Akoma Ntoso 3.0 Release Notes

Release CSD12 – 16 December 2014
Technical Supervision: Fabio Vitali

Legal Domain Supervision: Monica Palmirani

University of Bologna
Table of content

51
Introduction

2
Namespaces
5
3
Global overview of the schema
5
4
Patterns
6
4.1
Categories in content model
7
4.2
Patterns in schema design
8
5
Metadata elements
8
6
Amendments, versions and document lifecycle
9
7
References
10
7.1
The structure of references
10
7.2
Referring to precise concepts in the document
11
7.3
Identifiers
12
7.4
The syntax of ids
13
7.4.1
Prefix
14
7.4.2
Element_ref
14
7.4.3
num
16
7.4.4
Abundant or incomplete references
16
7.5
Expression IDs and work IDs
17
7.6
Document IRIs
21
8
AKOMA NTOSO Naming Convention
22
8.1
Absolute and relative IRIs
24
8.2
Resolving Akoma Ntoso IRIs
26
8.3
The IRI of a Work
26
8.3.1
The IRI for the Work as a whole
26
8.3.2
The IRI for WorkComponents
27
8.4
The IRI of an Expression
28
8.4.1
The IRI for the expression as a whole
28
8.4.2
The IRIs for ExpressionComponents
29
8.4.3
Hierarchies of components in ExpressionComponents
30
8.4.4
The IRIs for virtual expressions
31
8.5
The IRI of a Manifestation
31
8.5.1
The IRI for the manifestation as a whole
31
8.5.2
The IRIs for ManifestationComponents
32
8.5.3
The IRIs for the components in the Akoma Ntoso package manifestation
33
8.6
The IRI of an Item
34
8.7
The IRI of non-document entities
34
8.8
The IDs for Top Level Classes
36
8.8.1
TLC Person
36
8.8.2
TLC Organization
36
8.8.3
TLC Concept
37
8.8.4
TLC Object
37
8.8.5
TLC Event
37
8.8.6
TLC Location
37
8.8.7
TLC Process
38
8.8.8
TLC Role
38
8.8.9
TLC Term
38
8.8.10
TLC Work
38
8.8.11
TLC Expression
39
8.8.12
TLC Expression Component
39
8.8.13
TLC Manifestation
39
8.8.14
TLC Manifestation Component
39
8.8.15
TLC Item
39
9
Differences from previous releases
39
9.1
Differences between release 23/06/2014 (CSD11 AN 3.0) and 16/04/2014 (CSD09 AN 3.0)
39
9.2
Differences between release 16/04/2014 (CSD10 AN 3.0) and 02/04/2014 (CSD09 AN 3.0)
40
9.3
Differences between release 02/04/2014 (CSD09 AN 3.0) and 01/04/2014 (CSD0F AN 3.0)
40
9.4
Differences between release 02/04/2014 (CSD09 AN 3.0) and 16/01/2014 (CSD08 AN 3.0)
40
9.5
Differences between release 16/01/2014 (CSD08 AN 3.0) and 20/12/2013 (CSD07 AN 3.0)
41
9.6
Differences between release 20/12/2013 (CSD07 AN 3.0) and 25/9/2013 (CSD06 AN 3.0)
42
9.7
Difference in release CSD06 – 25 September 2013 as Modified 11 October 2013
43
9.8
Differences between release 25/9/2013 (CSD05 AN 6.0) and 23/7/2013 (CSD03 AN 5.0)
43
9.9
Differences between release 23/7/2013 (CSD05 AN 3.0) and 18/2/2013 (CSD03 AN 3.0)
44
9.10
Differences between release 18/2/2013 (CSD03 AN 3.0) and 6/2/2013 (CSD02 AN 3.0)
45
9.11
Differences between release 6/2/2013 (CSD02 AN 3.0) and 20/1/2013 (CSD01 AN 3.0)
45
9.12
Differences between release 20/1/2013 (CSD01 AN 3.0) and 27/07/2012 (AN 2.0)
46
9.13
Differences between release 27/07/2012 and 29/06/2012
48
9.14
Differences between release 29/06/2012 and 07/05/2012 take II
49
9.15
Differences between release 07/05/2012 take II and 07/05/2012
49
9.16
Differences between release 07/05/2012 and 12/10/2011
49
9.17
Differences between release 12/10/2011 and 15/7/2011
51
9.18
Differences between release 15/7/2011 and 9/12/2009
51
9.18.1
General changes
51
9.18.2
Multi-linguism
52
9.18.3
New document collection document types
52
9.18.4
New Amendment document type
53
9.18.5
Time intervals
53
9.18.6
Footnotes and out-of-lines
55
9.18.7
New subFlow pattern
56
9.18.8
Parallel speech
56
9.18.9
Votes and quorum
56
9.18.10
Renumbering
57
9.18.11
Changes in metadata sections
57
9.18.12
Changes in introductory elements
57
9.18.13
New inline elements
58
9.18.14
New hierarchical elements
59
9.18.15
New speech elements
59
9.18.16
Various other changes
59
9.19
Differences between release 9/12/2009 and 21/10/2009
60
9.20
Differences between release 21/10/2009 and 11/5/2009
60
9.21
Differences between release 11/5/2009 and 16/3/2009
61
9.22
Differences between release 16/3/2009 and 5/11/2008
61
9.22.1
Sidenotes and out of line texts
61
9.22.2
Content model reorganization for speeches
62
9.22.3
New inline elements
63
9.22.4
Judgement-specific and act-specific elements reunited
63
9.22.5
Name changes in metadata elements
63
9.22.6
Bug fixes
64
9.23
Differences between release 5/11/2008 and release 3/3/2008
64
9.24
Differences between release 3/3/2008 and 22/10/2007
65
9.25
Differences between release 22/10/2007 and 17/09/2007
66
9.26
Differences between release 17/09/2007 and 08/06/2007
68
9.27
Differences between release 08/06/2007 and 31/05/2007
68
9.28
Differences between release 31/05/2007 and 14/03/2007
68
9.29
Differences between release 14/03/2007 and 01/02/2007
68
9.30
Differences between release 01/02/2007 and 23/11/2006
68
9.31
Differences between release 23/11/2006 and 23/10/2006
69
9.32
Differences between release 23/10/2006 and 26/06/2006
69
9.33
Differences between release 26/06/2006 and 16/05/2006
70
9.34
Differences between release 16/05/2006 and 25/04/2006
70
9.35
Differences between release 25/04/2006 and release 15/01/2006
71
9.36
Differences between release 15/01/2006 and release 15/11/2005
71
9.37
Differences between release 15/11/2005 and release 15/09/2005
72

1 Introduction

This document introduces and explains the schema for AKOMA NTOSO, an XML-based document format for legislative documents in African countries. More details about the background and rationale of this project and of the design methodology can be found in the AKOMA NTOSO web site, www.akomantoso.org.

In this document we provide technical details and assumptions about the AKOMA NTOSO document structure and elements, as well as some hints for document markup using this schema. The final document describes two different but connected families of schema. The first is the AKOMA NTOSO general schema, a vocabulary and a minimal set of constraints that all AKOMA NTOSO documents must comply to. A set of stricter schemas, the AKOMA NTOSO custom schemas, provide more constraints over the same vocabulary of elements to enforce the rules of specific document types in specific African countries. It is a requirement of AKOMA NTOSO that all documents satisfying one of the custom schemas also satisfy the general schema.

In this release only the general schema is described in full. Thus, except when explicitly mentioned, all rules are expected to refer to the general schema (and thus to all AKOMA NTOSO documents).

2 Namespaces

AKOMA NTOSO documents are completely qualified, i.e., namespaces are used throughout its structures. Even though some elements use the same name as HTML elements, and in fact are directly drawn out of the HTML vocabulary, out of simplicity only one namespace is used, so that all elements are similarly qualified. The net result is that it is possible to specify the AKOMA NTOSO namespace as the default namespace and have no prefixes in the instance document, while maintaining full qualification of the documents.

The namespace for this family of releases is therefore “http://docs.oasis-open.org/legaldocml/ns/akn/3.0/CSDXX”, where XX refers to the sequential version of the Committee Specification Draft it refers to.

Starting from the 20 January 2013 release of the language, Akoma Ntoso enters in the 3.0 namespace and transits from the www.akomantoso.org domain into the OASIS usual naming convention.
3 Global overview of the schema

All AKOMA NTOSO documents share the same root element <akomantoso>, under which the specific document type is selected. The single root element follows a specific design approach called “Universal root”, which is aimed at better identifying of the root and separation of namespace and schema declaration (available in the root) and meaningful attributes (available in the document type element).

The schema starts with a few <group>s and <attributeGroup>s used throughout the schema for content models and types. They are followed by common <simpleType>s (mostly enumerations of string values) and <complexType>s. Complex types in this sections include those supporting all but one of the main categories of content models used throughout this schema, such as hierarchy (a hierarchy of nested elements with number and titles), blocks (a sequence of block elements - e.g., paragraphs) used within containers either with required or optional identifiers, inline (the content model for all mixed model elements such as paragraphs), and marker (zero length elements characterized by their attributes) either with required or optional identifiers. The last category of content models, container, has no common form, but lists different elements in different orders, and individual container-like complex types are spread throughout the schema.

Elements are organized in meaningful sections:

1. The root element <akomantoso>
2. The document elements, one for each document type (such as <act>, <bill>, <judgement>, <report> <debateRecord> and <doc>), that share one of the main document formats: hierarchicalStructure (that has an explicit hierarchy inside), openStructure, that allows basically everything inside, judgementStructure, a flat organization of section that contain and organize the judgement, and debateStructure, a slightly hierarchical structure for debaterecord and reports.

3. The shared container elements, one for each main part of the abovementioned structures, except for <meta>, which is described in the apposite section.

4. The hierarchical elements, listing the main elements that are used in the full hierarchy of nested structures of acts and bills, as well as <heading>s, <num>s and <subtitle>s.

5. Elements for parliamentary debates, particularly subdivisions (such as <communication>s, <papers>, <questions> or <address>es, and specific debate elements such as <speech>, <question>, etc.

6. Elements for judgements, particularly <background>, <motivation>, <decision>, and for open structures, particularly <item>.

7. AKOMA NTOSO specific block and inline elements, including the table of content (<toc> and <tocItem>), the specific elements appearing in the <preamble>s of the various document types, the normative references (<ref>, <mref>, <rref>), the defined term in a definition (<def>) the note marker (<noteref>) pointing to an editorial note placed out of line (in the meta section), the recorded time of a spoken remark (<recordedTime>), the container for amendments (<mod>, <mmod>, <rmod>) and of two types of amendment quoted fragments: simple text fragments (such as a few words inside quotes) or full structures (such as an entire part or a section).

8. Generic elements: the list of available generic elements (one for each of the main categories of content models).

9. HTML elements: the list of elements, directly derived from HTML, used to provide for presentation-oriented, rather than semantic-oriented, markup within AKOMA NTOSO documents. They are in effect a very strong simplification of the full HTML language, but still allow for many useful structures inside legal documents (such as tables).

10. Metadata elements within the <meta> element provide a location for all relevant information about a AKOMA NTOSO document that does not belong to its actual content. Metadata thus are all, by definition, editorial additions to the text as originally composing the document.

4 Patterns

Patterns are the abstraction and distillation of past experiences in designing and resolving design problems. They are general and widely applicable guidelines for approaching and justifying design issues that often occur in XML-based projects.

In AKOMA NTOSO patterns are used to create categories of content models (and thus correspond to only those content models that have been found to be actually useful) and more generally in schema design (and thus correspond to guidelines on how to make the schema more modular, flexible and understandable by users). Both approaches are well known and well established in the literature, although by different experts in different ways.

4.1 Categories in content model

Categories of content models is the term used within AKOMA NTOSO to refer to families of elements that share the same conceptual organization of the internals. The AKOMA NTOSO Schema uses systematically six categories of content models. This means that all content models and complex types used in the schema follow precisely the form of the relevant category, and all elements can be simply described and treated according to their category rather than individually.

These categories are:

· The markers: markers are content-less elements that are placed here and there in the document and are meaningful for their position, their names and their attributes. Markers are also known as empty elements or milestones. There are two main families of markers in the AKOMA NTOSO schema: placeholders in the text content (e.g., note references) that can appear in any position that also has text, and metadata elements that only appear in some subsection of the <meta> section. IN AKOMA NTOSO, all metadata elements are markers, so that metadata values are not part of the text content of a document, but rather become attribute values.

· The inlines: an inline element is an element placed within a mixed model element to identify a text fragment as relevant for some reason. There are both semantically relevant inlines and presentation oriented inlines. There is but one content model using inlines (and markers), which means that all mixed model elements (i.e., those that allow both text and elements) also allow a repeatable selection of all inline elements. For a discussion of why this is only a trade-off decision, and not the ideal solution, see the discussion at the end of this section.

· The blocks: a block is a container of text or inlines and placeholders that is organized vertically on the display (i.e., has paragraph breaks). Most blocks in AKOMA NTOSO are based on the HTML language. There is only one content model that uses blocks, and it allows a repeatable selection of all available blocks. This means that wherever any block is allowed, all blocks are allowed too: e.g., wherever a paragraph is allowed, a table or a list is also allowed.

· The subFlows: a subFlow element is an element placed within a mixed model element to identify a completely separate context that, for any reason, appears within the flow of the text, but does not belong to it or does not follow its rules. SubFlow elements are containers appearing in the middle of sentences but containing full structures (with no direct containment of text or inline elements).

· The containers: containers are sequences of specific elements, some of which can be optional. Containers are all different from each other (since the actual list of contained elements vary), and so there is no single container content model, but rather a number of content models that share the same conceptual category. The shared characteristic of containers, is that no text is allowed directly inside them, but only a collection of other elements. Text therefore can only be placed within a block within the container.

· The hierarchy: a hierarchy is a set of sections nested to an arbitrary depth, all provided with title and numbering. Each level of the nesting can contain either more nested sections or a container. No text is allowed directly inside the hierarchy, but only within a block element that is contained within a container element (not considering, of course, titles and numbering). AKOMA NTOSO uses only one hierarchy, with predefined names and no constraints on their order or systematic layering.

There are two exceptions to the systematic use of patterns:

· The element allows both inlines and other nested lists (and). The pattern would require elements to contain only text, and nested lists to be direct child of the main list (s within). Since this goes against universal HTML practice, we have decided against full pattern adherence and in favor of HTML tradition.

· There are some inline elements that only make sense in the preface and/or preamble of the document: for instance are <DocTitle>, <DocNumber>, for numbered documents such as acts or bills, or <party>, <judge> for judgements. They are in fact part of the one inline content model and thus are available everywhere in the document. There is no simple way to define blocks within <preamble> and <preface> to allow these elements and blocks elsewhere to reject them, so it has been decided that it is better to allow them everywhere rather than uselessly complicating the schema.

4.2 Patterns in schema design

Design patterns are distillation of common wisdom in organizing the parts and the constraints of a schema. Some of them are listed in http://www.xmlpatterns.com/. Whenever there has been a design choice to be made that was not immediately obvious and naturally acceptable, a relevant pattern has been sought and properly used. In fact, http://www.xmlpatterns.com/ also contain immediately obvious and naturally acceptable pattern that have been used in AKOMA NTOSO, but only the not-so-obvious and not-so-natural ones have been explicitly mentioned and referred to. You can find the relevant mentions in comments within the schema itself, and in the documentation.

5 Metadata elements

The meta section contains all the meta-information that needs or can be added to the actual content of the document. As a rule, all editorial content (i.e. content added by the editorial process out of drafting rooms) need to be placed in the meta section, except for markup and note references. Vice versa, all actual content of the document need to have a place outside of the meta section and within the appropriate content sections.

Elements within the <meta> section are divided in several subsections, such as <identification> (to provide for names and identifiers to clearly specify and identify the various aspects of the document as characterized by the FRBR model), <publication> (details about the publication of the paper-based document), <lifecycle> (information about the events the document has undergone) or <references> (a list of entities, individuals, concepts and other documents this document is related to for any reason, such as the topics the document is about, the people mentioned, or the documents it amends or it is amended by). An additional section, <proprietary>, allows additional metadata elements to be added by local implementations without the need for all other implementations to know about them and know how to react to them.

6 Amendments, versions and document lifecycle

AKOMA NTOSO include a sophisticated mechanism to keep track of the life cycle and evolution of a legal document. This is particularly useful for acts that are amended and modified in time, while maintaining their fundamental nature.

The management of evolution of a document makes two important assumptions:

· Amendments and events in the life cycle of a document (including original approval, final repeal and any other event affecting its presence in the law system or its content) happen in precise moments in time that can be determined objectively (albeit possibly with difficulty) and attributed a specific date.

· Amendments and events in the life cycle are due to the enactment of a specific, individual document that can be objectively traced back and identified with an IRI. If two different documents affect the same act on the same date, then these must be counted as two different and separate events on the amended act.

Handling events in AKOMA NTOSO centers around the <lifecycle> element in the meta section. This contains two containers, <events> and <references>, used to list the dates of all the events affecting a document, and the references to the IRIs of all the documents generating these events. Each reference is provided with a required identifier, which is used by the event list to specify which document is responsible for which events. These elements must appear in all documents that have undergone two or more events (e.g., all acts except the ones that still have no amendments).

Documents in AKOMA NTOSO are organized in three main categories, as specified in the contain attribute of the document type element:

· originalVersion: this value reflects the fact that the content on the document is exactly the content that has been formally and explicitly approved by the relevant authority, with no amendments applied.

· singleVersion: this value reflects the fact that the content of the document is an editorially modified version of the original document, according to one or more subsequent amendment documents. These amendment documents and the enactment dates of the amendments must be all mentioned in the <lifecycle> element. Individual additions and deletions are not marked in the content.

· multipleVersions: this value reflects the fact that the content of the document is the juxtaposition of fragments belonging to two or more different versions of the same document, each fragment marked as belonging to one or many of these versions. Thus in a multipleVersions act there could be two or more copies of section 2, each associated to the date it started enactment and ended enactment.

The <lifecycle> element is a required element for all singleVersion and multipleVersion documents, and must be complete up to the enactment date of the latest document referenced in the <lifecycle> element (i.e., there can potentially exist subsequent amendments not included, but all amendments preceding the document’s date must be correctly listed and referenced, even if they play no part in the displayed content). OriginalVersion documents need not have the <lifecycle> element, but surely can have it if the editors decide so.

In case a multipleVersions document is being generated, each element and text fragment may be associated with an enactment specification through the means of the five attributes: start, end (for validity), startEfficacy, endEfficacy (for efficacy) and status. Each fragment (a whole element if appropriate, otherwise a newly inserted or <inline> element for text fragments for which no exact containing element exists) must use these attribute to specify its nature.

The start and end attributes (and similarly the startEfficacy and endEfficacy attributes) contain a reference to the ID of the event that has marked the beginning or the end of the enactment (or of the efficacy) of the fragment. A start attribute with no end attribute marks a fragment that has appeared in an amendment and still exists in the latest recorded version of the document. An end attribute with no start attribute mark a fragment that was part of the original document but has been repealed before or at the latest recorded version of the document. The status attribute records the type of amendment of the fragment. The value “omissis” can only be used by non-authoritative publications that need to display only part of the whole document: when status=”omissis”, the structure must be complete as if all contents was present, but unrequired parts of the actual content can be removed. Similarly, the value “editorial” can be used to add fragments of text of editorial nature (i.e., that are generated by editors rather than authors). Examples include annotations and translated sentences. For instance:

<p xml:lang=”afr” id=”blk123”>Partye wat deel wil vorm van die proses van regering, is vol verligting. ``Sien,'' sˆ die Nuwe NP, ``die ANC is nie magshonger nie!'' Ryke ironie, komende van waar die Nuwe NP sit. (Translation of Afrikaans paragraph follows.)</p>

<p xml:lang=”eng” status=”editorial” refersTo=”blk123”>[Parties who want to form part of government are quite relieved. ``You see'', says the New NP, ``the ANC is not power-hungry!'' Such irony, if one considers where the New NP is sitting.]</p>
7 References

Documents make references to external entities that need to be identified with clarity and no ambiguity. The current release of Akoma Ntoso includes a section where references to external concepts, people and places are specified. These include references to other Akoma Ntoso documents, to other non-Akoma Ntoso documents that are accessible through the net, or to individual instances of classes specified in a local ontology.

