for this feature is optional, but if the server does not support the feature, and a request is received with the flag true, the entire request must be rejected.

	Object
	Encoding
	Required Field

	Batch Order Option
	Boolean
	No

6.13 Batch Error Continuation Option
Batched operation partial failure continuation option. This option should only be present if the Batch Count is greater than 1. This option may have one of three values:

· Undo – If any operation in the request fails, the server must undo all the previous operations.

· Stop – If an operation fails, the server must not continue processing later operations in the request. Completed operations will be left intact.

· Continue – Return an error for the failed operation and continue processing later operations in the request.

If not specified, Stop is assumed.

Server support for this feature is optional, but if the server does not support the feature, and a request is received containing the Batch Error Continuation option, the entire request must be rejected.

	Object
	Encoding
	Required Field

	Batch Error Continuation Option
	Enumeration
	No

6.14 Batch Count
This field is required. It contains the number of Batch Items in a message. If only a single operation is being requested, the batch count must be set to 1. The Message Payload, which follows the Message Header, will contain one or more batch items.

	Object
	Encoding
	Required Field

	Batch Count
	Integer
	Yes

6.15 Batch Item
This field is required. It consists of a structure that holds the individual requests or responses in a batch. The contents of the batch items is described in Sections 7.2 and 7.3 .

	Object
	Encoding
	Required Field

	Batch Item
	Structure
	No

6.16 Message Extension
The Message Extension is an optional structure which may be appended to any Batch Item. It is used to extend protocol messages for the purpose of adding vendor specified extensions. The Message Extension is a structure containing a Vendor Identification, Criticality Indicator, and vendor-specific extensions. The Vendor Identification must be a text string that uniquely identifies the vendor, allowing a client to determine if the extension can be parsed and understood. If a client or server receives a protocol message containing a message extension that it does not understand, its actions depend on the Criticality Indicator. If the indicator is True (Critical), and the receiver does not understand the extension, the receiver must reject the entire message. If the indicator is False (Non-Critical), and the receiver does not understand the extension, the receiver may process the rest of the message as if the extension were not present.

	Object
	Encoding
	Required Field

	Message Extension
	Structure
	No

	Vendor Identification
	Text String
	Yes

	Criticality Indicator
	Boolean
	Yes

	Vendor Extension
	Structure
	Yes

7 Message Format

Messages contain the following objects and fields. All fields must appear in the order specified.

7.1 Message Structure
	Object
	Encoding
	Required Field

	Request Message
	Structure
	Yes

	Request Header
	Structure
	Yes

	Batch Item
	Structure
	Yes, May be repeated

	Object
	Encoding
	Required Field

	Response Message
	Structure
	Yes

	Response Header
	Structure
	Yes

	Batch Item
	Structure
	Yes, May be repeated

7.2 Synchronous Operations
	Synchronous Request Header

	Object or Field
	Required in Message
	Comment

	Request Header
	Yes
	Structure

	Protocol Version
	Yes
	

	Maximum Response Size
	No
	

	Authentication
	No
	

	Batch Error Continuation Option
	No
	If omitted, Stop is assumed

	Batch Order Option
	No
	If omitted, False is assumed

	Time Stamp
	No
	

	Batch Count
	Yes
	

	Synchronous Request Batch Item

	Object or Field
	Required in Message
	Comment

	Batch Item
	Yes
	Structure

	Operation
	Yes
	

	Unique Message ID
	No
	Required if Batch Count > 1

	Request Payload
	Yes
	Structure, contents depend on the Operation

	Message Extension
	No
	

	Synchronous Response Header

	Object or Field
	Required in Message
	Comment

	Response Header
	Yes
	Structure

	Protocol Version
	Yes
	

	Time Stamp
	Yes
	

	Batch Count
	Yes
	

	Synchronous Response Batch Item

	Object or Field
	Required in Message
	Comment

	Batch Item
	Yes
	Structure

	Operation
	Yes, if not a failure
	

	Unique Message ID
	No
	Required if Batch Count > 1

	Result Status
	Yes
	

	Result Reason
	No
	Only present, if Result Status is not Success

	Result Message
	No
	Only present, if Result Status is not Success

	Response Payload
	Yes, if not a failure
	Structure, contents depend on the Operation

	Message Extension
	No
	

7.3 Asynchronous Operations
If the client is capable of accepting asynchronous responses, it may set the Asynchronous Indicator in the header of a batched request. The batched responses may contain a mixture of synchronous and asynchronous responses.

	Asynchronous Request Header

	Object or Field
	Required in Message
	Comment

	Request Header
	Yes
	Structure

	Protocol Version
	Yes
	

	Maximum Response Size
	No
	

	Asynchronous Indicator
	Yes
	Must be set to True

	Authentication
	No
	

	Batch Error Continuation Option
	No
	If omitted, Stop is assumed

	Batch Order Option
	No
	If omitted, False is assumed

	Time Stamp
	No
	

	Batch Count
	Yes
	

	Asynchronous Request Batch Item

	Object or Field
	Required in Message
	Comment

	Batch Item
	Yes
	Structure

	Operation
	Yes
	

	Unique Message ID
	No
	Required if Batch Count > 1

	Request Payload
	Yes
	Structure, contents depend on the Operation

	Message Extension
	No
	

	Asynchronous Response Header

	Object or Field
	Required in Message
	Comment

	Response Header
	Yes
	Structure

	Protocol Version
	Yes
	

	Time Stamp
	Yes
	

	Batch Count
	Yes
	

	Asynchronous Response Batch Item

	Object or Field
	Required in Message
	Comment

	Batch Item
	Yes
	Structure

	Operation
	Yes, if not a failure
	

	Unique Message ID
	No
	Required if Batch Count > 1

	Result Status
	Yes
	

	Result Reason
	No
	Only present, if Result Status is not Pending or Success

	Result Message
	No
	Only present, if Result Status is not Pending or Success

	Asynchronous Correlation Value
	Yes
	Only present, if Result Status is Pending

	Response Payload
	Yes, if not a failure
	Structure, contents depend on the Operation

	Message Extension
	No
	

8 Authentication
The mechanisms used to authenticate the client to the server and the server to the client are not part of the message definitions, and are external to the protocol. The Authentication field contained in Request Headers is used to identify the client and to provide linkage between this identification and the external authentication mechanism.

The Usage Guide describes authentication profiles appropriate to this protocol as well as the relationship of those mechanisms to the credentials optionally included in the Authentication field. The authentication profiles described are:

· SSL/TLS authentication. If the transport protocol uses a normal TCP stream, then that stream should use an SSL/TLS encryption layer and the client and server authentication features must be enabled. The Credential object contained in the Authentication field in all request messages will contain the client's certificate. The server should use this certificate to identify the client for policy enforcement purposes, and should verify that this certificate matches the one used for SSL/TLS authentication.

· HTTPS authentication. If the transport protocol is HTTP over TCP, then the HTTPS protocol should be used, and the client and server authentication features enabled. The contents and use of the Credential object are the same as in the normal TCP example above.

All server implementations should, at least, support the SSL/TLS and HTTPS profiles described in the Usage Guide.