7.1 The structure of references

All references to external concepts share the same structure, in that they are empty elements in the references section provided with exactly four attributes:

· href: the IRI reference describing the entity being referred to. This can be a whole document (for instance, the act containing amendments to the current document), or a fragment of a document (for instance, the identifier of the unique record identifying precisely the person being referred to in the document).

· id: this is the string that identifies within the document the entity being described. All internal references will thus use this id. For instance, every event in the document lifecycle has a source attribute containing a reference to the id of the document affecting or being affected by the document.

· showAs: this is the string that can and must be used in displaying information about this entity. For instance, this attribute contains the name of the speaker as it must be displayed.

· shortForm: this optional attribute contains a secondary form of the display information of the entity. For instance, in some reports it is necessary to provide the full name of a person at the first utterance, and only the name in any further utterance from the same person.

7.2 Referring to precise concepts in the document

AKOMA NTOSO provides a series of mechanisms for referring to precise concepts in the documents being marked up. Regardless of whether the textual content of the document is sufficiently explicit and unambiguous, the marker of the document may and should provide additional disambiguating information about individual pieces of fragment denoting precise concepts through the aid of the appropriate attributes.

This disambiguation happens systematically as a two-step process: first of all, a mention to the ontological concept is added to the references section and provided with an id, and then one or more attributes in the document elements are used to refer to it.

For instance, every individual in a debate is associated via the id to an element TLCPerson in the references section: the by attribute of the speech element indicates the speaker (this must be a TLCperson), the as attribute specifies the role of the speaker (which must ne a, if any (and it must be a TLCrole) and the to attribute indicates the addressee (this can either be a person or a role).

The following are the attributes used for this purpose:

· refersTo: points to any instance of a Top Level Class of the ontology. It is used to notify the reader in a generic way to what specific concept is the element referring to.

· href: contains the IRI of a instance of an FRBR document class or of a web page. Furthermore, it signals the application that the reference must be considered navigable, i.e., activatable by the user (e.g. via a link).

· upTo: for range references (e.g., rref and rmod) this specifies the IRI of the last, or highest, element of the range being referred to.

· by: points to a person, i.e., an instance of the class TLCPerson in the references section, relative to the person by which the content has been provided.

· as: points to a role, i.e., an instance of the class TLCRole in the references, relative to the role held by the person when uttering the content.

· to: points either to a role, a person or an organization, relative to the kind of addressee of the content being provided.

Thus, any fragment in the text content of the document referring to Events, Concepts, or other instances of the Top Level Classes need to use the refersTo attribute to point to the id of the corresponding element in the references section.

A few elements can be considered of some use:

· The element entity provides a standard mechanism to refer to mentions of instances of Top Level Classes in the content of the document. Any instance of any class can be referred to via an instance element.

· ref, mref, and rref provide a mechanism to refer to other documents in the Akoma Ntoso domain. These elements may use the refersTo attribute, but will most frequently directly use the href attribute to specify a navigable reference to the document they refer to. The element ref specifies a single reference, the element mref a group of references (a list of individual ref elements must be placed inside the mref element, one for each reference) and the rref element specifies a range of references delimited by the href and upTo attributes.

· mod, mmod and rmod provide a mechanism to specify modifications to other documents. The mod element contains at least one ref element identifying the destination of the modification, and may contain as many quotedStructure and quotedText elements as needed providing the textual modification (if any) in terms of either whole structures or individual words. The element mod specifies a single modification, the element mmod a group of modifications (a list of individual mod elements must be placed inside the mmod element, one for each modification) and the rmod element specifies a range of modifications delimited by the href and upTo attributes.

· The a element provides a mechanism to refer to web pages, e.g., the official home page of an organization. It should never be used for references to AKOMA NTOSO documents (that are only referred to via *ref elements).

The following inline elements may appear to be references, but are rather definitions:

· date: specifies that the content of the element is a date. Through the date attribute it is possible to provide the unambiguous form of the date in XSD 2.0 syntax (yyyy-mm-dd).

· docDate, docType, docNumber, docProponent, docPurpose: specify that the content of the element provide information about a date, a type, a number, a proponent and a purpose of the document, respectively. The attribute refersTo may point to appropriate instances of the Top Level Classes accordingly. Attributes refersTo are required if there are more than ONE such element per type (e.g., a document may have TWO different docNumber or docDate elements, but they must be disambiguated via refersTo elements pointing to different instances of the TLCConcept class).

· judge, party, lawyer specify the judge, party and lawyer associated to a judgement. These elements need to be used when the document introduces these individuals or organizations in a formal way. Any further reference to them should be done via the entity element.

7.3 Identifiers

Identifiers are systematically used in AKOMA NTOSO. All AKOMA NTOSO elements allow up to three identifiers. Most relevant elements and sections require at least one. Starting from release CSD11, identifiers are required if the document seeks to reach compliance level 2, in which identifiers must follow the syntax described here, and are not to be used if it the sought compliance level is 1 and it is not possible to follow the syntax described in this section.
Identifiers are the main way to identify fragments and parts of the document in an unambiguous form. They can be used in document references (e.g. links and amendment commands) as a precise pointer to the actual part of the document mentioned (as opposed to simply referring to a document as a whole). Even internal links need to use identifiers.

The schema does not explicitly provide a syntax for the identifier values, but these release notes assume a conceptual schema that is described here in human readable format. Identifier values are composed by sub-identifiers forming the prefix providing uniqueness to their main part, and separating them with the “__” string. Legal documents provide explicit global numbering for sections and articles, and local numbering for their hierarchical subparts. For instance, all parts in different structures are numbered starting each time from 1, so “part 1” is not sufficient to clearly identify the actual part, while base structures (such as <article>s or <section>s have global numbering, so that for instance “article 12” clearly points to a single and well-specified element.

As said, there are three different types of ids in Akoma Ntoso. The first and most important identifier is called eId (for expression-level id). An eId provides uniqueness of an element within a specific expression. The value of eId is connected to the structural role of the corresponding element according to the model described in section 7.4, and needs to be updated regularly whenever the structural role of the element changes in a new expression (i.e., if the element is renumbered or changed in nature, e.g., from article to clause).

The wId identifier is only added when the eId changes from one version to another, and are meant for mapping the identity and position of the same elements in different versions and variants of the same work. The wId never changes, and has the same values for the same elements in all the expressions of a document. In order to allow this, a master expression is identified, i.e., the expression whose eId becomes the references for the wId of all other expressions.. For instructions on when and why to use wId and eId, see section 7.5.
Finally, GUID (Globally Unique Identifiers) are application-specific identifiers that a local implementation may need to add to elements according to local rules and syntaxes. GUID are not required attributes, and its use and specification is totally dependent on the representation and storage requirements of the author of the manifestation.
Composite documents make it more complex to reach uniqueness of identifiers over the whole XML document, since they might be the result of composing individual documents where the same ids where created independently. Similarly, elements that repeat with the same number in different parts of the same document are frequent and need to be identified as well (for instance, a Chapter 2 may exist within both Tome I and Tome II, and line 5 most probably exists in every page of the document). For this reason, the concept of context has been introduced as the element that provides the required uniqueness for an id. Thus, the context of the two instances of Chapter 2 will be Tome I and Tome II respectively, while the context for each line 5 (i.e., each eol element) will be the page in which it appears (i.e., the immediately previous eop element). The id of an element must therefore include the id of the context element that guarantees its uniqueness, be it the id of the individual document in a composite document, the id of a wrapping element that restarts the numbering, or the id of a preceding element that restarts the numbering.
Also, frequently the insertion of new fragments in a numbered hierarchy does not impose a renumbering of the existing elements, but create new structures with a derived numbering, such as the number of the preceding element with some additional strings to differentiate it. For instance, if a modification creates a new section between articles 12 and 13, then it will be most probably called “Article 12/a” or “ Article 12 bis” according to the customs and traditions of the specific jurisdiction. These additional characters are part of the identifier and need to be maintained in the id as well. In section 7.4.3 the way to generate the relevant fragments of these ids is discussed.
Structures within the <quotedStructure> and <embeddedStructure> elements add the relevant mod identifier before their “natural” identifiers. In a way, quotedStructure and embeddedStructure act as the context for the contained structures. So for instance if clause 3 of article 15 has an amendment that adds article 4/a to a different act, the identifier of the <quotedStructure> element that contains the new article will be “art_15__cla_3__mod_1__qsrt1”, and the id of article 4/a inside it will be “art_15__cla_3__mod_1__qsrt1__art_4a”. Of course, automatic systems that create current versions of texts should and will remove the prefix belonging to the modification law and will only keep the identifier “art_4a” in the final result.

7.4 The syntax of ids

The generic syntax for ids is the following:

[prefix "__"] element_ref ["_" num]

7.4.1 Prefix

The prefix is a (possibly empty) string providing uniqueness to the remaining part of the id, and based on the context in which the element appears. In fact, by construction the prefix of an id is the id of the context element.
The context element is the element that suggest, imply or force a re-start of the numbering of all internal or subsequent elements of the same name. Different contexts imply that elements with the same name may end up having the same element_ref and the same num, and must therefore be disambiguated through the use of a prefix, the id of the context element.

For instance, in many traditions chapter numbering restarts within every title, so chp_2 for Chapter 2 could be ambiguous. In these cases the id for Chapter 2 of Title I will be title_I__chp_2 (assuming that title_I is the whole id for Title I. Elements that are globally unique or globally numbered within a document require no prefix (in the hypothesis of a single document XML file).

The following are usual cases of contexts:

· All document classes (act, bill, doc, etc.) are always contexts. This means that, except particular cases, all numbers restart whenever a new document class is started (e.g., in a composite document each document component has its own local numbering).

· Elements quotedStructure and embeddedStructure are always contexts, even if they do not force a restart of the numbering, but just a different numbering context within themselves.

· Plain inline elements are never contexts. Exception: element mod is always a context.

7.4.2 Element_ref

The element_ref part of the id is a reference to the identified element; this is always the name of the element, except for a brief list of well-known abbreviations as in the following table:
	Abbreviation
	Element name

	adj
	adjournment

	admoath
	administrationOfOath

	addr
	address

	ans
	answer

	art
	article

	att
	attachment

	chp
	chapter

	cit
	citation

	cits
	citations

	cl
	clause

	cmp
	component

	comm
	communication

	cref
	componentRef

	dbtsec
	debateSection

	dclvote
	declarationOfVote

	dref
	documentRef

	estr
	embeddedStructure

	etxt
	embeddedText

	frag
	fragment

	hdg
	heading

	intro
	intro

	intro
	listIntroduction

	list
	blockList

	list
	list

	lwr
	party

	mnstm
	ministerialStatements

	ntcmot
	noticesOfMotion

	ntnint
	nationalInterest

	orlstm
	oralStatements

	para
	paragraph

	pntord
	pointOfOrder

	prcmot
	proceduralMotions

	prnstm
	personalStatements

	pry
	prayers

	pts
	petitions

	qst
	question

	qstr
	quotedStructure

	qsts
	questions

	qtxt
	quotedText

	rec
	recital

	recs
	recitals

	roll
	rollCall

	res
	resolutions

	sec
	section

	subchp
	subchapter

	subcl
	subclause

	subhdg
	subheading

	subpara
	subparagraph

	subsec
	subsection

	trans
	transitional

	wrapUp
	listWrap

	wrapUp
	wrap

	wrtst
	writtenStatements

7.4.3 num

The num part of an id is a (possibly empty) representation of the numbering of the element within its context. There are three subcases:
1. Globally and locally unique elements: if the element is necessarily unique within its context, no numbering is used, and therefore no num part. For instance, since there is exactly one body in acts and bills, its id can be simply "body" (or "doc_1__body" in case of a composite document, of course). Analogously, since there is at most one content element inside articles or sections, the id of the content element of article 12 will be simply "art_12__content".

2. Explicitly numbered elements: an explicitly numbered element has its number determined in the expression itself in the form of a num sub-element. The num part of the ids of such elements corresponds to the stripping of all punctuation, separations as well as redundant characters in the content of the num element. The representation is case-sensitive. For instance, if article 12 contains <num>Art. 12 bis</num> then the num part of the id will be "12bis";

It is the job of the author of the manifestation to determine whether the numbering expressed in the num element is global (i.e., it starts at 1 at the beginning of the document) or local (i.e., it restarts at 1 inside or after every instance of an intermediate element). This is usually made clear within every legal tradition and usually can be established by briefly examining a few or even just one document in its original form.

3. Implicitly numbered elements: an implicitly numbered element has no num sub-element, and its numbering is established by counting the occurrences of similar elements within the same context, necessarily using arabic numbers.

It is the job of the author of the manifestation to determine whether the best way to count these elements is globally (i.e., starting at 1 at the beginning of the document class) or locally (i.e., restarting at 1 inside or after every instance of an intermediate element).

This naming convention provides no rules on this choice, but there are a few common sense approaches. For instance, it is very natural that eop elements are globally counted, and eol are locally counted by their preceding eop element, and as such, the third eop element (the one separating the third page from the fourth) has id "eop_3" (note no prefix), while the fifteenth end of line after such eop (the one separating the fifteenth line from the sixteenth) will have as id "eop_3__eol_15". On the other hand, p elements within a given structure are probably counted locally (as in "third p of section 12"). This is not necessarily the immediately containing element (which in this case would be the content element), but any containing or preceding element that in the opinion of the author of the manifestation provides context for the counting. Thus the third p of section 12 could reasonably have "sect_12__p_3" as its id.

7.4.4 Abundant or incomplete references

An abundant reference is a reference, in particular the fragment part of an IRI, that contains more information than needed to match it to the id of an element. An incomplete reference, on the other hand, contains less information than necessary and therefore may point to more than one possible destinations.
We never have abundant or incomplete ids in the id attributes of elements, since ids are created by the author of a manifestation, and therefore we expect him/her to know what is needed to establish the minimum complete set of information to create an unambiguous id. Therefore we only deal with abundant or incomplete references, since the author of a reference could not know everything about the document being mentioned in the text of the reference., and therefore he/she might create an incorrect reference that has too much or too little information.

In case of abundant reference, the resolver should identify the relevant minimal id (if it exists) by removing prefixes until a perfect match is found; in case of missing information, on the other hand, the resolver must establish an interactive session with the user similar to the process of resolving work-level IRIs, and determine the missing information necessary to identify the id of an unique element.

7.5 Expression IDs and work IDs
Documents are complex structures. Sometime, it is important to record the fact that the (conceptually) same structure may have different content (e.g., for different languages, different versions or different audiences. Permanent Ids are the basic tool to be able to identify the concept of sameness across situations that require different content to be known as really being the same. Unfortunately, relying only on a permanent id prevents some common and very useful operations to be performed on documents that present multiple instances of the same structure. For this reason the concepts of expression ids (eId) and work ids (wId) have been introduced.
The problems in the permanence of ids appear at least in the four following situations:

1. in multilingual works, the concurrence of multiple similarly named structures in multiple expressions, say article 2 in the French version of a document and section 2 in the English version of the same document, both referring to the same conceptual structure.
2. in a multi-version file, the co-occurrence of two similarly named structures from two versions, say article 2 in the past version and article 2 in the current version, both contained in the same (multiversion) manifestation.

3. in a modification act, the concurrence of two similarly named structures of the amending and of the amended document, say I am amending art.2 of the amended act, and of course an art.2 exists already in the amending act.

4. in a chain of versions, the requirement to renumber a few structures that desynchronizes completely the old identification mechanisms and the new one, e.g. article 2 is from now on known as article 15. Such renumbering is frequent in bills, and rare in acts. But external references to bills are mainly static (i.e. they refer to a specific version of a bill), while external references to acts are often dynamic (i.e. they refer to any of a number of versions depending on the nature of the quest).
a. First use case – renumbering in bills: an approved amendment A inserts a new article between art.1 and art.2 of version 1 of bill B. Because of this decision, art.2 is known in version 2 of B as art.3, art.3 is known as art.4, etc.
b. Second use case – renumbering in acts: while act Y is in version 1, on date D1 act X makes a (dynamic) reference to art.2 of act Y. Subsequently, on date D2, act Y gets renumbered, and in version 2 art.2 becomes art.15 and a new art.2 is introduced in its stead. Subsequently, on date 3, act W makes a (dynamic) reference to art.15 of act Y (which is the new name for art.2) and on date D4 act Z makes a reference to art.2 of act Y (which is a new article that did not exist previously).

The risk here is to collapse two potentially very different meanings of “identification” in just one id: the id of the right place (the one that I mean now when I use this id) and the id of the same place (the one that had such id in a different version or in a different variant of this document).

In fact there are really two identifiers at work: one has the purpose of matching the evolving nature of the fragment with respect to the internal structure of the document and the other must guarantee the persistency of the identity of the fragment across versins and variants. They are usually the same, and diverge only when one of the four above-mentioned situations occur.

Our solution maintains some fundamental principles:

1. Universality: the approach taken works for all document types that Akoma Ntoso deals with now or will deal with in the future. It works for amendable parts as well as non-amendable parts, for frequently modified parts as well as never modified parts. It works for original versions, single versions, multiple versions, and chains of versions.

2. Proportionality of impact: the approach taken for a rare occurrence does not affect the solutions taken for the more frequent occurrences. It is better for the solution of a rare occurrence to be very convoluted than for the solution to a frequent occurrence to be even only mildly convoluted.

3. Uniqueness: the id of a part is unique within the document.

4. Persistency: the id of a part is persistent across versions, i.e., across all expressions of the same work. The persistency refers to the identity of the part, and not of the name or the number (i.e., if a part is moved and renamed the id accompanies the part, and not stay with the number), so it remains possible to track across versions the movement of the part.
5. Navigability: the id of a part is usable in IRI as the fragment part (after the # sign), even in the hypertext link of a separate document, and the link remains traversable to the right place regardless of what happened to the document.

6. Self-sufficiency: the id of a part is the only information needed to perform the basic operations (in particular, navigation and tracking). Explanatory metadata are always optional, so that it is not appropriate to deal with tracking in an apposite metadata section.

7. Contiguity: the id of a part is near the part it refers to, e.g., as an attribute to the relevant element
.

8. Meaningfulness: the id of a part expresses, as much as possible, basic facts about its nature, position, or relation to superior and/or neighboring elements that are meaningful to the local tradition.

9. Transferability: the id of a part is transferable when the part is transferred from a document to another, or from a document type to another. For instance, ids of bills is transferable to the ids of the corresponding act once the document has been promulgated, and similarly, the id of a structure within an amendment proposal, possibly even in an oral discussion reported in a hansard, is transferable to the id of the structure in a new version of the bill.

Given the above-mentioned principles, the natural solution is to have two identifiers to deal with. One is persistent and associated to the work, while the other is evolving in time and associated to the expression. Whenever the persistent id and the evolving id do not differ, only one of them is specified in the document, but when they differ, then the evolving id follows the structure of the expression, while the permanent id is anchored to the structure of one specific expression, called Master Expression, which is considered as the fundamental expression for the permanent identification of fragments.
When a situation occurs that requires the two ids to differ from each other, such as one of the above-mentioned situations 1, 2, 3 or 4, then the eId attribute is set to reflect the new role and number of the element in the structure, while the wId attribute is added and set to reflect the identity that such fragment had, has or would have in the Master Expression. Thus, after any change in the document, the work-level id (wId) is added and never changes, and the expression id (eId) keeps on being updated according to the new data.
Tracking is always based on the wId, navigation is always based on the id that was the eId at the moment, and transfer is always based on the eId. Since the evolving id may change in time more than once, a metadata structure has been added to hold a complete map in time of the relationships between the persistent id and each of the evolving ids.