Other mechanisms, such as Kerberos, are potentially usable, with the identity established in the mechanism, such as the Kerberos token, expressed as the Credential object. Profiles for these mechanisms currently are not described in the Usage Guide.

9 Message Encoding

To support different transport protocols and different client capabilities, a number of message-encoding mechanisms are supported.

9.1 TTLV Encoding
In order to minimize the resource impact on potentially low-function clients, one encoding mechanism to be used for protocol messages is a simplified TTLV (Tag, Type, Length, Value) scheme.

The scheme is designed to minimize the CPU cycle and memory requirements of clients that must encode or decode protocol messages. Minimizing bandwidth over the transport mechanism is considered to be of lesser importance.

9.1.1 TTLV Encoding Fields

Every Data object encoded by the TTLV scheme consists of 4 items, in order:

9.1.1.1 Item Tag

An Item Tag is a 32-bit binary unsigned integer, transmitted big endian, which contains a number that designates the specific Protocol Field or Object that the TTLV object represents. To ease debugging, and to ensure that malformed messages are detected more easily, all tags contain the value 42 in hex as the high order (first) byte. Tags defined by this specification contain hex 00 in the second byte. Extensions, which are permitted, but not defined in this specification, contain the value 01 hex in the second byte. A list of defined Item Tags is in Section 9.1.3.1 .

9.1.1.2 Item Type

An Item Type is a byte containing a coded value which indicates the data type of the data object. The allowed values are:

	Data Type
	Coded Value in Hex

	 Integer
	01

	 Long Integer
	02

	 Big Integer
	03

	 Enumeration
	04

	 Boolean
	05

	 Text String
	06

	 Octet String
	07

	Date-Time
	08

	Interval
	09

	 Structure
	80

9.1.1.3 Item Length

An Item Length is a 32-bit binary integer, transmitted big-endian, containing the number of bytes in the Item Value.

Allowed values are:

	Data Type
	Length

	 Integer
	4

	 Long Integer
	8

	 Big Integer
	Varies

	 Enumeration
	4

	 Boolean
	1

	 Text String
	Varies

	 Octet String
	Varies

	 Date-Time
	8

	 Interval
	4

	 Structure
	Varies

If the Item Type is a Big Integer, Text String or Octet String, then the Item Length must be the number of bytes in the string. Strings must not be null-terminated. If the Item Type is a structure, then the Item Length is the total length of all of the sub-items contained in the structure.

9.1.1.4 Item Value

The item value is a sequence of bytes containing the value of the data item, depending on the type:

· Integers are encoded as 4-byte long (32 bit) binary signed numbers in 2's complement notation, transmitted big-endian.

· Long Integers are encoded as 8-byte long (64 bit) binary signed numbers in 2's complement notation, transmitted big-endian.

· Big Integers are encoded as a sequence of 8-bit bytes, in 2's complement notation, transmitted big-endian.

· Enumerations are encoded as 4-byte long (32 bit) binary unsigned numbers transmitted big-endian.

· Booleans are encoded as a byte, which must either contain the binary value 00000000, indicating the boolean value False, or the binary value 00000001, transmitted big-endian, indicating the boolean value True. Values other than 00000000 or 00000001 are to be interpreted as True, but are deprecated.

· Text Strings are sequences of bytes encoding character values according to the UTF-8 encoding standard. There must be no null-termination at the end of such strings.

· Octet Strings are sequences of bytes containing individual unspecified 8 bit binary values.

· Date-Time values are encoded as 8-byte long (64 bit) binary signed numbers, transmitted big-endian. They are POSIX Time values (described in IEEE Standard 1003.1) extended to a 64 bit value to eliminate the “Year 2038 problem”. The value is expressed as the number of seconds from a time epoch, which is 00:00:00 GMT January 1st, 1970. This value has a resolution of 1 second. All Date-Time values are expressed as UTC values.

· Intervals are encoded as 4-byte long (32 bit) binary unsigned numbers, transmitted big-endian. They have a resolution of 1 second.

· Structure Values are encoded as the concatenated encodings of the elements of the structure. All structures defined in this specification must have all of their fields encoded in the order in which they appear in their respective structure descriptions.

9.1.2 Examples

These examples are assumed to be encoding a Protocol Object whose tag is 42000020. The examples are shown as a sequence of bytes in hexadecimal notation:

· An Integer containing the decimal value 8:

42 00 00 20 | 01 | 00 00 00 04 | 00 00 00 08

· A Long Integer containing the decimal value 123456789000000000:

42 00 00 20 | 02 | 00 00 00 08 | 01 B6 9B 4B A5 74 92 00

· A Big Integer containing the decimal value 1234567890000000000000000000:

42 00 00 20 | 03 | 00 00 00 0C | 03 FD 35 EB 6B C2 DF 46 18 08 00 00

· An Enumeration with value 255:

42 00 00 20 | 04 | 00 00 00 04 | 00 00 00 FF

· A Boolean with the value True:

42 00 00 20 | 05 | 00 00 00 01 | 01

· A Text String:

42 00 00 20 | 06 | 00 00 00 0B | 48 65 6C 6C 6F 20 57 6F 72 6C 64

· An Octet String:

42 00 00 20 | 07 | 00 00 00 03 | 01 02 03

· A Date-Time, containing the value for Friday, March 14, 2008, 11:56:40 GMT:

42 00 00 20 | 08 | 00 00 00 08 | 00 00 00 00 47 DA 67 F8

· An Interval, containing the value for 10 days:

42 00 00 20 | 09 | 00 00 00 04 | 00 0D 2F 00

· A Structure containing an Enumeration, value 254, followed by an Integer, value 255, having tags 42000004 and 42000005 respectively:

42 00 00 20 | 80 | 00 00 00 1A | 42 00 00 04 | 04 | 00 00 00 04 | 00 00 00 FE | 42 00 00 05 | 01 | 00 00 00 04 | 00 00 00 FF

9.1.3 Defined Values
This section specifies the values that are defined by this specification. In all cases where an extension mechanism is allowed, this extension mechanism may only be used for communication between parties that have pre-agreed understanding of the specific extensions.

9.1.3.1 Tags

The following table defines the tag values for the objects and primitive data values for the protocol messages.