For instance, using the following simplified naming convention: doc@vers#fragment, we can describe the four situation as follows:

· Multi-lingual document (subcase a): Two expressions exist in two different languages. One is the standard, or default language, and the other is an additional variants in a different language. As such, the version in the default language is the master expression, and the other version uses the master expression’s ids as wIds. E.g., how do we represent that article 2 in the French version contains the same text as section 2 in the English version, which is the master Expression?:
Master expression (e.g., in English)

<section eId="sec_2">

 <num>2</num>

 <content>

 <p>Some text in English</p>

 </content>

</section>

Variant (e.g., in French)

<art wId="sec_2" eId="art_2">

 <num>2</num>

 <content>

 <p>Du texte en Français</p>

 </content>

</art>

In this context, a reference such as doc#sect_2 points by default to the default destination, but a client-side script could, upon signaling that the user has a specific language preference, locally fiddle with the ids to have the destination change.

· Multi-lingual document (subcase b): Two expressions exist in two different languages, but neither can be determined as the default or master language. As such, the master expression does not exist in a concrete expression, but must be determined abstractly (it would also be called an UR-Expression), and both versions uses the UR-expression’s ids as wIds. E.g., how do we represent that article 2 in the French version contains the same text as section 2 in the English version, and neither is the master Expression?:

Variant (e.g., in English)

<section wid=”elm_2” eId="sec_2">

 <num>2</num>

 <content>

 <p>Some text in English</p>

 </content>

</section>

Variant (e.g., in French)

<art wId="elm_2" eId="art_2">

 <num>2</num>

 <content>

 <p>Du texte en Français</p>

 </content>

</art>

· Multi-version document: The "default" fragment uses a plain id, the "secondary" destination uses a modified id.

<art eId="art2">

 <num>2</num>

 <content>

 <p>New version of art.2</p>

 </content>

</art>

<art wId="art2" eId="art2v1">

 <num>2</num>

 <content>

 <p>Old version of art.2</p>

 </content>

</art>
In this situation it is assumed that the expected default behavior when traversing documents is to go to the newer version of the document, and if the navigation mechanism knows something more specific about the needs of the user, it would lead to the older version of the fragment instead.

· Amending act: the structured content uses wId as a suggestion of the id that the structure will have in the new version of the amended document:

<mod id="mod_1">

Art. 5 is changed as follows:

<quotedStructure id="mod_1__qstr_1">

<art eId="mod_1__qsrt_1__art_5" wId="art5">

...

</art>

</quotedStructure>

</mod>

· Renumbering of bill (see use case 4.1): The first version of the bill has simple ids:

<article id="art_1">

<num>1</num>

<content><p>Originally article 1</p></content>

</article>

<article id="art_2">

<num>2</num>

<content><p>Originally article 2</p></content>

</article>

<article id="art_3">

<num>3</num>

<content><p>Originally article 3</p></content>

</article>

The second version of the bill, after a new article 2 was inserted, generating a renumbering of the subsequent articles, uses id to specify the original ids, regardless of the position, and uses eId to specify the id each article should have if this were a new document.

<article eId="art_1">

<num>1</num>

<content><p>Originally article 1</p></content>

</article>

<article eId="art_2">

<num>2</num>

<content><p>New article 2</p></content>

</article>

<article wId="art_2" eId="art_3">

<num>3</num>

<content><p>Originally article 2</p></content>

</article>

<article wId="art_3" eId="art_4">

<num>4</num>

<content><p>Originally article 3</p></content>

</article>

Since bills mostly receive static references, and since static references always include the version number, it is always very clear what refers to what: bill@v1#art_2 refers to the same article as bill@v2#art_3 and a different one than bill@v2#art_2.

· Renumbering of acts (see use case 4.2): The structure of the document is similar to the bills’ example, and given the use case "while act Y is in version 1, on date D1 act X makes a (dynamic) reference to art.2 of act Y. Subsequently, on date D2, act Y gets renumbered, and in version 2 art.2 becomes art.15 and a new art.2 is introduced in its stead. Subsequently, on date 3, act W makes a (dynamic) reference to art.15 of act Y (which is the new name for art.2) and on date D4 act Z makes a reference to art.2 of act Y (which is a new article that did not exist previously)", then the following are ideas for the XML conversion:
· in act X the reference is Y#art_2. This corresponds to the structure that in version 1 had eId="art_2".
· in act W the reference is Y#art_15. This corresponds to the structure that in version 2 had eId="art15" and wId="art_2"
· in act Z the reference is Y#art_2. This corresponds to the structure that in version 2 had eId="art2" and no wId.

7.6 Document IRIs
All resources are identified by a unique name. Resources are categorized as Work, Expression, Manifestation and Item, and each of these categories has a different naming structure. The actual syntax of the resource is specified in the following section, the “AKOMA NTOSO Naming Convention”, which is an integral part of the AKOMA NTOSO standard.

8 AKOMA NTOSO Naming Convention

The Akoma Ntoso standard defines a number of referenceable concepts that are used in many situations in the lifecycle of legal documents. The purpose of this section is to provide a standard referencing mechanism to these concepts through the use of IRI references
 associated to classes and instances of an ad hoc ontology. The referencing mechanism discussed in this document is meant to be generic and evolving with the evolution of the underlying ontology.

The most important concepts of the Akoma Ntoso ontology are related to documents that have legal status. All discourse and all description of legal sources can be characterized as referring to one of the four levels of a document as introduced by IFLA FRBR (International Federation of Library Associations (IFLA) - Functional Requirements for Bibliographic Records (FRBR) http://www.ifla.org/VII/s13/frbr/frbr.pdf):

· WORK – the abstract concept of the legal resource (e.g., act 3 of 2005).

· EXPRESSION - any version of the WORK whose content is specified and different from others for any reason: language, versions, etc. (e.g., act 3 of 2005 as in the version following the amendments entered into force on July 3rd, 2006).

· MANIFESTATION - any electronic or physical format of the EXPRESSION: MS Word, Open Office, XML, TIFF, PDF, etc (e.g., PDF representation of act 3 of 2005 as in the version following the amendments entered into force on July 3rd, 2006).

· ITEM – the physical copy of any manifestation in the form of a file stored somewhere in some computer on the net or disconnected (e.g., the file called act32005.pdf on my computer containing a PDF representation of act 3, 2005 as in the version following the amendments entered into force on July 3rd, 2006).

All documents at all levels can be composed of sub-elements, that when combined form the whole document. These are called components, are abstractly represent the notion that several independent subdocuments form the whole document as it appears to the reader (i.e., a main body possibly followed by a number of attachments such as schedules and tables):

· WorkComponents (e.g., main, schedule, table, etc) - the WorkComponents are abstract entities that can be referenced to refer to different ExpressionComponents in time.

· ExpressionComponent (e.g., main, schedule, table, etc.) - the ExpressionComponents represent the visible division of the document as generated by the content author (Parliament, etc.)

· ManifestationComponent (e.g., xml files, PDF files, TIFF images, etc.) - the ManifestationComponents represent the division of the document as generated by the manifestation author (e.g., the XML editor).

· ItemComponent - the actual files corresponding to the ManifestationComponents

Other concepts dealt by the Akoma Ntoso ontology also derive from the IFLA FRBR ontology, and include but are not limited to individuals (Person), organizations (Corporate Body), actions and occurrences (Event), locations (Place), ideas (Concept) and physical objects (Object). The full list of such concepts is provided in section 8.8.

Scope of the naming convention is to identify in a unique way all Akoma Ntoso concepts and resources on the net and in general all collections thereof. Some principles and characteristics should be respected in the naming convention:

a) MEANINGFULNESS: the name is a meaningful and logical description of the resource and not of its physical path

b) PERMANENCE: the name must be permanent and stable over time

c) INVARIANCE: the name must derive from invariant properties of the resource so as to provide some degree of certainty in obtaining the same name for the same resource regardless of process, tool and person.

FRBR concepts are used differently when taking about documents in a variety of situations. In each case it is important to use the IRI for the correct FRBR level of document. We describe here a few particularly frequent situations:

a) Legislative references will most probably refer to WORKs: acts referring to other acts do so regardless of the actual version, and references must be to something independent of all possible expressions, e.g., to the work.

b) The list of attachments and schedules belong to a specific EXPRESSION, so references to ExpressionComponents is specific of the expression level.

c) Yet the specific Manifestation that is the Akoma Ntoso XML format uses an XML-based syntax to refer to ExpressionComponents, and associate them to the corresponding ManifestationComponents containing the appropriate content. Therefore within XML files the IRI of the ManifestationComponents must be used to refer to all components, including the main document, all attachments and all schedules.

d) Multimedia fragments within an XML manifestation (e.g., a drawing, a schema, a map, etc.) do not exist as independent ExpressionComponents, as they are only a part of some ExpressionComponent (even when they are the only part). In fact they are only ManifestationComponents, and as such are referred to in object and img elements with the appropriate ManifestationComponent IRI. Even if the same multimedia content appears in different parts of the content of a Manifestation, each instance of that content must correspond to a different ManifestationComponent, and must be considered independently of the other.

e) It is a Item-level decision, once ascertained that the content is exactly identical, to provide space-saving policies by storing only one copy of the multimedia content. This Item-level decision has no impact on references and names, which are still individually different from each other.

f) Non-document concepts are referred to within the metadata and content of Akoma Ntoso documents. References are always performed in two steps: the first step ties the reference point in the document to an item in the Reference section using internal (and not standardized) IDs; the second step ties the item in the reference section to the actual concept through the IRI of the concept as specified in this document.

Since the most important concepts in Akoma Ntoso are connected to documents, the main part of this section is devoted to detailing the IRIs of document-related concepts, and in particular Works, Expressions, and Manifestations. Items are by definition outside of the scope of this standard, and are only briefly described. The final part of the section provides a IRI-based naming mechanism for non-document entities (as well as for document entities when they are handled in a similar way to non-document entities).

8.1 Absolute and relative IRIs
Absolute and relative URIs.

At all levels, the Akoma Ntoso IRIs belong to the http:// scheme and are normally resolved using mechanisms widely available in browsers and web servers. Within documents, IRIs are used as references to addressable resources, and are thus called IRI references.
According to the authoritative source RFC 3986
, all http:// IRI references are divided into absolute IRI and relative IRI references. An absolute IRI starts with the string “http://”, which is then followed by an officially registered domain name, and the local part that starts off the first individual “/” character. A relative reference, on the other hand, has no indication of the scheme, no indication of the domain name, and may have further missing parts at the beginning of the whole string (no missing parts on the end, though). Browsers are able to build the absolute IRI corresponding to the relative IRI by adding at the beginning of the provided IRI the missing parts that are taken from the IRI of a base resource.
In XML manifestations of Akoma Ntoso documents, IRI references shall always be expressed in relative forms. This implies that any resolution is carried out by the source of the base document (e.g., the one where the IRI reference is stored). This makes all IRIs independent of the actual resolution mechanism, and allows for very flexible storage, access and reference mechanisms. This means that all resolution mechanisms used to access an Akoma Ntoso document off another Akoma Ntoso document will rely on the same resolution mechanism as the original one, regardless of the resolution mechanism employed to generate the documents themselves. In case the hosting document lacks a base IRI, it is the responsibility of the active application to provide a base IRI in its stead.
Since it is a requirement of Akoma Ntoso that all existing FRBR items of a manifestation are byte-per-byte identical to each other, it is a natural consequence that it is not abstractly relevant which resolution engine dereferences the actual item whose IRI is resolved out of a work-level, a expression-level or a manifestation-level IRI reference. This in practice means that protocol and authority are, in resolution, not contributing information, and are thus interchangeable. Any party interested in absolute IRIs for Akoma Ntoso are required to produce their own resolution engine and use its protocol and authority for the purpose.

Another distinction is between global and local IRI refs
. A global IRI ref is a relative IRI ref where all parts are present except for protocol and authority (i.e., domain name). Thus a global IRI ref always starts with a slash, to indicate that all other parts are explicitly specified. A local IRI ref, on the other hand, may have one or more parts missing (necessarily from left to right), and the corresponding global (and, subsequently, absolute) IRI reference is determined by adding the corresponding parts taken from the base document, as usual with relative IRI refs with missing parts. In the following we will call all IRI references as simply IRI (they are all references, after all), and distinguish between absolute IRIs, global IRIs and local IRIs.
In XML manifestations of Akoma Ntoso documents, all work, expression and manifestation level references to whole documents must be global, and all references to individual components within the same level (or lower levels) must be local and are stored simply as the name of the corresponding component.
Thus, for instance, "/kn/act/2007-01-01/1/schedule1" is the relative, global work-level IRI for schedule 1 of act 1/2007 of Kenya, but a work-level reference to schedule 1 placed within the main document of the act will only contain the local IRI "schedule1". This guarantees that these references keep on working even after new expressions are created of the same work, both if the part containing the reference is changed or if it remains untouched.

Akoma Ntoso XML elements refer to other documents according to different levels of the FRBR hierarchy. In particular, ref, mref and rref point to work-level and occasionally expression-level IRIs only, while object, img and attachment always point to manifestation-level IRIs. As the global/local distinction is involved, ref, mref and rref elements always use global IRIs for documents different than the host, while img or attachment always refer to components of the host document, and thus always use local references.

A reference to a different act is always global:

as specified in <ref href="/kn/act/2006-08-10/123#sec12">section 12 of act 13/2006</ref>

while a reference to a specific attachment of the same act is always local:

as specified in <ref href="schedule01#par12">paragraph 12 of schedule 1 of this act</ref>

Analogously multimedia fragments (e.g., images) within the main document are specified using a local IRI:

The only exception to this rule is for external attachments, i.e., components that are external to the Akoma Ntoso XML package.

In general, all manifestation components are stored within a package, and thus have a IRI that is very similar to that of the manifestation itself. Sometimes, though, it could be appropriate to store the individual component elsewhere, as an independent document. Such situation may arise, for instance, when a document specifies another full document as one of its attachments, e.g. a ratification decree placing an international treaty as an attachment, etc. Since it is more appropriate to consider the important document the international treaty, it will constitute a work on its own and have its own IRI of a completely different form than the one that the attachment would have.

In these cases, it is more appropriate that all references to the external attachment are global at the work level as well as at the expression and manifestation level. Furthermore, in case we have external attachments, the Attachment and AttachmentOf elements of the References section need to be used. In fact, these two elements are ONLY and ALWAYS to be used for external attachments.

8.2 Resolving Akoma Ntoso IRIs
The AKOMA NTOSO naming architecture is built so as not to rely on the existence of a single storage architecture, since the IRIs stored within documents are differentiated from the ones physically representing the resource being sought.

The mapping from architecture-independent IRIs into accessible architecture-dependent URLs (representing the best ITEM for the document being sought) are realized through specific applications called IRI resolvers.

The AKOMA NTOSO naming architecture is built so as not to rely on the existence of any individual IRI resolver, but assumes that all IRIs are always correctly resolved to the best available ITEM regardless of the resolving mechanisms. In fact, each naming authority is given the global task of resolving any possible Akoma Ntoso IRIs, regardless of whether it belongs or not to the country or countries managed by the naming authority.

This implies that the authority-specific details of IRIs are purposefully omitted in this specification, and need to be considered only when first accessing a document.

For this reason, all IRIs in this specification are prefixed with the arbitrary domain name [http://www.authority.org] that stands for any of an arbitrarily large number of equivalent naming authorities.

8.3 The IRI of a Work

8.3.1 The IRI for the Work as a whole

The URI of a Work

The IRI for the WORK is the baseline for building the IRI for the EXPRESSION, which is the baseline for the IRI of the MANIFESTATION.

The IRI for the WORK consists of the following pieces:

· The base URL of a naming authority with IRI-resolving capabilities (not relevant for the Naming Convention)
· A detail fragment organizing in a hierarchical fashion the additional data:

· Country (a two-letter code according to ISO 3166-1 alpha-2) – in case of an Akoma Ntoso XML representation, this value must correspond to the content of element FRBRcountry in the metadata.
· Type of document – in case of an Akoma Ntoso XML representation, this value must correspond to the element immediately below the akomaNtoso root element (e.g., act, bill, debateReport, etc.).
· Any specification of document subtype, if appropriate – in case of an Akoma Ntoso XML representation, this value must correspond to the content of element FRBRsubtype in the metadata.
· The emanating actor, unless implicitly deducible by the document type (e.g. acts and bills do not usually require actor, while ministerial decrees do) – in case of an Akoma Ntoso XML representation, this value must correspond to the content of element FRBRauthor in the FRBRWork section of the metadata.
· Original creation date (expressed in YYYY-MM-DD format or just YYYY if the year is enough for identification purposes) – in case of an Akoma Ntoso XML representation, this value must correspond to the content of element FRBRdate in the FRBRExpression section of the metadata.
· Number or title or other disambiguating feature of the work (when appropriate, otherwise the string nn) – in case of an Akoma Ntoso XML representation, this value must correspond to the content of element FRBRnumber or FRBRname, respectively, of the metadata.
All components are separated by forward slashes (“/”) so as to exploit relative IRIs in references.

· [http://www.authority.org]/dz/debaterecord/2004-12-21
Algerian parliamentary debate record, 21st December 2004.
· [http://www.authority.org]/sl/act/2004-02-13/2
Sierra Leone enacted Legislation. Act number 2 of 2004.
· [http://www.authority.org]/ng/bill/2003-05-14/19
Namibia Bill number 19 of 2003
· [http://www.authority.org]/mg/act/2003-03-12/3
Madagascar. Act 3 from 2003
· [http://www.authority.org]/ke/act/decree/MinistryForeignAffairs/2005-07-12/3: Kenya, Decree n. 3 of 2005 by the Ministry of Foreign Affairs
8.3.2 The IRI for WorkComponents

Although components are really belonging to expressions only, it often happens that the legislator makes work-level references to components, which thus need to have work-level IRIs as well. Not only, but it may happen (and it has happened in the past several times) that the component (e.g., an attachment) may change name, or position, or even hierarchical placement, time after time.

For instance, we could have that an original act refers to table A of schedule 1, and after a little time schedule 1 is completely abrogated, and thus table A becomes (implicitly) an attachment of the main document. As such, it is important that all references to table A of schedule 1 are considered as references to table A of the main document after that event.

This brings about the necessity to have IRIs for Work Components. These are to be used when referring in a work-level fashion to components that have official names and positions, but may change in name and position with time.

One problem is that a work-level component IRI has no expression-level part, and yet the component part is AFTER the expression level part. Therefore, it is necessary to make sure that a work-level IRI fragment is never mistaken for an expression-level or a component-level IRI fragment.

But since:

1. The number part of the work-level IRI (/nn/) is required even in unnumbered documents ("/nn/" for not numbered).

2. The expression fragment, if present, always has at least the language and the "@" character, and the @ character can only be used for expression fragments,

the absence of a part containing the "@" character indicates a work-level component reference after the 4th component (the number) – in case of an Akoma Ntoso XML representation, this value must correspond to the content of element docTitle of the document.
· [http://www.authority.org]/kn/act/2007-01-01/1/schedule1

Kenya, schedule 1 of act 1 from 2007 (WorkComponent)

8.4 The IRI of an Expression

The URI of an Expression

Characterizing the Expression is the specific identification of a content with respect to another content. This includes specifications of the version and the language of the expression. Therefore, different versions of the same work, or the same version of the same work expressed in different languages correspond to different Expressions and will have different IRIs.

Expressions are organized in components (the ExpressionComponents), and therefore we need to identify separately the Expression as a whole from the individual IRIs for each ExpressionComponent. All of them are all immediately derived from the baseline, which is the IRI for the Work.

8.4.1 The IRI for the expression as a whole
The IRI for the EXPRESSION as a whole consists of the following pieces:

· The IRI of the corresponding WORK

· The character “/”

· The human language code in which the expression is drafted (a three-letter code according to ISO 639-2 alpha-3) – in case of an Akoma Ntoso XML representation, this value must correspond to the content of the first element FRBRlanguage in the metadata section.
· The “@” character (required)

· Zero or more comma-separated version identifiers as follows:

· If an approved act, the version date of the expression in syntax YYYY-MM-DD – in case of an Akoma Ntoso XML representation, this value must correspond to the content of element FRBRdate in the FRBRExpression section of the metadata.

· If a bill, the presentation date is appropriate, or the stage in the approval process that the current draft is the result of.

· The “#” character (required only if an optional part is added)

· Any content authoring information to determine the authoritativeness of the text content. This is separate and independent of the authoring information relative to the metadata and markup, which are among the features of the manifestation (optional) – in case of an Akoma Ntoso XML representation, these values must correspond to the content of elements in the FRBRExpression section of the metadata.
· Any content-specification date (as opposed to validity dates) (optional)
The absence of the version identifiers signals two different situations depending on the type of document:

· If the document is not versioned (e.g., the debate record of an assembly) then version identifier need not and cannot be present.

· If the document is versioned (e.g., an act in force), then the lack of version identifiers refers to the version in force at the moment of the resolution of the IRI (i.e., the “current” version of the act, where “current” refers to the moment in time in which the IRI is dereferenced, rather than the moment in time in which the document containing the IRI was created: today for the reader, as opposed to today for the author of the references).

A particular expression is the first version of a Work. This expression should not be confused with the Work itself (which considers the first Expression in no special way to all other possible Expressions), and it is a very specific, although peculiar, Expression.
The original version of an expression is referred to with an IRI with a dangling "@" character (which implies that the actual version date is the first appropriate date for that work).

· [http://www.authority.org]/dz/debaterecord/2004-12-21/fra
Algerian parliamentary debate record, 21st December 2004., French version

· [http://www.authority.org]/sl/act/2004-02-13/2/eng
Sierra Leone enacted Legislation. Act number 2 of 2004. English version, current version (as accessed today [according to the reader])

· [http://www.authority.org]/sl/act/2004-02-13/2/eng@
Sierra Leone enacted Legislation. Act number 2 of 2004. English version, original version

· [http://www.authority.org]/sl/act/2004-02-13/2/eng@2004-07-21
Sierra Leone enacted Legislation. Act number 2 of 2004. English version, as amended on July 2004

· [http://www.authority.org]/ng/bill/2003-05-14/19/eng@first
Namibia Bill number 19 of 2003, first stage, English version

· [http://www.authority.org]/mg/act/2003-03-12/3/mul
Madagascar. Act 3 from 2003 in French and Malagasy.

· [http://www.auth.org]/sl/act/2004-02-13/2/eng@2004-07-21#official/2004-07-25
Sierra Leone enacted Legislation. Act number 2 of 2004. English version, as amended on July 2004. Official version generated on 25 July 2004.

8.4.2 The IRIs for ExpressionComponents
Some expressions have many components, some are only composed of a main document. In order to explicitly refer to individual components, it is therefore necessary to introduce a naming convention that identifies individual components, and still allows an easy connection between the component and the expression it belongs to.

There are therefore two subcases

8.4.2.1 The expression is only composed of one component

8.4.2.2 The expression is only composed of one component
In this case, the IRI for the expression as a whole and for its main component are identical plus the name “main”.

8.4.2.3 The expression is composed of many components

8.4.2.4 The expression is composed of many components
The IRI for each ExpressionComponent consist in this case of the following pieces:

· The IRI of the corresponding EXPRESSION as a whole

· The character “/”

· Either

1.
A unique name for the attachment

2.
The name “main” which is reserved for the main document. It we have different main they are numbered sequentially: main1, main2, etc.

· [http://www.authority.org]/dz/minutes/2004-12-21/fra/main
Algerian parliamentary debate record, 21st December 2004., French version, main document

· [http://www.authority.org]/sl/act/2004-02-13/2/eng/main
Main body of the Sierra Leone enacted Legislation. Act number 2 of 2004. English version, current version (as accessed today)

· [http://www.authority.org]/sl/act/2004-02-13/2/eng@2004-07-21/main/schedule1
Attachment “schedule01” of Sierra Leone enacted Legislation. Act number 2 of 2004. English version, as amended on July 2004

· [http://www.authority.org]/ng/bill/2003-05-14/19/eng@first/main/schedule3
Third attachment of Namibia Bill number 19 of 2003, first stage, English version

8.4.3 Hierarchies of components in ExpressionComponents
A frequent situation occurs when an attachment has itself further attachments. This creates a complex hierarchical situation in which the component should be considered, in a way, as an expression by itself, whose components need to be listed and properly differentiated. The process can be further iterated whenever not only an attachment has further attachments, but its attachments also have further attachments and so on. The situation must also foresee the situation in which attachments at different levels of the hierarchy end up having the same name (e.g., table A in schedule 1 and table A in schedule 2).

In such situations, each ExpressionComponent must be considered as an expression by itself. Recursively, the IRI of attachments are as follows:

· if the attachment does not have further attachments, its IRI is provided as detailed in the previous section, without further addenda.

· If the attachment has further attachments, the IRI as detailed in the previous section refers to the whole attachment, including its own attachments.

· To refer to the main document of an attachment that has further attachments, a further “/main” part should be added.

· To refer to any further attachment of an attachment, a further “/” followed by a unique name for the attachment must be added to the attachment itself.

· [http://www.authority.org]/sl/act/2004-02-13/2/eng@2004-07-21/main/schedule1
Whole attachment “schedule01” of the Sierra Leone enacted Legislation. Act number 2 of 2004. English version, English version, as amended on July 2004.

· [http://www.authority.org]/sl/act/2004-02-13/2/eng@2004-07-21/main/schedule1/main
Main document of the attachment “schedule01” of Sierra Leone enacted Legislation. Act number 2 of 2004. English version, as amended on July 2004

· [http://www.authority.org]/sl/act/2004-02-13/2/eng@2004-07-21/main/schedule1/tableA
Attachment “Table A” of the attachment “schedule01” of Sierra Leone enacted Legislation. Act number 2 of 2004. English version, as amended on July 2004

· [http://www.authority.org]/sl/act/2004-02-13/2/eng@2004-07-21/main/schedule1/attachment1/main
Main document of the attachment “attachment01” of the attachment “schedule01” of Sierra Leone enacted Legislation. Act number 2 of 2004. English version, amended on July 2004

8.4.4 The IRIs for virtual expressions
In some situations the information such as the actual enter-in-force date of the expression or the language is not known in advance, and it is necessary to create references or mentions of documents whose IRI is now known completely (possibly, because their exact delivery date is not known yet). These are called virtual expressions (i.e., references to expressions that probably do not exist yet or ever, but can be unambiguously deduced once all relevant information is made available).

There are at least three cases where such situation may take place:
· the information is not known by the author of the expression (e.g., the legislator), in which case the act of actually retrieving the correct information is in itself an act of interpretation;

· the information is not known by the editor of the expression (e.g., the publisher of the XML version of the document), in which case the information can theoretically be available, but is too much of a burden for the publisher to retrieve it.

· the information is not know by the query system.

In these cases, the syntax for the IRI of the virtual expression uses a similar syntax to the specification of the actual expression, but the character “:” is used before each unknown value and instead of the “@” at the end of the specification of the work IRI.

For instance, if we need to reference the expression of an act in force on date “1/1/2007”, we will probably need to refer to some expression whose enter in force date was in a previous date to 1/1/2007.

· [http://www.authority.org]/sl/act/2004-02-13/2/eng:2004-07-21
Sierra Leone enacted Legislation. Act number 2 of 2004. English version, as amended on the closest date before July 21, 2004
Similarly, if we need to refer dynamically to the expressions in German of a specific act, we need to make a virtual reference whose date is left unspecified, and the language is forced to be German, as follows (deu is SO 639-2 alpha-3 code for German).

· [http://www.authority.org]/ch/act/2009-05-09/432/:deu
Swiss enacted Legislation. Act number 432 of 2009. Dynamic reference to any of the German versions.

8.5 The IRI of a Manifestation

Characterizing the Manifestation is the specific process that generated an electronic document in some specific format(s). This includes specifications of the data format(s) used. Therefore, different manifestations of the same expression generated using different data formats correspond to different manifestations and will have different IRIs.

Manifestations are organized in components (the ManifestationComponents), and therefore we must identify separately the Manifestation as a whole and the individual IRIs for each ManifestationComponent. All of them are all immediately derived from the baseline, which is the IRI for the EXPRESSION.

8.5.1 The IRI for the manifestation as a whole

The IRI for the Manifestation as a whole consists of the following pieces:

· The IRI of the corresponding EXPRESSION as a whole

· The character “#” (only required if any of the optional parts is added)

· The markup authoring information (useful to determine the authoritativeness of the markup and metadata) (optional) – in case of an Akoma Ntoso XML representation, this value must correspond to the content of element FRBRauthor in the FRBRManifestation section of the metadata.
· Any relevant markup-specific date (optional) – in case of an Akoma Ntoso XML representation, this value must correspond to the content of element FRBRdate in the FRBRManifestation section of the metadata.
· Any additional markup-related annotation (e.g., the existence of multiple versions, of annotations, etc.) (optional)
· The character “.” (required)
· A unique three letter acronym of the data format in which the manifestation is drafted. The acronym can be “pdf” for PDF, “doc” for MS Word, or “xml” for the XML manifestation, or “akn” for the package of all documents including XML version of the main document(s) according to the Akoma Ntoso rules (required) – in case of an Akoma Ntoso XML representation, this value must correspond to the content of element FRBRformat in the FRBRManifestation section of the metadata..
· [http://www.authority.org]/dz/debaterecord/2004-12-21/fra/main.doc
Word version of the Algerian parliamentary debate record, 21st December 2004., French version

· [http://www.authority.org]/sl/act/2004-02-13/2/eng/main.pdf
PDF version of the Sierra Leone enacted Legislation. Act number 2 of 2004. English version, current version (as accessed today)

· [http://www.authority.org]/sl/act/2004-02-13/2/eng@2004-07-21/main.akn
Package of all documents including XML versions of the Sierra Leone enacted Legislation. Act number 2 of 2004. English version, as amended in July 2004

· [http://www.authority.org]/sl/act/2004-02-13/2/eng@2004-07-21#CIRSFID/2011-07-15/main.akn
Package of all documents including XML versions of the Sierra Leone enacted Legislation. Act number 2 of 2004. English version, as amended in July 2004. Rendered in Akoma Ntoso by CIRSFID on 15 July 2011.

8.5.2 The IRIs for ManifestationComponents
Each ManifestationComponent is an independent electronic structure (e.g., a file) in a single data format. Every type of manifestation has of course a different data structure and file structure. Therefore the actual format of the IRIs of the components of the manifestation depend on the data format and cannot be formalized in general. In this section we therefore provide a grammar but not an exhaustive list of formats, that depends on the data format chosen for the manifestation.

The IRI for each ManifestationComponent consists of the following pieces:

· The IRI of the corresponding EXPRESSION as a whole

· The character “#” (only required if any of the optional parts is added)

· The markup authoring information to determine the authoritativeness of the markup and metadata (optional)
· Any relevant markup-specific date (optional)
· Any additional markup-related annotation (e.g., the existence of multiple versions, of annotations, etc.) (optional)
· The character “/”

· Some unique identification of the ManifestationComponent with respect either to the manifestation as a whole or to the ExpressionComponent the component is the manifestation of.

· The character “.“

· A unique extension of the data format in which the manifestation is drafted. The acronym can be “pdf” for PDF, “doc” for MS Word, “xml” for XML documents, “tif” for image formats, etc.

In the next section we will examine the format of the package and the relevant IRIs for a specific manifestation of Akoma Ntoso documents, the XML format.

8.5.3 The IRIs for the components in the Akoma Ntoso package manifestation
The Akoma Ntoso package manifestation is a very specific manifestation using a number of data formats (mainly XML but could include other multimedia formats as needed) with a very specific organization of parts and components. Since it makes explicit choices in terms of data formats and reciprocal references, it is important to provide clear and non-ambiguous rules as to the internal naming mechanism and its overall structure.

An Akoma Ntoso package manifestation is a package composed of one or more files organized in a flat fashion. The transportable format is a ZIP file whose extension is “.akn”. Other formats are possible and acceptable as long as they adhere to these rules.

The following are alternative options for the Akoma Ntoso package:

· If the document is just composed of text and does not refer to any multimedia fragment of any form, then the ZIP package contains a single document called “main.xml”.

· If the document is composed of many ManifestationComponents but does not refer to any multimedia fragment of any form, then the zip package is composed of many XML files, one for each ExpressionComponent. Each ManifestationComponent is then called as its corresponding ExpressionComponent, plus the “.xml” extension. The name “main” is reserved for the main component. Numbers are never used except when they are already part of the ExpressionComponent’s name.
· If the document contains multimedia fragments of any kind, then each individual fragment does not have a corresponding ExpressionComponent, but is just a ManifestationComponent referred to in the img or object element. All multimedia components must be stored within an inner structure (e.g., a folder) called “media”. Multimedia components can be called freely, but must use the appropriate extension to refer to their content type. Thus a logo can be called “logo.tif” or any other name, as long as the extension is correctly specifying the content type.

Reciprocal references to ManifestationComponents are necessary within a specific manifestation. For instance, the manifestation of the main document refers to the manifestations of its attachments via the attachment elements, and the schedule showing an image refers to the file of the image via the img element. In these cases, all references MUST be relative to the package (i.e., the manifestation as a whole):

· attachment1.xml
Manifestation of the first attachment of the current document

· schedule3.xml
Manifestation of the third attachment of the current document

· media/logo.tif
Manifestation of an image within the current document

References to ManifestationComponents are rarely, if ever, needed outside of the manifestation themselves. But if needed, they will refer to the file as follows:

· The IRI of the corresponding EXPRESSION as a whole

· The character “/”

· The relative reference to the required ManifestationComponent as specified above.

8.6 The IRI of an Item

Akoma Ntoso makes no assumption on the physical storage mechanism employed to record actual manifestations. As such, there is NO rule for IRIs of the items, which are free to assume any form whatsoever and correspond to whatever storage mechanism has been employed locally.

On the other hand, the actual URL for the item must be provided to a resolution mechanism in order for the hypertextual feature of the Akoma Ntoso publication systems to work correctly and automatically.

8.7 The IRI of non-document entities

The object of all discourses within the Akoma Ntoso framework can be described as a set of abstract classes and their instances and of the relationship among them. Cumulatively, definition of classes, relationships and instances are called an ontology.

The four most important classes of the Akoma Ntoso ontology are surely connected to documents, Work, Expression and Manifestation, but many more exist, even if they are not connected directly to physical documents. The purpose of this section is to provide a syntax for non-document entities, i.e., instances of non-document classes, such as people, organizations, concepts, etc. Furthermore, the syntax described here can also be used for document entities as an equivalent syntax to the one specified in the previous sections.

Akoma Ntoso entities are always associated to a class, which provides a structure of properties and relationships to other instances of the same and other classes. Classes in the Akoma Ntoso ontology are organized in a complex maze of sub/superclasses. These are useful to give shape and meaning to a domain, and to provide structure to the overall set of instances of a base class. It is important to notice that sub/superclasses do not form necessarily a tree, but can form a more complex structure, namely a directed graph.
For instance, the class of Kenyan judges can be considered a sub class of both Kenyan persons and of persons whose job description is judge. That is, there is a (implicit or explicit) subclass of Judges and a (implicit or explicit) subclasses of Kenyans, both of which are in turn subclasses of Person, and Kenyan Judges is a subclass of both. In fact, we immediately derive the principle that every different value in every different property or relationship implicitly generates a class, that turns into an explicit class only because of our whim or need. For instance, the class of all persons named “Joe” exists implicitly, identifies all persons whose first name is “Joe”, and, if so desired, can be made explicit through the definition of a subclass of Person.

While this is very useful for determining relationships between entities, it affects interestingly the mechanism to associate IRIs to such entities. In particular, there being no single hierarchy of classes, it is not appropriate to propose a single path of specifications from the super class to the final class. As such, ideally /person/judge/ken/JoeSmith must point to the same individual as /person/ken/judge/JoeSmith.

In order to maintain meaningfulness, permanence and invariance (which are the main requirements for our naming convention, as specified in the introduction of this document) we need to find a reliable naming mechanism for clearly identifying entities that does not depend on the sub/superclass organization except when strictly necessary.

In particular, we define the concept of Top Level Classes (TLC) that are guaranteed to be a partition of the overall domain of the Akoma Ntoso standard. TLC include Work, Expression, Manifestation, Item, Person, Organization, Concept, Object, Event, Process, Role, Term and Location. The list of TLC may include in future more, as long as they keep on generating a partition (i.e., that they are disjoint and cumulatively describe all possible instance of the Akoma Ntoso domain). Members of the TLC classes can be subclassed at will and with no theoretical constraints.

Given the high number of foreseeable subclasses of the TLC, and the pointlessness of determining a fixed hierarchy in such number, the naming of entities should not depend on the presence or absence of a given class except for TLC. This means that it is necessary that each instance of each TLC is provided with an ID string that is guaranteed to be unique within the TLC. The syntax of this ID is dependent of the TLC class, and the syntax for each of the existing TLC is provided in the next section.

Therefore, the IRI for non-document entities consists of the following pieces:

· The base URL of a naming authority with IRI-resolving capabilities

· A detail fragment organizing in a hierarchical fashion the additional data:

· The string “/ontology”

· The official name of the appropriate TLC

· Any number (including none) of slash-separated subclasses of the TLC, as long as they all refer to correct properties of the corresponding instance

· The ID of the instance, guaranteed to be unique within the TLC.

All components are separated by forward slashes (“/”) so as to exploit relative IRIs in references.

· [http://www.authority.org]/ontology/person/kn.joe.smith.1964-12-22
Joe Smith

· [http://www.authority.org]/ontology/person/kn/kn.joe.smith.1964-12-22
Joe Smith (implying that he is a Kenyan)

· [http://www.authority.org]/ontology/person/kn/judge/kn.joe.smith.1964-12-22
Joe Smith (implying that he is a Kenyan who is a judge)

· [http://www.authority.org]/ontology/person/judge/kn/kn.joe.smith.1964-12-22
Joe Smith (implying that he is a judge who is a Kenyan)

· [http://www.authority.org]/ontology/person/kenyanjudge/kn.joe.smith.1964-12-22
Joe Smith (implying that he is a Kenyan judge)

Please note that the classes Work, Expression, Manifestation and Item belong to the ontology as much as the other classes. As such, each Work, Expression and Manifestation can also be indicated with an ontology-based IRI that refers to exactly the same entity.

Therefore, the following IRIs are equivalent pair-wise, and refer to the same entities:

· [http://www.authority.org]/sl/act/2004-02-13/2
[http://www.authority.org]/ontology/work/sl.act.2004-02-13.2

· [http://www.authority.org]/sl/act/2004-02-13/2/eng@2004-07-21
[http://www.authority.org]/ontology/expression/sl.act.2004-02-13.2.eng@2004-07-21

· [http://www.authority.org]/sl/act/2004-02-13/2/eng@2004-07-21/main/schedule1
[http://www.authority.org]/ontology/expression.component/sl.act.2004-02-13.2.eng@2004-07-21.main.schedule1

· [http://www.authority.org]/sl/act/2004-02-13/2/eng@2004-07-21/main.akn
[http://www.authority.org]/ontology/manifestation/sl.act.2004-02-13.2.eng@2004-07-21.main.akn

8.8 The IDs for Top Level Classes
As mentioned in the previous section, the hierarchy of path elements is of no use for identifying instances of each TLC, given the fact that there can be no unique hierarchy of subclasses in the Akoma Ntoso ontology.

Thus each instance of the ontology needs to be provided with an ID guaranteed to be unique within the TLC it belongs to. The syntax of the ID depends on the actual TLC, and is briefly explained in the following schema.

8.8.1 TLC Person

 A dot-separated string composed of the country of citizenship, the first name, the family name, the birth date in yyyy-mm-dd format, and an optional arbitrary string if ambiguity exists (e.g., if two individuals with the same name and the same birth date exist in the same country).