	Tag

	Object
	Tag Value

	Activation Date
	42000001

	Application Identifier
	42000002

	Application Name Space
	42000003

	Application Specific Identification
	42000004

	Archive Date
	42000005

	Asynchronous Correlation Value
	42000006

	Asynchronous Indicator
	42000007

	Attribute
	42000008

	Attribute Index
	42000009

	Attribute Name
	4200000A

	Attribute Value
	4200000B

	Authentication
	4200000C

	Batch Count
	4200000D

	Batch Error Continuation Option
	4200000E

	Batch Item
	4200000F

	Batch Order Option
	42000010

	Block Cipher Mode
	42000011

	Cancellation Result
	42000012

	Certificate
	42000013

	Certificate Issuer
	42000014

	Certificate Request
	42000015

	Certificate Request Type
	42000016

	Certificate Subject
	42000017

	Certificate Subject Alternative Name
	42000018

	Certificate Subject Distinguished Name
	42000019

	Certificate Type
	4200001A

	Certificate Value
	4200001B

	Common Template-Attribute
	4200001C

	Compromise Date
	4200001D

	Compromise Occurrence Date
	4200001E

	Contact Information
	4200001F

	Credential
	42000020

	Credential Type
	42000021

	Credential Value
	42000022

	Criticality Indicator
	42000023

	CRT Coefficient
	42000024

	Cryptographic Algorithm
	42000025

	Cryptographic Length
	42000026

	Cryptographic Parameters
	42000027

	Cryptographic Usage Mask
	42000028

	Custom Attribute
	42000029

	D
	4200002A

	Deactivation Date
	4200002B

	Derivation Data
	4200002C

	Derivation Method
	4200002D

	Derivation Parameters
	4200002E

	Destroy Date
	4200002F

	Digest
	42000030

	Digest Value
	42000031

	Encryption Key Information
	42000032

	G
	42000033

	Hashing Algorithm
	42000034

	Initial Date
	42000035

	Initialization Vector
	42000036

	Issuer
	42000037

	Iteration Count
	42000038

	IV/Counter/Nonce
	42000039

	J
	4200003A

	Key
	4200003B

	Key Block
	4200003C

	Key Material
	4200003D

	Key Part Identifier
	4200003E

	Key Value
	4200003F

	Key Value Type
	42000040

	Key Wrapping Data
	42000041

	Key Wrapping Specification
	42000042

	Last Changed Date
	42000043

	Lease Time
	42000044

	Link
	42000045

	Link Type
	42000046

	Linked Object Identifier
	42000047

	MAC/Signature
	42000048

	MAC/Signature Key Information
	42000049

	Maximum Items
	4200004A

	Maximum Response Size
	4200004B

	Message Extension
	4200004C

	Modulus
	4200004D

	Name
	4200004E

	Name Type
	4200004F

	Name Value
	42000050

	Object Group
	42000051

	Object Type
	42000052

	Offset
	42000053

	Opaque Data Type
	42000054

	Opaque Data Value
	42000055

	Opaque Object
	42000056

	Operation
	42000057

	Operation Policy Name
	42000058

	P
	42000059

	Padding Method
	4200005A

	Policy Template
	4200005B

	Prime Exponent P
	4200005C

	Prime Exponent Q
	4200005D

	Prime Field Size
	4200005E

	Private Exponent
	4200005F

	Private Key
	42000060

	Private Key Template-Attribute
	42000061

	Private Key Unique Identifier
	42000062

	Process Start Date
	42000063

	Protect Stop Date
	42000064

	Protocol Version
	42000065

	Protocol Version Major
	42000066

	Protocol Version Minor
	42000067

	Public Exponent
	42000068

	Public Key
	42000069

	Public Key Template-Attribute
	4200006A

	Public Key Unique Identifier
	4200006B

	Put Function
	4200006C

	Q
	4200006D

	Q String
	4200006E

	Query Function
	4200006F

	Recommended Curve
	42000070

	Replaced Unique Identifier
	42000071

	Request Header
	42000072

	Request Message
	42000073

	Request Payload
	42000074

	Response Header
	42000075

	Response Message
	42000076

	Response Payload
	42000077

	Result Message
	42000078

	Result Reason
	42000079

	Result Status
	4200007A

	Revocation Message
	4200007B

	Revocation Reason
	4200007C

	Revocation Reason Code
	4200007D

	Role Type
	4200007E

	Salt
	4200007F

	Secret Data
	42000080

	Secret Data Type
	42000081

	Serial Number
	42000082

	Server Information
	42000083

	Split Key
	42000084

	Split Key Method
	42000085

	Split Key Parts
	42000086

	Split Key Threshold
	42000087

	State
	42000088

	Storage Status Mask
	42000089

	Symmetric Key
	4200008A

	Template
	4200008B

	Template Name
	4200008C

	Template-Attribute
	4200008D

	Time Stamp
	4200008E

	Unique Identifier
	4200008F

	Unique Message ID
	42000090

	Usage Limits
	42000091

	Usage Limits Byte Count
	42000092

	Usage Limits Object Count
	42000093

	Usage Limits Total Bytes
	42000094

	Usage Limits Total Objects
	42000095

	Validity Date
	42000096

	Validity Indicator
	42000097

	Vendor Extension
	42000098

	Vendor Identification
	42000099

	Wrapping Method
	4200009A

	X
	4200009B

	Y
	4200009C

	Extensions
	4201XXXX

9.1.3.2 Enumerations

The following tables define the values for enumerated lists.