· kn.joe.smith.1964-12-22
Mr. Joe Smith, the only Kenyan citizen with that name born on December 22nd, 1964

8.8.2 TLC Organization

 A dot-separated string composed of the country of registration (or the string “int” if international, or the string “unreg” if not registered anywhere), a recognizable form of the organization name and an optional arbitrary string if ambiguity exists (e.g., if two organizations with the same name exist in the same country).
· kn.parliament
the Kenyan Parliament

8.8.3 TLC Concept
Concepts differ from terms as they are referring to a specific word or collection of words embodying some concept, rather than to the concept embodied by different words. Therefore, for instance, pope and pontiff are different terms for the same concept, while date is a single term referring to two different concepts (a calendar date as opposed to a type of fruit). Concepts must refer to an specific reference resource that can be used to disambiguate the object being referred to. This must be either a thesaurus, an encyclopedia or a commonly available dictionary. A unique form of the terms specifying the concept joined with dots preceded by an unambiguous name for the resource being used. No country specifications are necessary for concepts.

· wikipedia.Presidential.election
the concept of Presidential Election as defined in Wikipedia

8.8.4 TLC Object
Objects must refer to a specific reference resource that can be used to disambiguate the object being referred to. This must be either a thesaurus, an encyclopedia or a commonly available dictionary. A unique form of the terms specifying the concept joined with dots preceded by an unambiguous name for the resource being used. No country specifications are necessary for objects.

· wikipedia.weapon
a weapon (as a physical object) as defined in Wikipedia
8.8.5 TLC Event
Events must refer to a specific reference resource that can be used to disambiguate the object being referred to. This must be either a thesaurus, an encyclopedia or a commonly available dictionary. A unique form of the terms specifying the concept joined with dots preceded by an unambiguous name for the resource being used. No country specifications are necessary for events.

· wikipedia.world.war.ii
The second World War as defined in Wikipedia
8.8.6 TLC Location
Places must refer to a specific reference resource that can be used to disambiguate the object being referred to. This must be either a thesaurus, an encyclopedia or a commonly available dictionary. A unique form of the terms specifying the concept joined with dots preceded by an unambiguous name for the resource being used. No country specifications are necessary for places.

· wikipedia.rome
The city of Rome as defined in Wikipedia
8.8.7 TLC Process
Processes must refer to a specific reference resource that can be used to disambiguate the object being referred to. This must be either a thesaurus, an encyclopedia or a commonly available dictionary. A unique form of the terms specifying the concept joined with dots preceded by an unambiguous name for the resource being used. Country specifications are necessary for processes since processes with the same name may exist with different steps across different countries.

· wikipedia.kn.promulgation
The promulgation as defined in Wikipedia and as carried out in Kenya.
8.8.8 TLC Role
Roles must refer to a specific reference resource that can be used to disambiguate the object being referred to. This must be either a thesaurus, an encyclopedia or a commonly available dictionary. A unique form of the terms specifying the concept joined with dots preceded by an unambiguous name for the resource being used. Country specifications are necessary for roles since roles with the same name may exist with different characteristics across different countries.

· wikipedia.kn.speaker
The role of the speaker of the house as defined in Wikipedia and as conceived in Kenya.
8.8.9 TLC Term
Terms differ from concepts as they are referring to a specific word or collection of words embodying some concept, rather than to the concept embodied by different words. Therefore, for instance, pope and pontiff are different terms for the same concept, while date is a single terms referring to two different concepts (a calendar date as opposed to a type of fruit). Terms must refer to a specific reference resource that can be used to disambiguate the object being referred to. This must be either a thesaurus, an encyclopedia or a commonly available dictionary. A unique form of the terms specifying the concept joined with dots preceded by an unambiguous name for the resource being used. No country specifications are necessary for places but a language reference is necessary for the correct attribution.

· wikipedia.eng.speaker
The role of the speaker of the house as defined in Wikipedia and expressed in English.
8.8.10 TLC Work
The domain-less IRI of the Work as specified in this document, with all slash substituted by dots.

· sl.act.2004-02-13.2
Sierra Leone enacted Legislation. Act number 2 of 2004.

8.8.11 TLC Expression
The domain-less IRI of the Expression as specified in this document, with all slash substituted by dots.

· sl.act.2004-02-13.2.eng@2004-07-21
Sierra Leone enacted Legislation. Act number 2 of 2004. English version, as amended on July 2004

8.8.12 TLC Expression Component
The domain-less IRI of the Expression Component as specified in this document, with all slash substituted by dots.

· sl.act.2004-02-13.2.eng@2004-07-21.schedule1
Attachment “schedule01” of Sierra Leone enacted Legislation. Act number 2 of 2004. English version, as amended on July 2004

8.8.13 TLC Manifestation
The domain-less IRI of the Manifestation as specified in this document, with all slash substituted by dots.
· sl.act.2004-02-13.2.eng@2004-07-21.akn
Package of all documents including XML versions of the Sierra Leone enacted Legislation. Act number 2 of 2004. English version, as amended in July 2004

8.8.14 TLC Manifestation Component
The domain-less IRI of the Manifestation Component as specified in this document, with all slash substituted by dots.

· sl.act.2004-02-13.2.eng@2004-07-21.main.xml
The main document (in XML) of the Sierra Leone enacted Legislation. Act number 2 of 2004. English version, as amended in July 2004

8.8.15 TLC Item
The exact URL of the item as specified in the document, with all slashes substituted by dots.

9 Differences from previous releases

9.1 Differences between release 16/12/2014 (CSD12 AN 3.0) and 23/06/2014 (CSD11 AN 3.0)

This release contains a few bug fixes and extensions suggested by the group during the discussions of the last few months.
· A bug fix on the xsd:unique rules has been added, that still referred to currentId instead of eId.

· A new optional element called FRBRversionNumber has been added to FRBRExpression to specify information about the version identifier to be used in the expression-level URI.
· A new optional element called FRBRportion has been added to FRBRManifestation to specify information about the portion identifier in case the manifestation is a fragment of a larger document. This is also meant to be used for the determination of the corresponding URI.

· Elements source, destination, force, efficacy, application, duration, condition in modification specifications now allow arbitrary content belonging to another namespace.

· Uniqueness requirements have been added for documentCollection, officialGazette, and amendmentList, similar to all other document types.

· Attribute for has been added to mod, mmod and rmod elements to allow them to point to ref elements placed outside of the elements themselves.
9.2 Differences between release 23/06/2014 (CSD11 AN 3.0) and 16/04/2014 (CSD10 AN 3.0)

This release contains just ONE modification from CSD 10, namely, that attribute eId has been made optional even in attribute group idreq. This means that attribute eId is now always optional.

Nonetheless, the correct reading of this choice is subtler and not so straightforward: since CSD11 a new concept of layered compliance level has been introduced in Akoma Ntoso, whereby one can choose one of five levels of compliancy with the standard. In particular, the adoption of the Akoma Ntoso Naming Convention for document IRIs and ids as described in sections 7 and 8 of these Release Notes has been associated to compliance level 2. This means that compliant documents can now decide not to use the syntax given (and stop at compliance level 1). In this case, no constraints can be imposed on the syntax of the id attributes. For this reason, and to allow document collections to use reliably the naming convention as specified reason, it has been decided that you cannot use attributes eId and wId unless you adopt the corresponding id syntax as described in section 7 of these release notes.

Therefore, the rule of optionality and requiredness of the ids is as follows:

a) Attribute GUID may be used for all compliancy levels, and no constraint on is syntax is imposed.
b) Documents seeking compliancy level 2 or greater must use attributes eId and wId according to the constraints and rules expressed in section 7 of these notes.

c) Documents seeking compliancy level 1 may use attributes eId and wId, and if they do use them, they must use them according to the constraints and rules expressed in section 7 of these notes.

d) Documents seeking compliancy level 1 and not complying with the constraints and rules for identifiers expressed in section 7 of these notes must not use attributes eId and wId.

9.3 Differences between release 16/04/2014 (CSD10 AN 3.0) and 02/04/2014 (CSD09 AN 3.0)

This release contains a small number of minor modifications discussed by the group in the month of April 2014, and is meant as a small fix with regards to the previous CSD09. In particular:

· Element subheading now has attribute eId required instead of optional.
· Element previous, introduced in the last release, has now attributes showAs and eId both optional.

· A new simple type noWhiteSpace has been added, which allows any printable character except whitespace, and has been used for the values of eId, wId and GUID.

· * Element wrap has been renamed wrapUp.
· * Element listWrap has been renamed listWrapUp.

· * Element note is now of type subFlowStructure similarly to authorialNote.

9.4 Differences between release 02/04/2014 (CSD09 AN 3.0) and 01/04/2014 (CSD0F AN 3.0)

All constraints that were removed in version CSD0F have been reinstated, and the schema now validates documents that are valid and does NOT validate documents that are not.

9.5 Differences between release 02/04/2014 (CSD09 AN 3.0) and 16/01/2014 (CSD08 AN 3.0)

This release contains a number of modifications discussed by the group in the months of February and March 2014, and in particular a whole new doctrine for ids in Akoma Ntoso. In particular:

· Core attributes originalId and currentId have been finally understood to refer to work-level identification (and thus permanent and invariable) and expression-level identification (and thus semantically linked to the text of the expression) respectively. For this reason, they have been renamed wId and eId respectively.

· Sections 7.3, 7.4 and 7.5 of this release notes have been considerably revised and rewritten in terms on work-level ids, expression-level ids, and the concept of master expression has been introduced.

· The docContainerType used by elements such as component and attachment, has been added basic hierarchy elements such as num, heading and subheading, to allow hosting documents to introduce properly any hosted components and attachments with introductory text and heading.

· A new element, FRBRmasterExpression, has been added in the FRBRExpression block to specify the URI of the Master Expression if this expression is not the master expression. The lack of the href attribute implies that no master expression exist (e.g., for multi-lingual expression where no individual expression can be considered more important than the others), so that a UR-expression needs to be specified in the refersTo attribute, one virtual expression whose eIds will be considered as the wIds of all other expressions.
· Element renumberingInfo, introduced in CSD05 within temporalData, has been renamed mapping and placed inside a mappings element inside analysis, to emphasize the fact that changes in ids do not happen only when a renumbering occurs, but also whenever this expression is not the master expression of the document, i.e., whenever eIds and wIds diverge. Attributes have not changed.
· A new element previous has been added within element textualMod for identifying the location and id of the element that was modified since the previous expression. Although this can be used for any modified element, it is strictly necessary only for renumbering, to identify the structure that has been renumbered.

· Attribute time (esp. in the recordTime element) how accepts both time data as well as dateTime data.

· Element listConclusion has been renamed listWrap to create a parallel with elements intro/listIntroduction and wrap/listWrap.

9.6 Differences between release 16/01/2014 (CSD08 AN 3.0) and 20/12/2013 (CSD07 AN 3.0)

This release contains a number of modifications discussed by the group, as well as one suggestion from outside, namely by Matthew Somerville of mysociety.org. In particular:

· extractText and extractStructure have been renamed as embeddedText and embeddedStructure respectively. This appears to satisfy better the real nature of the elements and their purpose.

· An attribute href has also been added to embeddedText and embeddedStructure (formerly extractText and extractStructire), so as to specify the IRI of the document they are embedding. Since sometimes the document may not actually exist independently, the attribute is optional.

· A new container type, docCollectionType, has been added and associated to elements attachment and component.

· The content type of documentCollection has been changed to be composed of one or more component, which in turn include either whole documents or interstitial elements. This is to harmonize the structure of the documentCollection elements with components and with attachments.

· A new number attribute has been added to eol and eop, so as to record the page number or line number actually present (if at all) on the source printed version the eol and eop elements are referring to.

· As noticed by Ashok Hariharan, previous version did not modify the URI of the namespace. This has been fixed.

9.7 Differences between release 20/12/2013 (CSD07 AN 3.0) and 25/9/2013 (CSD06 AN 3.0)

This release contains a number of modifications proposed by the Technical Committee of the OASIS working group in December 2013, as well as a new specification for the license that gets rid of the GPL license in favor of a more liberal one. In particular:

· Attachments have been reorganized as to become closer in nature and syntax to components of a composite document. This means that inside the attachments element there is a new repeatable element attachment that contains the document root of the attachment itself. This element has the usual attributes including a required currentId.
· subFlowStructures (such as quotedStructure and extractStructure have changed content model in order to allow a maximum of ONE enclosed document element. In order to include multiple documents one must therefore use multiple extractStructure or quotedStructure elements.

· A new section of the analysis element, restrictions, has been added to contain restriction elements that describe jurisdiction specifications and other types of restrictions of validity. Each restriction element associates a TLCConcept identified by a refersTo attribute to a fragment of the document identified by an href attribute. At the moment only one type of restriction is possible, namely jurisdiction. Other types of restrictions may be specified in future by adding values to the new type restrictionType. This can be used to specify jurisdiction restrictions (frequent, e.g., in UK legislation) to individual fragments of the legislation.
· A new specification of license has been used instead of the old GPL v. 3.0. The full text of the license specification is placed in a new file associated to the release called license.txt, to replace the old gpl-3.0.txt . Its content is as follows:

The schema referred to as Akoma Ntoso is provided by the Copyright Holder OASIS under this instantiation of the Akoma Ntoso SPECIFICATION LICENSE:

Copyright (C) Copyright Holder: All Rights Reserved.

Definition:

In the following, "Specification" refers to all diagrams and texts for defining the schema, including models/metamodels, glossaries/taxonomies/ontologies, semantic formalizations, grammars/schemas, sublanguage-naming systematics, transformers (e.g., normalizers and upgraders), as well as examples and test/use cases, along with their natural-language explanation and documentation.

Declaration:

This Specification may be used, reproduced, published, presented, and distributed, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, reproduced, published, presented, and distributed, in whole or in part, without restriction of any kind, provided that

* an unmodified copy of this document is included with all such copies and derivative works,

* non-authorized derivative works are clearly identified as such, and

* this Specification itself is not modified in any way, except as part of a collaboration with the Copyright Holder or to the extent necessary to translate its natural-language explanation and documentation into other natural languages.

Disclaimer:

THIS SPECIFICATION IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SPECIFICATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The template of the Akoma Ntoso SPECIFICATION LICENSE, which may be instantiated for other specifications, can be found at the following URL:xxxxxxxxxxxxxx

9.8 Difference in release CSD06 – 25 September 2013 as Modified 11 October 2013
There are no differences in the schema, which for this reason does NOT change namespace or version number.

In the documentation and in these release notes, though, all references to URIs have been replaced with references to IRIs instead, in order to allow for the use of non-latin scripts in addresses.
9.9 Differences between release 25/9/2013 (CSD05 AN 6.0) and 23/7/2013 (CSD03 AN 5.0)

This release contains a number of modifications proposed by the Technical Committee of the OASIS working group in August and September of 2013, including the notorious Cocoloco agreement on ids and requests from Veronique Parisse for the European Parliament and Monica Palmirani for the Uruguayan Parliament. In particular:
· A new inline element, docAuthority, has been added to the list of preface inline elements, to refer to the authority to which the current document has been submitted to, or the authority who controls the development process of this document (e.g., the house rather than the senate).

· Ids have been redesigned according to the Cocoloco Agreement of the 6th of September 2013 at the Legislative XML Summer School in Ravenna (I). Attributes id and evolvingId have been replaced with currentId (required, evolving in time, semantic), originalId (required only for renumbered documents, permanent, semantic) and GUID (optional, permanent, without required syntax). Section 7.4 of these Release Notes provides examples and justifications for this modification. Also note that neither id is actually of type ID, but rather NMTOKEN with an additional uniqueness requirement for all elements contained within a single document type (e.g., act, bill, debate, etc.). This allows composite documents to have identical ids in similarly named elements in different subdocuments.
· Attribute refersTo now allows a space-delimited list of references to items in the references element of the metadata, so as to allow for multiple semantic connections between content and external ontological entities.
· Element attachments now allows also elements interstitial and toc in its content model.
· Attributes originalId and evolvingId of element renumberingInfo in the temporalData metadata structure are now called original and current respectively, to avoid name clashes and to align their denomination to the ids they actually refer to.
· The separator of multipart semantic ids (e.g., “bck1-par2”) has been specified as “_” instead of “-“ in section 7.3 of these Release Notes.
9.10 Differences between release 23/7/2013 (CSD05 AN 3.0) and 18/2/2013 (CSD03 AN 3.0)

Please note that this is release CSD05 AN 3.0, and that CSD04 AN 3.0 was an unofficial intermediate release dated 18/7/2013 that was never distributed outside the OASIS TC, and its modifications are completely contained and described here.

This release contains a number of modifications proposed, discussed and approved by the OASIS TC between February and July 2013, and promoted by Monica Palmirani, Grant Vergottini and Veronique Parisse for the specific needs of Uruguayan bills, Swiss legislation, US and Hong Kong codes, and European Parliament’s legislation. In detail:

· The spelling judgment instead of judgement has been applied consistently throughout the schema as suggested by native English speakers and approved by the TC.
· The pattern popup has been renamed subFlow, and all types, groups and attribute groups containing the word popup have been renamed accordingly. Also the generic element popup is now named subFlow.
· Three new hcontainers have been added: rule, subRule and proviso.
· Element coverPage can now contain longTitle.
· A new inline element decoration has been added to mark the editorial suggestion by the legislator that are meant to decorate and explain the most recent publication of a legislative fragment, such as adding the word “new” on the side of an newly inserted article or section.

· A new judgment section has been added called argument, to specify the argument used by the judge to evaluate a case.
· Attribute list dateTime has been removed (containing both a date and a time attributes) and replaced by a extended data type for the date attribute, allowing either a simple date value (with the usual syntax YYYY-MM-DD) or a dateTime value YYYY-MM-DDThh:mm:ss(zzzz), where zzzzzz is either the letter “Z” (referring to UTC) or a six letter sequence composed of a plus or minus sign followed by a five-letter time offset with regard to UTC (e.g., CET would be -01:00, and EST would be +05:00). Absence of a time zone specification is only allowed when the time zone can be determined without ambiguity (e.g., in national documents for countries spanning a single time zone). Multiple representations of the same point in time according to different time zones must be marked up only ONCE with a disambiguating date attribute with any choice of time zone. All elements that used to have both date and time attributes (e.g, docDate, date, publication, eventRef, step, etc.) now only have the extended date attribute.
· The part component of a document structure can now be placed both at the end of the document type (i.e., just before the end tag of </bill> or </act> or, as before, at the end of the Akoma Ntoso structure (i.e., just before the end tag of </akomaNtoso>). This allows a greater flexibility in dividing longer documents in smaller fragments and placing the fragments either within the document flow or just outside of it.
· The type collectionStructure (used by complex documents) can now contain preambles.
· The hcontainer subdivision, has been added to the list of usable hcontainers, as it was left out erroneously.
· Element toc is back to being a block-level element without headings or introductions, but the need to have them has been taken care of by the new element blockContainer, which is a more general solution to a problem that toc shared with other elements, such as conclusions.

· A new block-level element has been added, blockContainer, meant to side blockList in the expression of complex structures at the block level. This allows to specify headed and autonomous sections within a block level context, such as element content, conclusion or prefaceSection.

· Type subFlowStructure (formerly popupStructure, used by subFlow elements such as quotedStructure and extractStructure, now allow more elements, in particular all document types (e.g., bill, act, etc.) and table elements tr, th, and td.
· Element FRBRname in FRBRWork properties can now be repeated as many times as needed to specify different well-known names with which the work is known.
· Type valueType, used by many metadata elements especially is the FRBR block, can now use the refersTo and showAs attribute.
· Modifier attributes exclusion and incomplete can now be added both to whole analysis elements, as before, as well as to individual members of the analysis element such as source, destination, etc.
· A new element renumberingInfo has been added in temporalData to manage the tracking of multiple renumberings in structure (e.g. for bills). Since id only contains the very first id for the element, and evolvingId contains the id the structure would have in the current version of the document, renumberingInfo provides a way to record all the intermediate evolving ids the structure has had in the historical evolution of the document. In particular, each renumberingInfo element must specify the original id of the structure being described (i.e., the never-changing id attribute), the evolved Id (i.e., the evolving id the structure has in that specific time interval), and the start and end temporalInfo specifications for the time interval in which the evolving Id was current.
9.11 Differences between release 18/2/2013 (CSD03 AN 3.0) and 6/2/2013 (CSD02 AN 3.0)

This release contains the modifications approved in the OASIS LegalDocML Technical Committee Conference Call of 13th February 2013, to better distinguish the product of legislative assemblies that are of a legislative nature and those that are not. In detail:

· A new document type has been added, statement, to describe documents that are official outputs of a legislative assembly but are not a normative nature, such as non-binding resolutions, etc.

· A name attribute has been added to all document types (and not only generic ones) to allow for the specification of a local name for each document. For instance, an act may be called “Act”, “Statute”, “Title”, “Executive Order”, and still be an act.

· A new element has been added to FRBRWork, FRBRprescriptive, to allow the specification of a boolean value to assert whether the document contains prescriptive content (i.e., content that does or may end up being prescriptive, i.e., legally binding) or not.

· A new element has been added to FRBRWork and FRBRExpression, FRBRauthoritative, to allow the specification of a boolean value to assert whether this work and/or this expression is authoritative (i.e., its content has been compiled by the body that has the authority to do so) or not.

9.12 Differences between release 6/2/2013 (CSD02 AN 3.0) and 20/1/2013 (CSD01 AN 3.0)

This release contains a few minor modifications to CSD01 as suggested by the discussion on the conference call of the OASIS LegalDocML Technical Committee of the 23rd of January 2013, arising from suggestions from Veronique Parisse of the European Parliament.
· Attribute date is now back to be a xsd:date value. Elements marked up as datetime now have two separate attributes, a required date accepting an xsd:date value and an optional time accepting an xsd:time value.

· The single quote attribute used in quotedText, quotedStructure, extractText and extractStructure has been turned in two separate attributes, startQuote and endQuote. This allows to specify different start and end quote characters.
· A new attribute has been inherited from the xml namespace, namely xml:space, to side xml:lang, exactly for the purpose for which the attribute has been invented, namely to specify the treatment of whitespace nodes in the content of the elements.

· The id attribute of elements formula, heading, content, intro, wrap, other, recitals, citations, longTitle, and documentRef are now required.

9.13 Differences between release 20/1/2013 (CSD01 AN 3.0) and 27/07/2012 (AN 2.0)
This release is the first to be created as a deliverable of the OASIS LegalDocML Technical Committee. It contains answers to a number of requirements by the European Parliament, by the Library of Congress of Chile, by XCential, and by CIRSFID.

The most apparent difference is in the management of namespaces, especially with regard to future releases. There are several issues with regard to namespaces. First of all, it has been proposed that very new release is associated to a different namespace. Thus, from now on, regardless of the number of differences in the release, a new namespace will be forged and associated to the release. Second, being under the cover of the OASIS LegalDocML implies adopting OASIS-style naming conventions for schemas, as detailed in http://docs.oasis-open.org/specGuidelines/ndr/namingDirectives-v1.3.html#xml-namespaces . In particular, this means that namespaces from now on will have the form: http://docs.oasis-open.org/legaldocml/ns/akn/xxx , where xxx is one of

1. Working Draft (WD)
2. Committee Specification Draft (CSD)
3. Committee Specification Public Review Draft (CSPRD)

4. Committee Specification (CS)

5. Candidate OASIS Standard (COS)

6. OASIS Standard (OS)

7. Approved Errata (Errata)

, followed by a sequential number. Finally, the objective of this stage of the OASIS LegalDocML TC at this stage is to deliver the 3rd version of Akoma Ntoso. Therefore, the namespace of this release will be http://docs.oasis-open.org/legaldocml/ns/akn/3.0/CSD01 .
Additional differences include:

· A new element has been included in speech sections, called speechGroup. This is meant for collecting within a single, annotated group an otherwise unmarked sequence of individual speeches, of which there is one main flow of speeches (by an appointed speaker, possibly introduced by the chair, interrupted by the audience and followed by a debate. In this case, the speechGroup element will help identify the main speaker (attribute by), the role of the main speaker (attribute as) and the addressees (attribute to) as well as the individual speech elements that the overall discussion is composed by.
· Elements recitals, citations and toc are now provided with a list of optional heading elements (such as header, subheader, num, etc.) in case the structure of the section becomes fairly complicated. This also implies that toc, previously a block element, has been upgraded to container.
· Two new elements from HTML have been added, abbr and br (an inline and a marker, respectively). With the same use and semantics as in HTML.
· Two new elements have been added to judgements, namely arguments and remedies.
· Type YesNoType data type has been removed and unified with the plain xsd:Boolean data type. Attributes that used “yes”/”no” values need now to use “true”/”false” values.
· Attribute status has been clarified and streamlined. Its values now express the justification for the difference between the actual content of the manifestation and the content of the corresponding expression. In particular, the new values for the attribute are as follows:
· removed: the content of the element is present in the markup (manifestation) but is not present in the real content of the document (expression level) because it has been definitely removed (either ex tunc, as in annullments, or ex nunc, as in abrogations).

· temporarily removed: the content of the element is present in the markup (manifestation) but is not present in the real content of the document (expression level) because it has been temporarily removed (e.g., for a temporary suspension or limitation of efficacy).

· translated: the content of the element is present in the markup (manifestation) in a different form than in the real content of the document (expression level) because it has been translated into a different language (e.g., to match the rest of the document or because of other editorial decisions).

· editorial: the content of the element is present in the markup (manifestation) but is not present in the real content of the document (expression level) because it has been inserted as an editorial process when creating the XML markup.

· edited: the content of the element is different in the markup (manifestation) than in the real content of the document (expression level) because it has been amended (e.g., to remove scurrilous or offensive remarks).

· verbatim: the content of the element is present in the markup (manifestation) is EXACTLY as it was in the real content of the document (expression level) because usual silent fixes and edits were NOT performed (e.g. to punctuation, grammatical errors or other usually non-debatable problems).

· incomplete: the content of the element or the value of a required attribute is NOT present in the markup (manifestation), although it should, because the missing data is not known at the moment, but in the future it might become known. This is especially appropriate for documents in drafting phase (e.g., the publication date of the act while drafting the bill)

· unknown: the content of the element or the value of a required attribute is NOT present in the markup (manifestation), although it should, because the author of the manifestation does not know it.

· undefined: the content of the element or the value of a required attribute is NOT present in the markup (manifestation), because the information is not defined in the original document, or it doesn't exist in some legal tradition (e.g. an anonymous speech cannot specify the attribute by, or some publications do not record the numbering of the items, etc.),

· ignored: the content of the element or the value of a required attribute is NOT present in the markup (manifestation) because the information exists but the author of the manifestation is not interested in reporting it (e.g., omitted parts of the document due to editorial reasons, etc.).
· A new element, documentRef, has been added to side pre-existing componentRef. This should clarify and streamline the use of each: componentRef is now only a manifestation-level placeholder for content that is placed in a separate file, and can be placed instead of any structural element of the body of the document. Element documentref, on the other hand, is meant as a work-level or expression-level placeholder to a whole document that is available at a different URI. It can be only placed as members of a document collection, as an attachment, or as an included document within quotedStructure and extractStructure elements.
· All containers and hcontainers can now be empty. This is meant to help in using status=”omissis” on a structure, or any other situation in which content exist but is not represented in the XML document.
· Elements formula and FRBRAlias have now a name attribute to help identify the kind of formula it is.
· Elements docDate, publication, step and eventRef now accept a dateTime, in its norm attribute, which allows the (optional) specification of a time as well as a date, if present.
· A new element time has been added. It contains a time attribute to specify a normalized specification of a time as present in the text.
· Elements quotedText, extractText, quotedStructure and extractStructure now allow a new attribute quote, which is used to specify the quote character used (if any) in the text.
· Keyword elements now accept a href attribute meant to associate the individual keyword to a specific fragment of the text, so that it is now possible to perform classification of individual fragments of the document. Keywords without the href elements will be assumed to refer to the whole document.
· Two new textual modifications have been added to the analysis section of the metadata, join and split, to identify operations that respectively create a single structure out of two adjoining ones, and that create two adjoining structures by separating one.

· Elements old and new can now be contained multiple times within the same textual modification. This allows for the same modification to affect multiple parts of a document. Additional attributes id and href allows to specify which new refers to which old part.
· Element attachments can now contain either a documentRef (as previously) or any of the document types. This allows for each manifestation to decide whether an attachment should be placed outside of the main XML flow or within it on a document by document basis.
· A specification has been added to the Akoma Ntoso naming convention with regard to virtual expressions (i.e., expressions where some of the information is unknown or unavailable). This is specified in section 8.4.4 of these Release Notes.
9.14 Differences between release 27/07/2012 and 29/06/2012

This release contains just two small modifications:

· Element docProponent now allows attribute as to specify the role the document proponent has in proposing it.

· All elements with type popupStructure (namely, quotedStrcture, extractStructure, authorialNote and popup) now allow also longTitle, formula, citations, and recitals in their content models.

· Some clarifications were added to section 8.1 of the naming convention about the use and need for absolute URIs in Akoma Ntoso.
9.15 Differences between release 29/06/2012 and 07/05/2012 take II

This release contains a few small modifications:
· Element preambleSubdivision has been replaced with the generic element container, which seems more appropriate since it is allowed in many more contexts than preambles alone.
· Element FRBRtitle has been renamed into FRBRname, as title was considered inappropriate for the role in the determination of the contribution of the document’s name for the Work URI .

· Attribute time of element recordedTime now allows a datetime value, instead of a simple time. This is to deal with situations where a parliamentary session spans over multiple dates, and it is therefore necessary to record, within the debate, not only the time of individual speeches, but also the date in which it was held.

· Elements eventRef and step (for the description of lifecycles and workflows, respectively) were added a refersTo attribute for the description of the nature of the individual event and step, respectively.

· Elements docCommittee, session and legislature now admit a value attribute to specify in non-ambiguous form a number or string identifying, respectively, the name or number of the committee, of the session and of the legislature as specified in the document.

· Element fragment is now available as a document type, for fragments physically stored elsewhere than their main document.

· Some fixes in the overall organization of the modules were also performed.
9.16 Differences between release 07/05/2012 take II and 07/05/2012

This release contains just a small bug fix allowing element componentRef within the content model of popup elements such as quotedStructure and extractStructure.

9.17 Differences between release 07/05/2012 and 12/10/2011

This is a release containing additions and bug fixes resulting from interactions with users and toolmakers and attendants of the meeting “Achieving Greater Transparency in Legislatures through the Use of Open Document Standards”, U.S. House of Representatives in Washington, D.C., 27-29 February 2012, and later events and discussions. Most suggestions come from Ashok Hariharan, Monica Palmirani, Veronique Parisse, and Grant Vergottini. Typos were identified by Flavio Zeni.
· anyAttribute: All elements now allow any attribute as long as they are specified in a different namespace than Akoma Ntoso.

· Element division is now an hcontainer, and it is fully integrated in the hierarchy of containers of the legislative documents. Former element division is now called prefaceSubdivision, and it is now a fully generic element with the addition of the required name attribute.

· A new manifestation-level structure has been created by extending the reach of componentRef to any structure within the containers and hierarchical containers of the document. This means that it is now possible to extract a full sub-tree of a document, place it in a separate manifestation-level file, and make a reference to it via a componentRef element. This is useful to split very long documents into smaller, more manageable units without losing the legal integrity: in fact, since componentRef requires a manifestation-level reference, the conceptual structure of the document (and hence its legal content) is not changed.

· Element componentRef (previously used for attachments and composite documents) is not fully and completely a manifestation-level reference, thereby using the src attribute instead of the href attribute (which is from now on reserved for Work-level or Expression-level references).

· A new element formula has been added in preface, preamble and conclusions for the specification of formulaic text that appear systematically in a specific kind of documents. Examples are enacting formulas.
· A new preface inline element, shortTitle, has been added for the identification of the short Title of an act.

· Speech elements (speech, question and answer) have now two new attributes, startTime and endTime, for the specification of the date and time in which the question was effectively uttered during a debate. This is useful to synchronize transcriptions of speeches within a debate report with the video or audio recordings of the actual debate. It is important to point out that the value specified in these two attributes should NEVER be the time offset from the beginning of an actual video file, but an absolute time and date in which the speech started or ended, and synchronization is obtained by also recording and comparing the absolute date and time of the beginning of the video used.
· Element rref and rmod (range reference and range modification) have now a different set of attributes. In both cases, the URI of the first of the range is specified through attribute from (instead of href), while the last of the range is still specified through attribute upTo, as it was previously.
· Elements FRBRcountry, FRBRsubtype, FRBRnumber, FRBRtitle and FRBRformat have been added to contain, respectively, the country, the subtype, the number, the title of the work, and the data format of the manifestation. These elements provide a safe place within the XML document for all the data that need to be used when generating Work-level, Expression-level and Manifestation-level URIs of the document.

· Elements mainContent, collectionContent, and debateContent are now called mainBody, collectionBody and debateBody to maintain consistency with body, judgmentBody and amendmentBody.

· A new HTML element has been added, br, for line breaks that must not be counted by line-counting algorithms. Documents where line numbering is not relevant can use either br or eol without difference, but in documents where line numbering is relevant each eol element is counted to determine the line number of each fragment of text. If for any reason some presentation-oriented breaks need not be counted (e.g., within the preface or the preamble), then element br must be used in these cases.
· Bug fix: Element fillin now correctly follows the camelCase convention of Akoma Ntoso, and is now called fillIn (with a middle capital I).

· Bug fix: The number attribute of the metadata element publication is now a string and not a number. It is also now optional.

· Bug fix: Elements recitals and citations now have their attributes (coreopt).

· Bug fix: attribute authoritative in element FRBRtranslation has been really introduced (it was documented in Release 15/7/2011, but it was not actually present).

· Bug fix: the automatically generated documentation within the XML Schema does not report spurious Akoma Ntoso 1.0 namespace declarations everywhere.

· Bug fix: several errors and typos in the inline schema documentation have been corrected at the cost of one (1) ice cream (to be delivered) to the individual who spotted most of them.
9.18 Differences between release 12/10/2011 and 15/7/2011

This a minor release with some additions and bug fixes drawn from discussions held at the Ravenna Legislative XML Summer School in September 2011. This is an almost backward compatible release. This release is the first one to exclusively use the new namespace declaration http://www.akomantoso.org/2.0.
· A new attribute, number, has been specified for the metadata publication element

· Element list, a block-level hierarchical container, is now called blockList, thus freeing the name list to become a new hierarchical container in the main hierarchy.
· Three new hierarchical containers have been added, division, list and sublist.

· Attribute for has been added to quotedText for a similar purpose as in quotedStructure, in case of multiple quotations within a same mmod or rmod.

· A new element fillin has been added as an inline element (to be probably shown as a dotted line or any other typographical characteristics to represent a fill-in element in a printed form, that is as an example of an actual form. It is NOT meant to be used for form elements as in HTML, i.e. as a way to collect input from the reader and deliver to some server-side process.

· Element subheading can now be placed within a quotedStructure
· Two new elements, extractText and extractStructure, can now be specified in any context to express an extract from a different text.
· Two new inline HTML elements have been added, sup and sub, for respectively superscript and subscript text.
9.19 Differences between release 15/7/2011 and 9/12/2009

The 15 July 2011 release represents a major release, sufficiently different and richer than previous ones to justify a new version number and a new namespace version. Many modifications were introduced in intermediate tentative releases throughout 2010 and 2011.

In order to allow a smooth transition to Akoma Ntoso 2.0, this release will accept and support both namespace declarations.
9.19.1 General changes

· Namespace declaration can be either http://www.akomantoso.org/1.0 or http://www.akomantoso.org/2.0 . This is the only release to exist in both namespaces. Subsequent releases will only use the 2.0 namespace.

· An improved specification of the naming convention is presented, introducing the few elements that remained to align it to the CEN Metalex naming convention.

9.19.2 Multi-linguism

The specification of the human language in which the document was written has always been rented out to a specific part of the Akoma Ntoso naming convention, but is not specified anywhere in the metadata of the document, so that the metadata is not a superset of the information that can be derived from the document’s name, contrarily to the CEN Metalex specifications. Furthermore, it has not be possible, so far, to specify multiple languages for the same document, nor indicating exceptions to the main language of the document, nor specifying the language history of a document,

In this release a number of improvements and additions was made, so that real language annotations can be expressed on the document.

· Specifying the main language(s) of a document: the new expression-level FRBRlanguage element was added to the FRBRExpression structure of the metadata, where the main language(s) of the document are specified using the codes of RFC 4646. If more than one language are present in this specific expression, then the FRBRlanguage element can be repeated.

· Specifying the actual language of individual fragments of the text: text fragments in a language different from the language specified in the FRBRlanguage needs to be wrapped in a element (if none appropriate exists, a span element) and the xml:lang attribute needs to be used in the fragment with the appropriate RFC4646 code. if two or more FRBRlanguage elements exist, every fragment of the text needs to have its own xml:lang attribute according to the specifications of http://www.w3.org/TR/REC-xml/, section 2.12.

· Specifying translations: the expression-level FRBRtranslation element, available in the FRBRExpression structure allows to specify that the document is a (authoritative/non authoritative/unknown according to attribute authoritative) translation from a different language (attribute language) made by some agent (attribute by) of another expression (attribute href).
· Attribute “pivot” is available in FRBRTranslation elements to specify the pivot language for non-final translations (e.g., in a translation from Danish to Italian through English, two FRBRTranslation elements need to be added, the first of which will have pivot=”eng” to specify the destination language of the non-final translation. Also, attribute language is now fromLanguage.

9.19.3 New document collection document types

It has recently become apparent that some new types of documents are of interest and need to be taken into consideration. These documents are not containers of (structured or semi-structured) text, but containers of documents that have their own identity and independent addressability. Issues of the Official Gazette, and amendment lists are clear examples of these situations.

A new class of documents has therefore been created, documentCollection, with its own external structure (metadata, preface, conclusions and attachments), and an internal content, the collection itself, composed of either other Akoma Ntoso documents (including acts, bills, minutes, etc.), or interstitial containers of text that separate each document, as follows:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<akomaNtoso>

<documentCollection>

<meta>

... the metadata of the collection ...

</meta>

<preface>

... the preface of the collection ...

</preface>

<collectionContent>

<act>

<meta>

... the metadata of the first document ...

</meta>

<preface>

... the preface of the first document ...

</preface>

<body>

... the body of the first document ...

</body>

</act>

<interstitial id=”int1”>

<p>Any text is in the collection but

 belongs to no individual document</p>

</interstitial>

<act>

<meta>

...the metadata of the second document...

</meta>

<preface>

...the preface of the second document...

</preface>

<body>

...the body of the second document...

</body>

</act>

... other documents and interstitials...

</collectionContent>

</documentCollection>
</akomaNtoso>

· Document collections can have any number of documents and interstitial elements in any order, and it is possible to have interstitial elements at the beginning of the document.

· Components can be present in place, or refer to them via a URI to an external resource, or even placed in the document in an apposite final section called components, and referred to via a newly introduced componentRef element. This modification affects also attachments, which can now be referenced in the same way via a componentRef element. Element attachment within element attachments has therefore been removed. Furthermore, in order to avoid ambiguity of element names, previous elements components and component in FRBR structures are now called componentInfo and componentData respectively.

9.19.4 New Amendment document type

· A new document type, amendment, has been added, with accompanying subelements amendmentHeading, amendmentContent, amendmentReference and amendmentJustification and many inline additions.

9.19.5 Time intervals

Managing time intervals in text has been completely modified: attributes start, end, startEfficacy and endEfficacy have been replaced with a single period attribute, and a new metadata section temporalData has been added, containing a list of temporalGroup elements that contain timeInterval elements.

While before one would use the start, end, startEfficacy and endEfficacy attributes to specify the beginning and end, respectively, of in force and efficacy intervals, respectively, the procedure has now been considerably simplified and streamlined and modularized. In the text, a single period attribute is used instead of the four previous attributes, containing a reference pointing to the newly introduced temporalGroup element in the metadata section. Each temporalGroup contains a list of timeInterval elements, each specifying a time interval and a type in terms of the Akoma Ntoso ontology, as follows:

Before:

<metadata>

 <lifecycle source="#fv">

 <event id="e1" date="1997-08-29" source="#ro1" type="generation" refersTo="#LegislativeCreation"/>

 <event id="e2" date="2003-12-19" source="#rp1" type="modification" refersTo="#LegislativeModification"/>

 </lifecycle>

...