9.1.3.2.1 Credential Type Enumeration
	Credential Type

	Name
	Value

	Username & Password
	00000001

	Token
	00000002

	Biometric Measurement
	00000003

	Certificate
	00000004

	Extensions
	8XXXXXXX

9.1.3.2.2 Key Value Type Enumeration
	Key Value Type

	Name
	Value

	Raw
	00000001

	Opaque
	00000002

	PKCS#1
	00000003

	PKCS#8
	00000004

	Transparent Symmetric Key
	00000005

	Transparent DSA Private Key
	00000006

	Transparent DSA Public Key
	00000007

	Transparent RSA Private Key
	00000008

	Transparent RSA Public Key
	00000009

	Transparent DH Private Key
	0000000A

	Transparent DH Public Key
	0000000B

	Transparent ECDSA Private Key
	0000000C

	Transparent ECDSA Public Key
	0000000D

	Transparent ECDH Private Key
	0000000E

	Transparent ECDH Public Key
	0000000F

	Extensions
	8XXXXXXX

9.1.3.2.3 Wrapping Method Enumeration
	Wrapping Method

	Name
	Value

	Encrypt
	00000001

	MAC/sign
	00000002

	Encrypt then MAC/sign
	00000003

	MAC/sign then encrypt
	00000004

	TR-31
	00000005

	Vendor specific
	00000006

	Extensions
	8XXXXXXX

9.1.3.2.4 Recommended Curves for ECDSA and ECDH
	Recommended Curve Enumeration

	Name
	Value

	P-192
	00000001

	K-163
	00000002

	B-163
	00000003

	P-224
	00000004

	K-233
	00000005

	B-233
	00000006

	P-256
	00000007

	K-283
	00000008

	B-283
	00000009

	P-384
	0000000A

	K-409
	0000000B

	B-409
	0000000C

	P-521
	0000000D

	K-571
	0000000E

	B-571
	0000000F

	Extensions
	8XXXXXXX

9.1.3.2.5 Certificate Type Enumeration
	Certificate Type

	Name
	Value

	X.509
	00000001

	PGP
	00000002

	Extensions
	8XXXXXXX

9.1.3.2.6 Split Key Method Enumeration
	Split Key Method

	Name
	Value

	XOR
	00000001

	Polynomial Sharing GF(216)
	00000002

	Polynomial Sharing Prime Field
	00000003

	Extensions
	8XXXXXXX

9.1.3.2.7 Secret Data Type Enumeration
	Secret Data Type

	Name
	Value

	Password
	00000001

	Seed
	00000002

	Extensions
	8XXXXXXX

9.1.3.2.8 Opaque Data Type Enumeration
	Opaque Data Type

	Name
	Value

	Extensions
	8XXXXXXX

9.1.3.2.9 Name Type Enumeration
	Name Type

	Name
	Value

	Uninterpreted Text String
	00000001

	URI
	00000002

	Extensions
	8XXXXXXX

9.1.3.2.10 Object Type Enumeration
	Object Type

	Name
	Value

	Certificate
	00000001

	Symmetric Key
	00000002

	Public Key
	00000003

	Private Key
	00000004

	Split Key
	00000005

	Template
	00000006

	Policy Template
	00000007

	Secret Data
	00000008

	Opaque Object
	00000009

	Extensions
	8XXXXXXX

9.1.3.2.11 Cryptographic Algorithm Enumeration
	Cryptographic Algorithm

	Name
	Value

	DES
	00000001

	3DES
	00000002

	AES
	00000003

	RSA
	00000004

	DSA
	00000005

	ECDSA
	00000006

	HMAC-SHA1
	00000007

	HMAC-SHA256
	00000008

	HMAC-SHA512
	00000009

	HMAC-MD5
	0000000A

	DH
	0000000B

	ECDH
	0000000C

	Extensions
	8XXXXXXX

9.1.3.2.12 Block Cipher Mode Enumeration
	Block Cipher Mode

	Name
	Value

	CBC
	00000001

	ECB
	00000002

	PCBC
	00000003

	CFB
	00000004

	OFB
	00000005

	CTR
	00000006

	CMAC
	00000007

	CCM
	00000008

	GCM
	00000009

	CBC-MAC
	0000000A

	AESKeyWrap
	0000000B

	Extensions
	8XXXXXXX

9.1.3.2.13 Padding Method Enumeration
	Padding Method

	Name
	Value

	None
	00000001

	OAEP
	00000002

	PKCS5
	00000003

	SSL3
	00000004

	Zeros
	00000005

	ANSI X9.23
	00000006

	ISO 10126
	00000007

	PKCS1 v1.5
	00000008

	Extensions
	8XXXXXXX

9.1.3.2.14 Hashing Algorithm Enumeration
	Hashing Algorithm

	Name
	Value

	MD2
	00000001

	MD4
	00000002

	MD5
	00000003

	SHA-1
	00000004

	SHA-256
	00000005

	SHA-384
	00000006

	SHA-512
	00000007

	SHA-224
	00000008

	Extensions
	8XXXXXXX

9.1.3.2.15 Role Type Enumeration
	Role Type

	Name
	Value

	ZMK
	00000001

	ZPK
	00000002

	MAC
	00000003

	CVK
	00000004

	CSC
	00000005

	PVKIBM
	00000006

	PVKPVV
	00000007

	MKCVC
	00000008

	MKSMI
	00000009

	MKSMC
	0000000A

	MKIDN
	0000000B

	MKAC
	0000000C

	MKCAP
	0000000D

	BDK
	0000000E

	Extensions
	8XXXXXXX

9.1.3.2.16 State Enumeration
	State

	Name
	Value

	Pre-Active
	00000001

	Active
	00000002

	Deactivated
	00000003

	Compromised
	00000004

	Destroyed
	00000005

	Destroyed Compromised
	00000006

	Extensions
	8XXXXXXX

9.1.3.2.17 Revocation Reason Code Enumeration
	Revocation Reason Code

	Name
	Value

	Key Compromise
	00000001

	CA Compromise
	00000002

	Affiliation Changed
	00000003

	Superseded
	00000004

	Cessation of Operation
	00000005

	Certificate Hold
	00000006

	Privilege Withdrawn
	00000007

	Revoked By creator
	00000008

	Revoked By Administrator
	00000009

	Extensions
	8XXXXXXX

9.1.3.2.18 Link Type Enumeration
	Link Type

	Name
	Value

	Certificate Link
	00000101

	Public Key Link
	00000102

	Private Key Link
	00000103

	Derivation Base Object Link
	00000104

	Derived Key Link
	00000105

	Replacement Object Link
	00000106

	Replaced Object Link
	00000107

	Extensions
	8XXXXXXX

Note: Link Types start at 101 to avoid any confusion with Object Types.

9.1.3.2.19 Derivation Method Enumeration
	Derivation Method

	Name
	Value

	PBKDF2
	00000001

	HASH
	00000002

	HMAC
	00000003

	ENCRYPT
	00000004

	NIST800-108-C
	00000005

	NIST800-108-F
	00000006

	NIST800-108-DPI
	00000007

	Extensions
	8XXXXXXX

9.1.3.2.20 Certificate Request Type Enumeration
	Certificate Request Type

	Name
	Value

	PCKS#10
	00000001

	PEM
	00000002

	PGP
	00000003

	Extensions
	8XXXXXXX

9.1.3.2.21 Validity Indicator Enumeration
	Validity Indicator

	Name
	Value

	Valid
	00000001

	Invalid
	00000002

	Unknown
	00000003

	Extensions
	8XXXXXXX

9.1.3.2.22 Query Function Enumeration
	Query Function

	Name
	Value

	Query Operations
	00000001

	Query Objects
	00000002

	Query Server Information
	00000003

	Extensions
	8XXXXXXX

9.1.3.2.23 Cancellation Result Enumeration
	Cancellation Result

	Name
	Value

	Canceled
	00000001

	Unable to Cancel
	00000002

	Completed
	00000003

	Failed
	00000004

	Unavailable
	00000005

	Extensions
	8XXXXXXX

9.1.3.2.24 Put Function Enumeration
	Put Function

	Name
	Value

	New
	00000001

	Replace
	00000002

	Extensions
	8XXXXXXX

9.1.3.2.25 Operations Enumeration
	Operation

	Name
	Value

	Create
	00000001

	Create Key Pair
	00000002

	Register
	00000003

	Re-key
	00000004

	Derive Key
	00000005

	Certify
	00000006

	Re-certify
	00000007

	Locate
	00000008

	Check
	00000009

	Get
	0000000A

	Get Attributes
	0000000B

	Get Attribute List
	0000000C

	Add Attribute
	0000000D

	Modify Attribute
	0000000E

	Delete Attribute
	0000000F

	Obtain Lease
	00000010

	Get Usage Allocation
	00000011

	Activate
	00000012

	Revoke
	00000013

	Destroy
	00000014

	Archive
	00000015

	Recover
	00000016

	Validate
	00000017

	Query
	00000018

	Cancel
	00000019

	Poll
	0000001A

	Notify
	0000001B

	Put
	0000001C

	Extensions
	8XXXXXXX

9.1.3.2.26 Result Status Enumeration
	Result Status

	Name
	Value

	Success
	00000000

	Operation Failed
	00000001

	Operation Pending
	00000002

	Operation Undone
	00000003

	Extensions
	8XXXXXXX

9.1.3.2.27 Result Reason Enumeration
	Result Reason

	Name
	Value

	Item Not Found
	00000001

	Response Too Large
	00000002

	Authentication Not Successful
	00000003

	Invalid Message
	00000004

	Operation Not Supported
	00000005

	Missing Data
	00000006

	Invalid Field
	00000007

	Feature Not Supported
	00000008

	Operation Canceled By Requester
	00000009

	Cryptographic Failure
	0000000A

	Illegal Operation
	0000000B

	Permission Denied
	0000000C

	Object archived
	0000000D

	General Failure
	00000100

	Extensions
	8XXXXXXX

9.1.3.2.28 Batch Error Continuation Enumeration
	Batch Error Continuation

	Name
	Value

	Continue
	00000001

	Stop
	00000002

	Undo
	00000003

	Extensions
	8XXXXXXX

9.1.3.3 Bit Masks

9.1.3.3.1 Cryptographic Usage Mask Values
	Cryptographic Usage Mask

	Name
	Value

	Sign
	00000001

	Verify
	00000002

	Encrypt
	00000004

	Decrypt
	00000008

	Wrap
	00000010

	Unwrap
	00000020

	Export
	00000040

	MAC
	00000080

	Derive Key
	00000100

	Content Commitment

(Non Repudiation)
	00000200

	Key Agreement
	00000400

	Certificate Sign
	00000800

	CRL Sign
	00001000

	MAC Verify
	00002000

	Extensions
	XXXX0000

This list takes into consideration values which may appear in the Key Usage extension in an X.509 certificate. However, the list does not consider the more fined grained usages which may appear in the Extended Key Usage extension.

9.1.3.3.2 Storage Status Mask
	Storage Status Values

	Name
	Value

	On-line storage
	00000001

	Archival storage
	00000002

	Extensions
	XXXXXXX0

9.2 XML Encoding

An XML Encoding has not yet been defined.

10 Transport

Transport protocols are not part of the message definitions, and are external to this protocol. The Usage Guide, however, describes two profiles for implementation of this protocol over secure transport protocols, namely:

· SSL/TLS over TCP. This profile describes the implementation of this protocol using SSL/TLS encryption, with client and server authentication features enabled, over a normal TCP stream.

· HTTPS over TCP. This profile describes the implementation of this protocol using HTTPS, with client and server authentication features enabled, over a normal TCP stream.

To ensure a base level of interoperability, all server implementations should, at least, support the SSL/TLS and HTTPS transport protocols as described in the Usage Guide.

11 Error Handling

This section details the specific Result Reasons that should be returned for errors detected. Note that this is not an exhaustive list of possible errors for each operation (allowing other Result Reasons to be returned if an implementation needs to do so).

11.1 General

These errors may occur when any protocol message is received by the server.

	Error Definition
	Action
	Result Reason

	Protocol major version mismatch
	Response message containing a header and a Batch Item without Operation but with the Result Status field set to Operation Failed
	Invalid Message

	Error parsing batch item or payload within batch item (required fields missing, etc.)
	Batch item fails, Result Status is Operation Failed
	Invalid Message

	The same field is contained in a header/batch item/payload more than once
	Result Status is Operation Failed
	Invalid Message

	Same major version, different minor versions (client is newer), unknown fields/fields the server does not understand
	Ignore unknown fields, process rest normally
	N/A

	Same major & minor version, unknown field
	Result Status is Operation Failed
	Invalid Field

	Client is not allowed to perform the specified operation
	Result Status is Operation Failed
	Permission Denied

	Operation cannot be completed synchronously and client does not support asynchronous requests
	Result Status is Operation Failed
	Operation Not Supported

	Maximum Response Size has been exceeded
	Result Status is Operation Failed
	Response Too Large

11.2 Create

	Error Definition
	Result Status
	Result Reason

	Object Type is not recognized
	Operation Failed
	Invalid Field

	Templates that do not exist are given in request
	Operation Failed
	Item Not Found

	Incorrect attribute value(s) specified (e.g. initial date 5 years ago)
	Operation Failed
	Invalid Field

	Error creating cryptographic object (key material generation issue)
	Operation Failed
	Cryptographic Failure

	Trying to create a new object with the same Name attribute value as an existing object
	Operation Failed
	Invalid Field

11.3 Create Key Pair

	Error Definition
	Result Status
	Result Reason

	Templates that do not exist are given in request
	Operation Failed
	Item Not Found

	Incorrect attribute value(s) specified
	Operation Failed
	Invalid Field

	Error creating cryptographic object (key material generation issue)
	Operation Failed
	Cryptographic Failure

	Trying to create a new object with the same Name attribute value as an existing object
	Operation Failed
	Invalid Field

	Required field(s) missing
	Operation Failed
	Invalid Message

11.4 Register

	Error Definition
	Result Status
	Result Reason

	Object Type is not recognized
	Operation Failed
	Invalid Field

	Object Type does not match type of cryptographic object provided
	Operation Failed
	Invalid Field

	Templates that do not exist are given in request
	Operation Failed
	Item Not Found

	Incorrect attribute value(s) specified (e.g. initial date 5 years ago)
	Operation Failed
	Invalid Field

	Trying to register a new object with the same Name attribute value as an existing object
	Operation Failed
	Invalid Field

11.5 Re-key

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object specified cannot be re-keyed (not a symmetric key or the permissions do not allow it)
	Operation Failed
	Permission Denied

	Offset field cannot be specified at the same time as any of the Activation Date, Process Start Date, Protect Stop Date, or Deactivation Date attributes
	Operation Failed
	Invalid Message

	Cryptographic error during re-key
	Operation Failed
	Cryptographic Failure

	Object is archived
	Operation Failed
	Object archived

11.6 Derive Key

	Error Definition
	Result Status
	Result Reason

	One or more of the objects specified do not exist
	Operation Failed
	Item Not Found

	One or more of the objects specified are not of the correct type
	Operation Failed
	Invalid Field

	Templates that do not exist are given in request
	Operation Failed
	Item Not Found

	Invalid Derivation Method
	Operation Failed
	Invalid Field

	Invalid Derivation Parameters
	Operation Failed
	Invalid Field

	Ambiguous derivation data provided both with Derivation Data and Secret Data object.
	Operation Failed
	Invalid Message

	Incorrect attribute value(s) specified (e.g. initial date 5 years ago)
	Operation Failed
	Invalid Field

	One or more of the specified objects cannot be used to derive a new key
	Operation Failed
	Invalid Field

	Trying to derive a new key with the same Name attribute value as an existing object
	Operation Failed
	Invalid Field

	One or more of the objects is archived
	Operation Failed
	Object archived

11.7 Certify

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object specified cannot be certified (not a public key or the permissions do not allow it)
	Operation Failed
	Permission Denied

	The Certificate Request does not contain a signed certificate request of the specified Certificate Request Type
	Operation Failed
	Invalid Field

	Server does not support operation
	Operation Failed
	Operation Not Supported

	Object is archived
	Operation Failed
	Object archived

11.8 Re-certify

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object specified cannot be certified (not a certificate or the permissions do not allow it)
	Operation Failed
	Permission Denied

	The Certificate Request does not contain a signed certificate request of the specified Certificate Request Type
	Operation Failed
	Invalid Field