</metadata>

<body>

...

 "pooled fund" means a fund established by a limited liability company, other than an approved issuer, for purposes of pooling scheme funds for collective investment;

...

</body>

After:

<metadata>

 <temporalData source="#FV">

 <temporalGroup id="p1">

 <timeInterval start="#e1" end="#e2" refersTo="#inforce"/>

 </temporalGroup>

 </temporalData>

 <lifecycle source="#fv">

 <event id="e1" date="1997-08-29" source="#ro1" type="generation" refersTo="#LegislativeCreation"/>

 <event id="e2" date="2003-12-19" source="#rp1" type="modification" refersTo="#LegislativeModification"/>

 </lifecycle>

...

</metadata>

<body>

...

 "pooled fund" means a fund established by a limited liability company, other than an approved issuer, for purposes of pooling scheme funds for collective investment;

...

</body>

Time intervals can be specified either by a begin and end date, or with either date and a duration. The advantages of this approach are many:

· It is possible to introduce time intervals with either two dates, or a start date and a duration or an end date and a duration.

· It is possible to specify in force intervals, efficacy intervals and any other type of time information without cluttering the actual content of the document with more and more start and end attributes.

· Time information shared by many different elements in the document are grouped in a single collection, so that it becomes possible to understand at a glance how many intervals are relevant for the document.

· It is possible to include different and incompatible time information details by different scholars without cluttering with useless information the actual content of the document.

9.19.6 Footnotes and out-of-lines
· In past versions of the Akoma Ntoso standard, footnotes (element note) and side notes (element outOfLine) were considered editorial content that are not really part of the authoritative content of the document. This is neither universal nor frequent. In fact, in many cases the official author of the document uses footnotes and out of line elements such as side notes as an additional means to convey authoritative content. For this reason, the notes’ model has been simplified:

· inlineNote are now called authorialNote,

· outOfLineNotes have been removed.

· Attribute placement has been added.

· Attribute num has been renamed marker and has become optional, given that sometimes one does not have any marker whatsoever for the note.

· Furthermore, note references have added a mechanism to specify exactly the placement of the note with regards to other elements of the document: an optional placementBase attribute has been added, which contains a local href (i.e. a #id reference) to the element near which the note should be placed.

To summarize:

· To place a note at the end of page, placement="bottom" and no placementBase
· To place a note at the end of a document, placement="bottom" and placementBase="#[document ID]"

· To place a note at the end of a structure, including quotations, placement="bottom" and placementBase="#[structure ID]"
· To place a note inline, in the closest position to the note reference, placement="inline" and no placementBase.
· To place a note inline in the closest position to a specific structure, placement="inline" and placementBase="#[structure ID]".

· To place a note on the side, in the position of the note reference, placement="side" and no placementBase.

· To place a note on the side, near to a specific structure, placement="side" and placementBase="#[structure ID]".

Values "left" and "right" are for those specific cases in which the specific placement on the right has a different legal meaning that a placement on the left, or when both types of placements exists in the same document (a rare occurrence indeed, but they exist).

9.19.7 New subFlow pattern

· A new pattern was identified, and added both to the conceptual model of patterns, and to the vocabulary of elements in Akoma Ntoso. The pattern is called subFlow, and represents elements that, within the inline flow of text, create full and fully independent structures, that does not meddle nor interact with the text and inline elements that surround them. The quotedStructure element, which in past versions of the language did not belong to any pattern (being an exception), now fully belongs to the new subFlow pattern. A new element inlineNote has been added belonging to the same pattern, for notes whose content is placed alongside the text to which it refer. inlineNote elements cannot be used to editorial content, but only for authoritative content that, for some reason, is placed in a note. Finally, the generic subFlow element has been added for any local extension to the language that needs to use subFlows.

9.19.8 Parallel speech

· Support for parallel speech elements was added. This happens through new values for the attribute status (that now include “translated”, “edited”, “verbatim”, “ignore” (for incomplete structures in authoritative documents such as amendments) and a new attribute “alternativeTo” that has been added to all content elements to specify separate and parallel copies of the same structure, that are present in the same document for a number of reasons:

5. multi-lingual documents that contain the same structures in different languages

6. multi-version documents that contain the same structures in different versions

7. multiple transcriptions, that contain the same speech in different transcriptions. For instance:

<speech id="sp1" by="#fv" status="verbatim">

 <from>Fabio Vitali</from>

 <p>Questo è il mio discorso in Italiano</p>

</speech>

<speech id="sp1-alt1" by="#fv" status="translated" alternativeTo="#sp1">

 <from>Fabio Vitali</from>

 <p>This is my speech in Italian</p>

</speech>
9.19.9 Votes and quorum
· Two new inline elements are added to identify parts of the debate document, vote and outcome. These are meant to mark in the document the fragments of the text that describe a vote or the outcome of a vote.

· Element parliamentary allows analysis on votes and quorum verifications that are present in a debate. It is possible to associate summaries of the outcome of a vote in a operable way, as follows:
<parliamentary>

 <voting id="vot1" href="#smr1" refersTo="#billAppr" outcome="#approved">

<quorum id="vot1-quo1" refersTo="#majority" value="50"/>

<count id="vot1-cnt1" refersTo="#yeah" href="#qt1" value="41"/>

<count id="vot1-cnt2" refersTo="#nay" href="#qt2" value="34"/>

<count id="vot1-cnt3" refersTo="#nulls" href="#span147" value="23"/>

 </voting>

</parliamentary>

...

<summary id="smr1"> Bill put to approval: <quantity refersTo="#votes" id="qt1">34</quantity>negative votes and<quantity refersTo="#votes" id="qt2">41</quantity>positive votes and <quantity refersTo="#votes" id="qt3">23</quantity> null votes, final result agreed.</summary>

9.19.10 Renumbering

· a new core attribute, evolvingId, has been added to all elements to specify an identifier that can change from expression to expression after modifications, renumbering or coexistence of similarly named structures. A full explanation of it is put in the new section 7.4 of this document.

9.19.11 Changes in metadata sections

· A new metadata section, presentation, has been added for the drafting of important presentation specifications (e.g. for tables and typographical rules mandated by law) using any language (including CSS styles).

· Element analysis has an additional parliamentary block for parliamentary analysis and an optional and repeatable element otherAnalysis block for all other kinds of analysis.

· Former Top Level Class Place is now called Location. Similarly the TLC element TLCPlace is now known as TLCLocation.

· In order to make room for an event element in the list of semantic inline elements, former element event within the lifecycle element is now called eventRef.

· Element publication in the metadata is now optional (to allow for unpublished documents such as individual amendments).

· Elements event and step, in lifecycle and workflow respectively, can now contain any non-AkomaNtoso elements inside. Attribute originatingExpression (yes/no) can now be used in events to specify that the event being referred to is the one from which this specific Expression originated.

· A new attribute pos has been added in all argument elements so that they can now make a more precise reference to the elements to which they are attached.
9.19.12 Changes in introductory elements

· New preface-level elements: Some new elements have been added to use in prefaces: docCommittee, docIntroducer, docStage, docStatus, docJurisdiction, which are meant to be wrapped around the Committee, the introducer, the displayed stage, the displayed status and the displayed jurisdiction of the document being marked up. Again it is worth remembering that preface-level elements are to be used whenever in the official copy of the document these information bits are actually present, and not as a way to specify the information that is for any reason missing in the final copy of the text. Missing information is best specified in the appropriate structures of the metadata.
· The content model of elements preface and preamble have been enhanced. Besides allowing blocks, preface and preamble now allow subdivisions called recitals and citations for preamble, and longTitle for preface. Element subdivision is a generic element for a preface/preamble substructure, while the element formerly known as subdivision (in debates) is now called debateSection.

· A new coverpage element has been added to specify content that is relevant to the document and that is present in the cover page.

9.19.13 New inline elements

· A new inline element has been added, quantity, to contain quantitative fragments (e.g., numbers, amounts, etc.) that are relevant to the analysis of the text, Attribute normalized allows to markup the numerical content of the element if it is not directly perceivable in its original form (i.e. it is written in letters, etc.).

· A new inline element, placeholder, has been added to specify formulaic text structures that can be modified at will during the lifecycle of the document even not-authorially (e.g., a sentence such as ’30 days after the publication of this directive’ converted in an actual date once the publication date of the directive is known). The attribute originalText is used to specify the original text of the document after the replacement has taken place.

· A complete specification of references to elements of the ontology has been added. Not only person, but now all elements of the Top Level Classes have their own element, person, organization, concept, object, event, location, process, role, term.

· Element entity is now fully a generic element and requires a name attribute.

· Two new inline elements have been added in the list of preface-specific elements: legislature and session.

· A new preface inline element has been added, affectedDoc, to specify the document which is affected by this amendment.

· A new inline element, relatedDoc, has been added for the document discussed within report documents.

· A new inline element, change, has been added for the changes contained in the face-to-face text of an amendment.

· A new HTML element, u, has been added with similar use as in HTML, namely, to specify an underline.

· Element recordedTime is now an inline element and not a marker anymore.

· The popup content model available in elements such as quotedStructure now allows also substructures of hierarchies such as heading, num, content, citation, recital, intro and wrap to appear in it. Element quotedStructure now has an additional attribute for that allows to associate individual quotedStructures to individual mod elements within a mmod element.

9.19.14 New hierarchical elements

· The fundamental structure of hierarchical elements has been modified introducing the intro and wrap elements, respectively before and after the content of the hierarchical elements, to specify introductory and concluding blocks to the lower levels of the containment hierarchy. This modification affects the list element, too.

· A new hierarchical element called transitional has been added. This is meant to contain (often unnumbered or differently numbered) hierarchical items that, being of a transitional nature, are placed in a separate section called “transitional clauses” or some such name.

· Three new hierarchical elements have been added, alinea, point and indent.

9.19.15 New speech elements

· Two new elements have been added in the description of a debate: narrative and summary. The narrative element is meant to contain all the narrative elements (that are not part of the scene description) that discuss things in the third person, rather than as report of a direct utterance from a participant. The summary element is meant to contain all the summarized description of speeches that are not transcribed verbatim because of their scarce relevance, formulaic nature, or other reasons. E.g.: “Question put and agreed to”.

· Several new debate sections have been added to the list. They include: rollCall, prayers, adjournement, oralStatements, writtenStatements, personalStatements, ministerialStatements, resolutions, and nationalInterest.
· Element from was made optional.

· Element debate (that was the body of the debateRecord element) is now debateContent.

9.19.16 Various other changes

· A number of bug fixes in content models of many elements, In particular, preface and conclusion are now optional everywhere, conclusion has become a fully hierarchical element just like preface and preamble,

· Element intro does not belong to the content model of element component anymore.

· Element table has now an additional optional caption element as in HTML. Also, the id of HTML elements tr, th and td is now optional to reduce the tear in specifying ids for long lists of cells in tables.

· Content model of element td: So far, the content model of table cells followed the inline content model (i.e., the table cell was comparable to a single paragraph). This was felt inadequate because of the lack of support of multi-paragraph table cells, as well as cells that contain whole structures, such as articles, sections, etc. The element td has thus changed the relevant pattern, being upgraded from block to container. Now any container, or block can be contained in td elements, but not next nor inline elements.

· New content model of list: the list element now allow for the specification of a listIntroduction element, a block element appearing before the first item, and of listConclusion, a block element appearing after the last item of the list (in Italian legal system, they correspond to alinea and conclusion, which are frequent occurrences in legal texts).
9.20 Differences between release 9/12/2009 and 21/10/2009

This release contains just two minor bug fixes:

· The complex Type AnyOtherType (allowing elements of any namespace except Akoma Ntoso) now allows any number (including zero) of elements instead of exactly one. This affects a number of metadata elements.

· Attribute refersTo now expects an URI instead of an IDREF value. This means that references to locations inside the document (e.g., in the references section) now need to be prefixed with character “#” instead of being bare (e.g. refersTo=”foobar” needs to become refersTo=”#foobar”). This is in accordance to a general avoidance of the IDREF introduced on the 23/10/2006 release and for some reasons ignored for the refersTo attribute.
9.21 Differences between release 21/10/2009 and 11/5/2009

This release contains some differences to previous versions regarding mainly the handling of judgments. Most differences regard metadata to analyze judgments, and only a few of them affect the document content.

· A new inline element, docketNumber, has been introduced to handle the specification of the docket number, case number, file number or in general any number that represents the overall procedure of which this is one document. The term docketNumber has been chosen because it is clear, unambiguous, not overly restrictive (as would have been caseNumber) and not misunderstandable for a computer-related term (as would have been fileNumber).

· Speech-related containers such as administrationOfOaths, declarationOfVote, etc. have been added to the list of containers that can be specified anywhere.

· Element lawyer has a few difference in its attributes: the attribute represents has become for, and a new attribute empoweredBy has been added for lawyers that receive the representation not directly from the client but indirectly through a delegation of power via another lawyer.

· Element opinion, wrapping the opinion of the judges in a judgment, has a new attribute type that specifies whether each individual judge consents or dissents from the judgment.

· The element workflow has been clarified. A workflow is not composed of action elements anymore, but of step elements. Each step element defines (references to instances of) a date, an actor (either a TLCPerson or a TLCOrganization), a role (a TLCRole), and an outcome (a TLCConcept).

· A new analysis container has been added for judicial analysis. The element, judicial, contains a number of judicial arguments, each of which connects a structure of the document to external sources or other structures of the document itself. The judicial element contains one result element that specifies the actual result of the judgment (one of deny, dismiss, uphold, revert, replaceOrder, remit, decide, and approve), and as many elements as needed of the judicial argument category, which are: supports, isAnalogTo, applies, extends, restricts, derogates, contrasts, overrules, dissentsFrom, putsInQuestion, distinguishes. It should be noted that the term putsInQuestion is hardly satisfactory, and different from the proposed questions, which cannot be used in this context because it is already used as a section of the Speech containers.

9.22 Differences between release 11/5/2009 and 16/3/2009

This release contains no difference from the previous release but a few bug fix. The main justification of this release is to introduce systematic inline documentation to all structures of the language (groups, attribute groups, simple type, complex types and elements.

Additionally, a few bug fixes have been introduced:

· The internal date of the schema has been updated to reflect correctly the revision date of the schema. In previous release, in fact, the release date within the schema had not been updated, resulting in two very different schemas asserting to have been last updated on the same date.

· Group ANotherInline has been actually added to the inlineCM group , allowing elements entity and date to be actually used in document markup.

· Complex types anyOther and anyOtherType, which were identical, have been brought together into one type, anyOtherType. All elements and attributes have been updated accordingly.

· Several reshuffles of relative position of definitions have been made. No difference in content has been performed, though.

9.23 Differences between release 16/3/2009 and 5/11/2008

A new section has been added to the Release Notes, section 7.2, describing how to use references and refersTo attributes.

This is a major release, providing a number of relevant modifications to the previous releases. Many of these modifications are NOT backward-compatible. These will be explicitly noted as such in the following.

9.23.1 Sidenotes and out of line texts

A completely new take on side notes has been undertaken in this release. Rather than being header blocks at the beginning of hierarchical structures, side notes are now full members of a new category: authorial notes. An authorial note is by definition a note (i.e., an out-of-line text fragment) that was provided by the original author of the content (i.e., by the author of the specific FRBR expression).

Thus the element sideNote has been removed, and substituted by a new container element, outOfLine, contained in a collection element outOfLines. Each outOfLine has a type attribute assuming either of the value sideNote or publicationNote, an href attribute pointing to a structure in the document to which the out of line text should be attached to, and contains blocks such as p elements.

Thus the fragment

<akomaNtoso xmlns="http://www.akomantoso.org/1.0">

 <act>

 ...

 <body>

 <section id="sect54.a">

 <num>54A</num>

 <heading>Conduct of prosecutions.</heading>

 <clause id="sect54.a-cla1">

 <num>(1)</num>

 <sideNote>Cap 75.</sideNote>

 <content>

 <p> Blah blah</p>

 </content>

 </clause>

 </section>

 </body>

 </act>

</akomaNtoso>

needs to become:

<akomaNtoso xmlns="http://www.akomantoso.org/1.0">

 <act>

 ...

 <body>

 <section id="sect54.a">

 <num>54A</num>

 <heading>Conduct of prosecutions.</heading>

 <clause id="sect54.a-cla1">

 <num>(1)</num>

 <content>

 <p> Blah blah</p>

 </content>

 </clause>

 </section>

 </body>

 <outOfLines>

 <outOfLine id="out01" type="sideNote" href="#sect54.a-cla1">

 <p>Cap 75.</p>

 </outOfLine>

 </outOfLines>

 </act>

</akomaNtoso>

Please note three issues:

· Reference direction is reversed than with footnotes: rather than the inline content referring to the note, it is the side note referring to the structural fragment it appears with. This allows to get rid of reference markers within the text, and makes more sense in an abstract sense.

· Only referable structures can have a side note. This means that side notes are to be considered associated to sections, clauses, etc. and not to the text they contain. If a fragment of text needs to have a side note, it must be wrapped in a referable fragment, such as a ref or a span element.

· While the previous sideNote element was a block, and thus could contain directly text, the outOfLine element is a container, and thus must contain one or more blocks that in turn contain text.

This modification is NOT backward-compatible. Elements have been removed and a whole new section created in all types of documents.
9.23.2 Content model reorganization for speeches

After being shown an Australian judgement that was really a dialogue between the judge and the lawyers, and considering that AKOMA NTOSO already has all the necessary elements to deal with dialogues, only they were not available in judgements, it was decided that all speech elements should now be available everywhere a container is available. Thus elements such as speech, question and answer are now available even in judgements.

This modification IS backward-compatible. Content models have been expanded.
9.23.3 New inline elements

A number of new inline elements have been added to this release:

· Element lawyer is used to mark the specification of a lawyer. Attribute represents can be used to refer to the party it represents and the attribute role can be added to provide more detailed information about the kind of lawyer.

· Element opinion is used to specify the opinion of the individual judge within the coram of a judgement. Use attribute refersTo to point to a TLCConcept that provides computable assessment of the type of opinion held by the judge.

· Element signature is used to specify the presence of a signature in the document. Use attribute refersTo to point to a TLCPerson that provides the identification of the person responsible of the signature.

· Element entity is used to wrap any mention to a concept that is worth being mentioned in the references section. This includes persons, organizations, roles, and places, among others. Always use attribute refersTo to point to a Top Level Class element in the references section that provides computable assessment of the concept associated to that element.

· Element date is used to wrap explicit dates in the document (that are not documentDates). Use attribute date to provide an unambiguous form of the date in XSD 1.0 syntax yyyy-mm-dd. Use attribute refersTo, if appropriate, to point to a TLCEvent that provides computable assessment of the event associated to that date. Please note that a date element was already present in the schema in the identification section of the metadata, and that it has now been renamed FRBRdate (see section 9.1.5).

This modification IS backward-compatible. Elements have been added.

9.23.4 Judgement-specific and act-specific elements reunited

Elements judgementType, judgementTitle and judgementNumber were considered overlapping and redundant with respect to documentType, documentTitle and documentNumber, and thus removed. Judgements should now use these documents. Furthermore, a new section in the Release Notes has been added providing hints at how to use these elements, section 7.2, that specifies that these elements may be present multiple times in the document, but if there are more than one per type, then the attribute refersTo must be present and point to different instances of TLCConcepts.

This modification is NOT backward-compatible. Elements have been removed.

9.23.5 Name changes in metadata elements

Elements within FRBRWork, FRBRExpression , FRBRManifestation, and FRBRItem have now an added FRBR prefix, and thus were turned from this, uri, alias, date, and author to FRBRthis FRBRuri, FRBRalias, FRBRdate, and FRBRauthor.