	Server does not support operation
	Operation Failed
	Operation Not Supported

	Offset field cannot be specified at the same time as any of the Activation Date or Deactivation Date attributes
	Operation Failed
	Invalid Message

	Object is archived
	Operation Failed
	Object archived

11.9 Locate

	Error Definition
	Result Status
	Result Reason

	Non-existing attributes, attributes that the server does not understand or templates that do not exist are given in request
	Operation Failed
	Invalid Field

11.10 Check

	Error Definition
	Result Status
	Result Reason

	Object does not exist
	Operation Failed
	Item Not Found

	Object is archived
	Operation Failed
	Object archived

11.11 Get

	Error Definition
	Result Status
	Result Reason

	Object does not exist
	Operation Failed
	Item Not Found

	Wrapping key does not exist
	Operation Failed
	Item Not Found

	Object with Wrapping Key ID exists but it is not a key
	Operation Failed
	Illegal Operation

	Object with Wrapping Key ID exists but it cannot be used for wrapping
	Operation Failed
	Permission Denied

	Object with MAC/Signature Key ID exists but it is not a key
	Operation Failed
	Illegal Operation

	Object with MAC/Signature Key ID exists but it cannot be used for MAc'ing/signing
	Operation Failed
	Permission Denied

	No cryptographic material associated with object
	Operation Failed
	Illegal Operation

	Cryptographic Parameters associated with object do not exist or do not match with those provided in the Encryption Key Information and/or Signature Key Information
	Operation Failed
	Item Not Found

	Object is archived
	Operation Failed
	Object archived

11.12 Get Attributes

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object is archived
	Operation Failed
	Object archived

11.13 Get Attribute List

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object is archived
	Operation Failed
	Object archived

11.14 Add Attribute

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Attempt to add read-only attribute
	Operation Failed
	Permission Denied

	The specified attribute already exists
	Operation Failed
	Illegal Operation

	New attribute contains index
	Operation Failed
	Invalid Field

	Trying to add a Name attribute with the same value that another object already has
	Operation Failed
	Illegal Operation

	Object is archived
	Operation Failed
	Object archived

11.15 Modify Attribute

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	A specified attribute does not exist (must first be added)
	Operation Failed
	Invalid Field

	An Attribute Index is specified but no matching instance exists.
	Operation Failed
	Item Not Found

	The specified attribute is read-only
	Operation Failed
	Permission Denied

	Trying to set the Name attribute value to something that another object already has
	Operation Failed
	Illegal Operation

	Object is archived
	Operation Failed
	Object archived

11.16 Delete Attribute

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Attempt to delete read-only/required attribute
	Operation Failed
	Permission Denied

	Attribute index is specified but attribute does not have multiple instances and therefore no index
	Operation Failed
	Item Not Found

	No attribute with specified name exists
	Operation Failed
	Item Not Found

	Object is archived
	Operation Failed
	Object archived

11.17 Obtain Lease

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	The server determines that a new lease should not be issued for the specified cryptographic object
	Operation Failed
	Permission Denied

	Object is archived
	Operation Failed
	Object archived

11.18 Get Usage Allocation

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object has no Usage Limits attribute or object cannot be used for protection purposes
	Operation Failed
	Illegal Operation

	Both Usage Limits Byte Count and Usage Limits Object Count fields specified
	Operation Failed
	Invalid Message

	Neither Byte Count or Object Count is specified
	Operation Failed
	Invalid Message

	A usage type (Byte Count or Object Count) is specified in the request, but the usage allocation for the object can only be given for the other type
	Operation Failed
	Operation Not Supported

	Object is archived
	Operation Failed
	Object archived

11.19 Activate

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Unique Identifier specifies template, policy template or other object that cannot be revoked
	Operation Failed
	Illegal Operation

	Object is not in Pre-Active state
	Operation Failed
	Permission Denied

	Object is archived
	Operation Failed
	Object archived

11.20 Revoke

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Revocation Reason is not recognized
	Operation Failed
	Invalid Field

	Unique Identifier specifies template, policy template or other object that cannot be revoked
	Operation Failed
	Illegal Operation

	Object is archived
	Operation Failed
	Object archived

11.21 Destroy

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object exists but has already been destroyed
	Operation Failed
	Permission Denied

	Object is not in Deactivated state
	Operation Failed
	Permission Denied

	Object is archived
	Operation Failed
	Object archived

11.22 Archive

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object is already archived
	Operation Failed
	Object archived

11.23 Recover

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

11.24 Validate

	Error Definition
	Result Status
	Result Reason

	The combination of Certificate Objects and Unique Identifiers do not specify a certificate list
	Operation Failed
	Invalid Message

	One or more of the objects is archived
	Operation Failed
	Object archived

11.25 Query

N/A

11.26 Cancel

N/A

11.27 Poll

	Error Definition
	Result Status
	Result Reason

	No outstanding operation with the specified Asynchronous Correlation Value exists
	Operation Failed
	 Item Not Found

11.28 Batch Items

These errors may occur when a protocol message with one or more batch items is processed by the server. If a message with one or more than a single batch item was parsed correctly, the response message should include response(s) to the batch item(s) in the request according to the table below.

	Error Definition
	Result Status
	Result Reason

	Processing of batch item fails with Batch Error Continuation Option set to Stop
	Batch item fails. Responses to batch items that have already been processed are returned normally. Responses to batch items that have not been processed are not returned.
	See tables above, referring to the operation being performed in the batch item that failed

	Processing of batch item fails with Batch Error Continuation Option set to Continue
	Batch item fails. Responses to other batch items are returned normally.
	See tables above, referring to the operation being performed in the batch item that failed

	Processing of batch item fails with Batch Error Continuation Option set to Undo
	Batch item fails. Batch items that had been processed have been undone and their responses are returned with Undone result status.
	See tables above, referring to the operation being performed in the batch item that failed

12 Attribute Cross-reference

The following table of Attribute names indicates the Managed Object(s) for which each attribute applies:

	Attribute Name
	Managed Object

	
	Certificate
	Symmetric Key
	Public Key
	Private Key
	Split Key
	Template
	Policy Template
	Secret Data
	Opaque Object

	Unique Identifier
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Name
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Object Type
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Cryptographic Algorithm
	x
	x
	x
	x
	x
	
	
	
	

	Cryptographic Length
	x
	x
	x
	x
	x
	
	
	
	

	Cryptographic Parameters
	x
	x
	x
	x
	x
	
	
	
	

	Certificate Type
	x
	
	
	
	
	
	
	
	

	Certificate Issuer
	x
	
	
	
	
	
	
	
	

	Certificate Subject
	x
	
	
	
	
	
	
	
	

	Digest
	x
	x
	x
	x
	x
	
	
	
	

	Operation Policy Name
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Cryptographic Usage Mask
	x
	x
	x
	x
	x
	
	
	
	

	Lease Time
	x
	x
	x
	x
	x
	
	
	x
	x

	Usage Limits
	
	x
	x
	x
	x
	
	
	x
	x

	State
	x
	x
	x
	x
	x
	
	
	
	

	Initial Date
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Activation Date
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Process Start Date
	
	x
	x
	x
	
	
	
	
	

	Protect Stop Date
	
	x
	x
	x
	
	
	
	
	

	Deactivation Date
	x
	x
	x
	x
	x
	
	
	
	

	Destroy Date
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Compromise Occurrence Date
	
	x
	x
	x
	x
	
	
	
	

	Compromise Date
	
	x
	x
	x
	x
	
	
	
	

	Revocation Reason
	x
	x
	x
	x
	x
	
	
	
	

	Archive Date
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Object Type
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Link
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Application Specific Identification
	x
	x
	x
	x
	x
	
	
	
	

	Contact Information
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Last Changed Date
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Custom Attribute
	x
	x
	x
	x
	x
	x
	x
	x
	x

13 Tag Cross-reference

	Object
	Defined
	Type
	Notes

	Activation Date
	3.17
	Date-Time
	

	Application Identifier
	3.28
	Text String
	

	Application Name Space
	3.28
	Text String
	

	Application Specific Identification
	3.28
	Structure
	

	Archive Date
	3.25
	Date-Time
	

	Asynchronous Correlation Value
	6.8
	Octet String
	

	Asynchronous Indicator
	6.7
	Boolean
	

	Attribute
	2.1.1
	Structure
	

	Attribute Index
	2.1.1
	Integer
	

	Attribute Name
	2.1.1
	Text String
	

	Attribute Value
	2.1.1
	*
	type varies

	Authentication
	6.6
	Structure
	

	Batch Count
	6.14
	Integer
	

	Batch Error Continuation Option
	6.13 , 9.1.3.2.28
	Enumeration
	

	Batch Item
	6.15
	Structure
	

	Batch Order Option
	6.12
	Boolean
	

	Block Cipher Mode
	3.6 , 9.1.3.2.12
	Enumeration
	

	Cancellation Result
	4.25 , 9.1.3.2.23
	Enumeration
	

	Certificate
	2.2.1
	Structure
	

	Certificate Issuer
	3.8
	Structure
	

	Certificate Request
	4.6 , 4.7
	Octet String
	

	Certificate Request Type
	4.6 , 4.7 , 9.1.3.2.20
	Enumeration
	

	Certificate Subject
	3.9
	Structure
	

	Certificate Subject Alternative Name
	3.9
	Text String
	

	Certificate Subject Distinguished Name
	3.9
	Text String
	

	Certificate Type
	2.2.1 , 3.7 , 9.1.3.2.5
	Enumeration
	

	Certificate Value
	2.2.1
	Octet String
	

	Common Template-Attribute
	2.1.8
	Structure
	

	Compromise Occurrence Date
	Error! Reference source not found.
	Date-Time
	

	Compromise Date
	3.23
	Date-Time
	

	Contact Information
	3.29
	Text String
	

	Credential
	2.1.2
	Structure
	

	Credential Type
	2.1.2 , 9.1.3.2.1
	Enumeration
	

	Credential Value
	2.1.2
	Octet String
	

	Criticality Indicator
	6.16
	Boolean
	

	CRT Coefficient
	2.1.7
	Big Integer
	

	Cryptographic Algorithm
	3.4 , 9.1.3.2.11
	Enumeration
	

	Cryptographic Length
	3.5
	Integer
	

	Cryptographic Parameters
	3.6
	Structure
	

	Cryptographic Usage Mask
	3.12 , 9.1.3.3.1
	Integer
	Bit mask

	Custom Attribute
	3.31
	*
	type varies

	D
	2.1.7
	Big Integer
	

	Deactivation Date
	3.20
	Date-Time
	

	Derivation Data
	4.5
	Octet String
	

	Derivation Method
	4.5 , 9.1.3.2.19
	Enumeration
	

	Derivation Parameters
	4.5
	Structure
	

	Destroy Date
	3.21
	Date-Time
	

	Digest
	3.10
	Structure
	

	Digest Value
	3.10
	Octet String
	

	Encryption Key Information
	2.1.5
	Structure
	

	Extensions
	9.1.3
	
	

	G
	2.1.7
	Big Integer
	

	Hashing Algorithm
	3.6 , 3.10 , 9.1.3.2.14
	Enumeration
	

	Initial Date
	3.16
	Date-Time
	

	Initialization Vector
	4.5
	Octet String
	

	Issuer
	3.8
	Text String
	

	Iteration Count
	4.5
	Integer
	

	IV/Counter/Nonce
	2.1.5
	Octet String
	

	J
	2.1.7
	Big Integer
	

	Key
	2.1.7
	Octet String
	

	Key Block
	2.1.3
	Structure
	

	Key Material
	2.1.4 , 2.1.7
	Octet String / Structure
	

	Key Part Identifier
	2.2.5
	Integer
	

	Key Value
	2.1.4
	Octet String / Structure
	

	Key Value Type
	2.1.4 , 9.1.3.2.2
	Enumeration
	

	Key Wrapping Data
	2.1.5
	Structure
	

	Key Wrapping Specification
	2.1.6
	Structure
	

	Last Changed Date
	3.30
	Date-Time
	

	Lease Time
	3.13
	Interval
	

	Link
	3.27
	Structure
	

	Link Type
	3.27 , 9.1.3.2.18
	Enumeration
	

	Linked Object Identifier
	3.27
	Text String
	

	MAC/Signature
	2.1.5
	Octet String
	

	MAC/Signature Key Information
	2.1.5
	Text String
	

	Maximum Items
	4.8
	Integer
	

	Maximum Response Size
	6.3
	Integer
	

	Message Extension
	6.16
	Structure
	

	Modulus
	2.1.7
	Big Integer
	

	Name
	3.2
	Structure
	

	Name Type
	3.2 , 9.1.3.2.9
	Enumeration
	

	Name Value
	3.2
	Text String
	

	Object Group
	3.26
	Text String
	

	Object Type
	3.3 , 9.1.3.2.10
	Enumeration
	

	Offset
	4.4 , 4.7
	Interval
	

	Opaque Data Type
	2.2.9 , 9.1.3.2.8
	Enumeration
	

	Opaque Data Value
	2.2.9
	Octet String
	

	Opaque Object
	2.2.9
	Structure
	

	Operation
	6.2 , 9.1.3.2.25
	Enumeration
	

	Operation Policy Name
	3.11
	Text String
	

	P
	2.1.7
	Big Integer
	

	Padding Method
	3.6 , 9.1.3.2.13
	Enumeration
	

	Policy Template
	2.2.7
	Structure
	

	Prime Exponent P
	2.1.7
	Big Integer
	

	Prime Exponent Q
	2.1.7
	Big Integer
	

	Prime Field Size
	2.2.5
	Big Integer
	

	Private Exponent
	2.1.7
	Big Integer
	

	Private Key
	2.2.4
	Structure
	

	Private Key Template-Attribute
	2.1.8
	Structure
	

	Private Key Unique Identifier
	4.2
	Text String
	

	Process Start Date
	3.18
	Date-Time
	

	Protect Stop Date
	3.19
	Date-Time
	

	Protocol Version
	6.1
	Structure
	

	Protocol Version Major
	6.1
	Integer
	

	Protocol Version Minor
	6.1
	Integer
	

	Public Exponent
	2.1.7
	Big Integer
	

	Public Key
	2.2.3
	Structure
	

	Public Key Template-Attribute
	2.1.8
	Structure
	

	Public Key Unique Identifier
	4.2
	Text String
	

	Put Function
	5.2 , 9.1.3.2.24
	Enumeration
	

	Q
	2.1.7
	Big Integer
	

	Q String
	2.1.7
	Octet String
	

	Query Function
	4.24 , 9.1.3.2.22
	Enumeration
	

	Recommended Curve
	2.1.7 , 9.1.3.2.4
	Enumeration
	

	Replaced Unique Identifier
	5.2
	Text String
	

	Request Header
	7.2 , 7.3
	Structure
	

	Request Message
	7.1
	Structure
	

	Request Payload
	4 , 5 , 7.2 , 7.3
	Structure
	

	Response Header
	7.2 , 7.3
	Structure
	

	Response Message
	7.1
	Structure
	

	Response Payload
	4 , 7.2 , 7.3
	Structure
	

	Result Message
	6.11
	Text String
	

	Result Reason
	6.10 , 9.1.3.2.27
	Enumeration
	

	Result Status
	6.9 , 9.1.3.2.26
	Enumeration
	

	Revocation Message
	3.24
	Text String
	

	Revocation Reason
	3.24
	Structure
	

	Revocation Reason Code
	3.24 , 9.1.3.2.17
	Enumeration
	

	Role Type
	3.6 , 9.1.3.2.15
	Enumeration
	

	Salt
	4.5
	Octet String
	

	Secret Data
	2.2.8
	Structure
	

	Secret Data Type
	2.2.8 , 9.1.3.2.7
	Enumeration
	

	Serial Number
	3.8
	Text String
	

	Server Information
	4.24
	Structure
	contents vendor-specific

	Split Key
	2.2.5
	Structure
	

	Split Key Method
	2.2.5 , 9.1.3.2.6
	Enumeration
	

	Split Key Parts
	2.2.5
	Integer
	

	Split Key Threshold
	2.2.5
	Integer
	

	State
	3.15 , 9.1.3.2.16
	Enumeration
	

	Storage Status Mask
	4.8 , 9.1.3.3.2
	Integer
	Bit mask

	Symmetric Key
	2.2.2
	Structure
	

	Template
	2.2.6
	Structure
	

	Template Name
	4.3
	Text String
	

	Template-Attribute
	2.1.8
	Structure
	

	Time Stamp
	6.5
	Date-Time
	

	Transparent*
	2.1.7
	Structure
	

	Unique Identifier
	3.1
	Text String
	

	Unique Message ID
	6.4
	Octet String
	

	Usage Limits
	3.14
	Structure
	

	Usage Limits Byte Count
	3.14
	Big Integer
	

	Usage Limits Object Count
	3.14
	Big Integer
	

	Usage Limits Total Bytes
	3.14
	Big Integer
	

	Usage Limits Total Objects
	3.14
	Big Integer
	

	Validity Date
	4.23
	Date-Time
	

	Validity Indicator
	4.23 , 9.1.3.2.21
	Enumeration
	

	Vendor Extension
	6.16
	Structure
	contents vendor-specific

	Vendor Identification
	4.24 , 6.16
	Text String
	

	Wrapping Method
	2.1.5 , 9.1.3.2.3
	Enumeration
	

	X
	2.1.7
	Big Integer
	

	Y
	2.1.7
	Big Integer
	

14 Acronyms

The following abbreviations and acronyms are used in this document:

3DES
- Three key Data Encryption Standard

AES
- Advanced Encryption Standard specified in FIPS 197

ASN.1
- Abstract Syntax Notation One

CA
- Certification Authority

CBC
- Cipher Block Chaining

CPU
- Central Processing Unit

CRL
- Certificate Revocation List

CRT
- Chinese Remainder Theorem

DER
- Distinguished Encoding Rules

DES
- Data Encryption Standard

DH
- Diffie-Hellman

DSA
- Digital Signature Algorithm specified in FIPS 186-3

DSKPP
- Dynamic Symmetric Key Provisioning Protocol

ECB
- Electronic Code Book

ECDH
- Elliptic Curve Diffie-Hellman

ECDSA
- Elliptic Curve Digital Signature Algorithm specified in ANSX9.62

HMAC
- Keyed-Hash Message Authentication Code specified in FIPS 198

HTTP
- Hyper Text Transfer Protocol

HTTP(S)
- Hyper Text Transfer Protocol (Secure socket)

IEEE
- Institute of Electrical and Electronics Engineers

IETF
- Internet Engineering Task Force

IPsec
- Internet Protocol Security

IV
- Initialization Vector

KMIP
- Key Management Interoperability Protocol

MAC
- Message Authentication Code

MD5
- Message Digest 5 Algorithm

PBKDF2
- Password-Based Key Derivation Function 2

PGP
- Pretty Good Privacy

PKCS
- Public Key Cryptography Standards

POSIX
- Portable Operating System Interface

RFC
- Request for Comments documents of IETF

RSA
- Rivest, Shamir, Adelman (an algorithm)

SHA-1
- Secure Hash Algorithm Revision One

SSL/TLS
- Secure Sockets Layer/Transport Layer Security

S/MIME
- Secure/Multipurpose Internet Mail Extensions

TCP
- Transport Control Protocol

TTLV
- Tag, Type, Length, Value

URI
- Unique Resource Identifier

UTF
- Universal Transformation Format

XML
- Extensible Markup Language

15 Acknowledgments

The following people (in alphabetical order) contributed to this document:

· David Babcock, HP

· Steven Bade, IBM

· Paolo Bezoari, NetApp
· Mathias Björkqvist, IBM

· Bruce Brinson, EMC

· Christian Cachin, IBM

· Tony Crossman, nCipher

· Stan Feather, HP

· Indra Fitzgerald, HP

· Judy Furlong, EMC

· Jon Geater, nCipher

· Bob Griffin, EMC

· Robert Haas, IBM (editor)

· Timothy Hahn, IBM

· Jack Harwood, EMC

· Walt Hubis, LSI

· Glen Jaquette, IBM

· Jeff Kravitz, IBM (editor)

· Michael McIntosh, IBM

· Brian Metzger, HP

· Anthony Nadalin, IBM

· Elaine Palmer, IBM

· Joe Pato, HP

· René Pawlitzek, IBM

· Subhash Sankuratripati, NetApp

· Mark Schiller, HP

· Martin Skagen, Brocade

· Marcus Streets, nCipher

· John Tattan, EMC

· Karla Thomas, Brocade

· Marko Vukolić , IBM

· Steve Wierenga, HP

� EMBED Visio 2000 Drawing ���

Copyright © 2009 Brocade, EMC, Hewlett Packard Development Corporation, IBM, LSI, NetApp and Thales
2
3
Copyright © 2009 EMC, Hewlett Packard Development Corporation, IBM, and Thales

_97132640.vsd