A new element date was added, and its name clashed with the elements within the FRBR levels. Given the philosophy of giving short names to elements within the content, and longer names to elements within the metadata, it was decided to change the name of the FRBR elements, and of all it neighbors, by introducing the same FRBR prefix for all.

This modification is NOT backward-compatible. Element names have been changed.

9.23.6 Bug fixes

· A few elements now required presence of two main attributes: id and refersTo. These are *ref and *mod elements, plus elements party, judge and the new element lawyer. Previously both id and refersTo were optional. This modification is NOT backward-compatible. Attributes have been made required.
· Element scene was previously present as both a container and a block. This is an error, and has been fixed. Element scene is now only a container available everywhere a container can be specified. This modification is NOT backward-compatible, but minor.
9.24 Differences between release 5/11/2008 and release 3/3/2008

This release comprises a major modification in naming of elements, introducing a systematic usage of camel case, settling a long-standing issue about incoherence in the usage of lower and uppercase characters in element names (as well as one element group). This change is thus fixing an overall problem of coherence in element naming, rather than a concrete problem of descriptiveness or completeness of the vocabulary.

Content differences:

· The spelling “judgment” has been replaced with “judgement” in observance to the above-mentioned mail by Mariya Badeva. This relates to all elements and attributes containing the word judgement.

· All Top Level Classes have now a proposed syntax for IDs (that was up to this day only mentioned as TBD).

· Element comment has been renamed scene according to remarks about adopting a vocabulary more connected to screenplays.

· Elements ActType, ActTitle, ActNumber, ActProponent, ActDate, and ActPurpose have been renamed docType, docTitle, docNumber, docProponent, docDate, and docPurpose so as to reflect a vocabulary apt to describe more than just legislation.

· Element recordedTime has now a new attribute type to allow for the specification of recorded times for the beginning of event (startEvent) and end of events (endEvent) if necessary

· A new inline element remark has been added to specify editorial inclusions within the main text (for instance the caption of the speaker in the new page continuing from the previous one). An attribute type with an initial list of remark types (sceneDescription, phenomenon, caption, translation) is also added.
Case differences (specific to the camelCase release):

· A specific policy for case in names has been decided. It only and specifically regards structure names in the schema (these include names for attributes, elements, simple types, complex types, attribute groups and element groups) that are composed of two separate terms in plain English. The policy is as follows:

1. A name that is composed of a simple term is all in lowercase (e.g., section, act, publication).

2. A name that is composed of two or more full terms has the first one in lowercase, and all the others have their initial letter in uppercase (that I call camelCase, as a reduced form of CamelCase). For instance, courtType, actDate, mainContent.

3. A name that is composed of an acronym plus one or more full terms has the acronym in all capital letters and the remaining terms in camelCase (i.e., the first is all lowercase and the others have the first letter in uppercase). For instance, FRBRManifestation, TLCPerson.
· The element groups, complex types and simple types EventType, VersionType, InlineCM, SpeechSection, HierarchicalStructure, OpenStructure, DebateStructure, JudgmentStructure and DocumentTypes are now eventType, iversionType, inlineCM, speechSection, hierarchicalStructure, openStructure, debateStructure, judgementStructure (note new spelling for judgement) and documentType (note, also singular now) in camelCase.

· 17 elements have changed their case in order to adopt the camelCase approach: elements activeModifications, activeRef, akomaNtoso, attachmentOf, debateRecord, efficacyMod, forceMod, hasAttachment, mainContent, meaningMod, noteRef, passiveModifications, passiveRef, proceduralMotions, scopeMod, textualMod, and tocItem.
9.25 Differences between release 3/3/2008 and 22/10/2007

This is a tentative release of a major evolution, with a specific improvement, namely the support for judgments. Other minor modifications have been included. Existing documents that are not judgments should be unaffected by this release.

Most of the modifications accept and organize the proposal from Monica Palmirani in a document called “Common Open Standard for Judgments”.

Modifications unrelated to the judgment we find:

· A new element for debate documents called DeclarationofVote
· A new element this is added in all FRBR levels to report the URI of the specific component where the metadata block is found

· The name for the Attachment element in the analysis element is now HasAttachment in order to avoid confusions.

Modifications related to the judgment as specified in Palmirani’s document are:

· A new document type “judgement” is introduced, that has its own schema composed of meta, header, judgmentBody, conclusions and attachment.

· Within the section header a number of additional inline-level purpose-specific elements have been added, namely: judgmentType, judgmentTitle, judgmentNumber, courtType, neutralCitation, party, judge, and judgmentDate.

· The judgmentBody has a repeatable choice of sections named introduction, background, motivation, and decision.

· An additional metadata element, workflow, and its repeatable child action have been added.

Some modifications diverge from Palmirani’s proposal, as follows:

· No elements such as coram, judges and judgmentDates have been specified, as they are containers, disallowed in the patterned structure of inline elements. The corresponding singular elements are used directly in the flow of the text.

· The element body has been substituted with judgmentBody, as body has been used already to refer to the content of hierarchical structures such as acts and bills.

· The href attributes in part, judge and action, meant to refer to the ontological section references, have been omitted as the proper attribute refersTo now exist for all elements in the schema, and therefore no need for such attribute was needed. The as attribute, on the other hand, has been kept as proposed.

Open issues are as follows:

· We have adopted the spelling “judgment” instead of “judgement” as proposed by Palmirani, but we are worried about the last sentence in the following fragment from http://en.wikipedia.org/wiki/Judgment_%28law%29: “However, the spelling judgement (with e added) largely replaced judgment in the United Kingdom in a non-legal context […] In the context of the law and theology, however, judgment is preferred. In the U.S. judgment strongly prevails. As with many such spelling differences, both forms are equally acceptable in Canada and Australia, although judgment is more common in Canada and judgement in Australia.[1] In New Zealand the form judgment is the preferred spelling in dictionaries, newspapers and legislation, although the variant judgement can also be found in all three categories. In South Africa, judgement is the more common form."
· We are not convinced of the need for a workflow element, and would have preferred to have it harmonized and included in the lifecycle element.

9.26 Differences between release 22/10/2007 and 17/09/2007

This is a major release with plenty of differences and improvement. It is worth noting that at least ONE modification (the creation of the content element and the renaming of title and subtitle) is NOT BACKWARD COMPATIBLE, so that documents that were valid against the previous versions most probably will NOT be valid against this version.

Please note the modifications that are not backward compatible are still amenable of automatic conversion. I have added an XSLT stylesheet that takes a valid Akoma Ntoso document of the previous release and converts it into a valid document of the current release. You can find it in the styles directory of the release, called convertToThis.xsl.

This release also includes and documents an unofficial, undocumented release called Tentative Release 20071510 dated 15 October, 2007.

· Element clauses has been renamed into body. NOT BACKWARD COMPATIBLE

· Elements title and subtitle are now called heading and subheading, to allow for the presence of the title hierarchical elements. NOT BACKWARD COMPATIBLE

· The list of hierarchical elements is enriched with the addition of elements title, book, tome, subsection, subpart, subparagraph, subchapter, subtitle, and subclause. As mentioned, elements title and subtitle existed for a different purpose, and are now plain hierarchical elements.

· A new element content is added to connect the list of hierarchical elements to their actual textual content. Any hierarchical element can contain either other hierarchical elements or the content element which contains blocks. NOT BACKWARD COMPATIBLE

· The content model of article and clause has completely changed and is now identical to the other hierarchical elements. NOT BACKWARD COMPATIBLE

· A new optional attribute refersTo has been added to all content elements of the Akoma Ntoso schema. The attribute refersTo can be used when necessary to refer to an element of the references section, in order to suggest an ontological interpretation of the content of the element. Also use refersTo to make an element equivalent and referring to another (e.g. for translation purposes).

· A new value for the status attribute has been added, “editorial”. The new value is to be added for content that has to appear in the final document with the rest of the text, but was not originally included in the document created by the author. Editorial elements can be used for editorial annotations (e.g.: (Translation of Afrikaans paragraph follows.))

· An initial list of debaterecord subdivisions has been created. Debate records can now be organized with subdivisions that reflect the actual nature of the content. The new elements are: AdministrationOfOath, Communication, Petitions, Papers, NoticesOfMotion, Questions, Address, ProceduralMotions, and PointOfOrder, and can be used in all places where previously only subdivision could be used. TENTATIVE MODIFICATION. DO NOT RELY ON THIS.

· To avoid confusion between the elements item and Item, the latter has been renamed FRBRItem. For symmetry, all four FRBR levels have similarly changed name. Therefore Work, Expression, Manifestation and Item are now called FRBRork, FRBRExpression, FRBRManifestation and FRBRItem. NOT BACKWARD COMPATIBLE
· To avoid confusion between the elements force and Force, and efficacy and Efficacy, the latter ones have been renamed ForceMod and EfficacyMod. For symmetry, all other modification elements have similarly changed name. Therefore Textual, Meaning, Scope, Force, Efficacy and LegalSystem are now called TextualMod, MeaningMod, ScopeMod, ForceMod, EfficacyMod and LegalSystemMod. NOT BACKWARD COMPATIBLE
· The uri element specifies the URI in a value attribute rather than in an href attribute. (Bug fix from previous error) NOT BACKWARD COMPATIBLE
· The value Suspension for the type attribute of the EfficacyMod (formerly Efficacy) element has been replaced by two values, EntryIntoEfficacy and EndOfEfficacy.

· All TLC are now present in the reference section. Newly added terms are: TLCConcept, TLCObject, TLCEvent, TLCPlace, TLCProcess, TLCRole, and TLCTerm.

· Existing TLC elements have been renamed to include the prefix “TLC” to clarify their role. This include the renaming of Person, Organization, Role, and Reference into TLCPerson, TLCOrganization, TLCRole, and TLCReference. NOT BACKWARD COMPATIBLE
· Element TLCReference (formerly Reference) is now a generic element in all respects, and has a new required name attribute. NOT BACKWARD COMPATIBLE
· The Work element now contains components just like the other elements of the identification element, such as Expression, Manifestation and Item (Added in Tentative Release 20071510).

· Within the identification elements, component can now nest and contain other component elements (Added in Tentative Release 20071510).

9.27 Differences between release 17/09/2007 and 08/06/2007

This is a minor bug-fix release managing better the interaction between Akoma Ntoso elements and elements coming from different vocabularies.

The attribute processContent of the <xsd:any> element is set to lax, so that if proprietary elements are added here and there, users do not have to have the proprietary schema to validate the documents, but just the main Akoma Ntoso one.

A new href attribute is added to a few inner elements of the provisions in the active modifications part of the metadata. This is to prevent the creation of useless proprietary elements to point to the positions in the document that contain the text being referenced.

9.28 Differences between release 08/06/2007 and 31/05/2007

This is a bug-fix release for managing the expected content model of elements such as mod, mmod, and rmod, which were expected to be mixed content model with a free choice of inline elements and quotes, and due to the odd behavior of complex type derivation through extension in XML Schema 1.0, ended up being a mixed content model with an ordered sequence of a free choice of inline elements and a free choice of quotes, in this order. Similar problem could be found with li elements.

The solution has been to revoke the type of mod, mmod and rmod from being derivations of the inline type, and create a new type modType, which is disconnected from inline but has all the right elements. A similar solution has been taken for li.

Also, for greater precision, the previously defined type modType (which collected modification metadata) has been renamed modificationType in order to prevent further confusion.

9.29 Differences between release 31/05/2007 and 14/03/2007

None whatsoever in the schema. Release dates of schemas haven’t been changed

Only modifications are in the examples and xslt stylesheets to reflect changes in naming policies in metadata sections.

9.30 Differences between release 14/03/2007 and 01/02/2007

Small bug fix in the content model of the quotedStructure element that now allows clause elements to be present.

9.31 Differences between release 01/02/2007 and 23/11/2006

The Naming Convention is introduced and officially raised to standard level. Correspondingly, section 10 of this document has been mostly emptied and now refers to the external document “AKOMA NTOSO Naming Convention”.

The element and attribute synopsis has been completely revised and reorganized.

The schema only received minor modifications covering only the rename of the minutes element into debaterecord, a few bug fixes in attributes, plus the support for differences in force and efficacy periods (Please note: an intermediate, non official release dated 30/11/2006 already contains some of these modifications).

· Two new core optional attributes, startEfficacy and endEfficacy, have been added to all content elements.

· Elements list, ul, ol, and table now have the full set of core attributes, i.e., id, class, style, title, and enactment attributes.

· Element ActDate now has a date attribute for normalized dates.

· A bug in the content model of mod, mmod and rmod has been fixed and now their content model allows plain text to be inserted as well as other types of content.

9.32 Differences between release 23/11/2006 and 23/10/2006

A minor release covering mostly only the attributes and elements of the metadata section.

· Elements attachments, clauses, debate and maincontent now have the core set of attributes (they were forgotten in previous versions).

· Analysis now distinguish between active modifications (stored in amending acts) and passive modifications (stored in amended acts). The old amendments element has been replaced with ActiveModifications and PassiveModifications.

· Attachment and AttachmentOf have a new attribute, type. No restricted set of values is foreseen yet, but this is bound to change in future release.

· source and destination elements of all analytical elements can now be repeated. The attribute upTo has also been added to deal with range references for analytical elements.

· Two new attributes, exclusion and incomplete, are added for modifications that are specified with exceptions and in an incomplete manner.

· A new textual modification has been added, Renumbering.

· The elements oldText and newText have been renamed into old and new
· The element condition has now a new frozen attribute.

9.33 Differences between release 23/10/2006 and 26/06/2006

Many major modifications have been brought into this release. Metadata are now completely reorganized, introducing the organization in four levels and a section on amendment analysis. Within document, new elements have been added to handle strange hierarchies, line and page numbering, and multiple and range-based modifications and references. In detail:

· New block elements called list, titled block (tblock) and foreign are added.

· New inline elements eol and eop for managing end-of-line and end-of-page situations when they are relevant

· All IDREF attributes are now ANYURI (thus allowing for references to be stored outside of the document). A reference to item foobar used to be idref=”foobar”, needs now to be href=”#foobar”.

· The attribute numbering has been removed because of doubts of its real usefulness. Can be reinstated if found needed.

· Two new elements appear close to num and title at the beginning of hierarchical elements, subtitle and sidenote. It’s left to markers to decide when to use either one.

· The content model of all metadata elements has been simplified removing the attributes for style and enactment that made little sense for them.

· Element item has completely been reformulated. Its former role as plain member of a hierarchy of subdivision elements within maincontent has been replaced by item list, which contains any of a number of item elements. Use list instead of item, and place item within list elements.

· Elements ref and mod have been enriched with derivative elements mref (multiple references), rref (range of references), mmod (multiple modifications) and rmod (range of modifications) to manage references and modifications that explicitly list in brief multiple different locations of destination document (e.g., “The Provisions of sections 1(1) and (2), 24, 25, 29(2), 30, 31, 43, 55, 56, 57, 58, 60, 61, 62, 63, 67, 80, 84, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108 and 115 of law n° 92-10 of 17 september 1992 to lay down the conditions governing the vacancy of and election to the Presidency of the Republic are amended and supplemented” and “The existing sections 34 to 54 of the Principal Act shall be amended by renumbering them as sections 33 to 53 respectively”).

· New inline elements ins, del and omissis are included for managing explicit newly inserted text, deleted text or omitted text in presentation of norms.

· All HTML table elements now have required id. HTML li element has now optional value.

· The section meta has been completely rewritten and has new a completely different structure and philosophy. See section 7 for details on how to use it. The structure splits open the old descriptor section, which now is separated into identification, publication and classification, and introduces the wholly new analysis section.

· Identification is a new structure that contains information about the URIs relative to the four levels of organization of metadata, Work, Expression, Manifestation and Item. For each of these levels a number of metadata elements are required: author, date, URI, components (except for Work) and preservation.

· Analysis is a container of provisions about the actual content of the norm. Currently it contains only modification provisions, that are used to classify and manage amendment acts and documents. A total of 6 types of amendments have been added, for a total of 32 subcases, and a collection of 10 parameters to describe them.

9.34 Differences between release 26/06/2006 and 16/05/2006

Only a few bug fixes:

· The mod element has been included in the list of inline elements and now can actually be used.

· The container elements have been added to the content model of the maincontent element and now can be used even outside of quotedStructure.

· The li element now has a value attribute for specifying the actual display string if different from what automatically computed because of its position.

9.35 Differences between release 16/05/2006 and 25/04/2006

· The content model of the debate now has also answers and others and comments.

· In all elements of the debate the previously existing attribute by, to identify the speaker, is now accompanied by optional attributes as (to identify the role of the speaker) and to (to identify the addressee of the speech).

· Ids in speeches, questions, answers, and others is now optional instead of required.

· The li element now allows also paragraphs (p elements)

· The metadata part is considerably modified: previously one had two separate sections for document references and persons. Now all external references have been unified in a single model, the concept of reference, of which documents, as well as persons, roles and organizations, are possible members. A generic element reference has been added, too. Section 10 of this document reflects the new approach to metadata.

· All publication elements now have a name attribute to specify the kind of publication we are referring to, and the showAs attribute to specify a presentation mechanism for the publication name.

· The whole description of naming of resources has been completely rethought and rewritten. This is reflected in section 10 of this document.

9.36 Differences between release 25/04/2006 and release 15/01/2006

· All references to PAPI have been removed and substituted with Akoma Ntoso, both in the schema documents and the documentation (in the following forms: akomantoso, AKOMA NTOSO, and AN).

· After registering the proper domain name, the namespace for Akoma Ntoso documents is now http://www.akomantoso.org/1.0.

· All references to equivalences, both in the schema documents and documentation, have been removed. Schema is now fully and exclusively in English.
9.37 Differences between release 15/01/2006 and release 15/11/2005

· PAPI is now really specified as version 1.0 instead of 2.0. Correspondingly, the namespace for this document class is now really defined as http://www.parliaments.info/PAPI/1.0.

· The MISC category of document is now called simply <doc>. <doc> elements are to be used to specify documents that are neither acts (or having an act-like structure) nor debates (or having a debate-like structure). The previously existing document class <doc>, has been completely reorganized and restructured, by modifying the underlying content model, &OpenStructure;. Furthermore, existing document class <report> has been moved into the &OpenStructure; content model from &DebateStructure;.

· Element <item> has completely changed role and content model, being now a hierarchical element providing support for a hierarchy of items. This is the main structure for hierarchies that are not legislative and thus are contained in generic <doc> elements.

· Debates (as specified with the <subdivision> element) can now only contain just <speech> and <question> elements, since the <item> element has been reorganized for a different purpose and a different hierarchy.

· The element <maincontent>, the backbone of the &OpenStructure; content model, has been completely redesigned. Instead of containing just block elements, it can now contain block elements, juridical hierarchical elements, and debate subdivisions and item hierarchies.

· A new element <subtitle> has been added for hierarchical structures that contain subtitles in addition to number and title.

· A new attribute has been added, numbering, to elements <maincontent> and <item>, for requesting that elements of a hierarchical structure are numbered by the displaying application, rather than carry their own numbers in the XML source.

· Element <tocitem>, containing individual items of a table of content, now has an additional required level attribute to specify the hierarchical level of the <tocitem> element.

· Metadata elements <uri> and <alias>, that in the previous versions had a text content model, now are markers, and have the corresponding value expressed in the value attribute. This definitely and completely aligns all metadata elements to the marker pattern, in order to avoid improper display of their values by unsuspecting XSLT stylesheets.

9.38 Differences between release 15/11/2005 and release 15/09/2005

· PAPI is now specified as version 1.0 instead of 2.0 (references to previous attempts at PAPI have been removed). Correspondingly, the namespace for this document class is now defined as http://www.parliaments.info/PAPI/1.0.

· Two new document classes have been added, <report> and <minutes>, to handle, respectively, Official Reports (or Hansards) and Official Minutes (or Votes and Proceedings). These two document classes use a new document structure, DebateStructure, that is added to HierarchicalStructure and OpenStructure.

· Three new special elements have been added to handle the content of reports and minutes: speech, question and item. They are collected in a hierarchical structure of subdivisions, that provide nesting for such elements.

· A new marker element has been added, recordedTime, to handle the specification, anywhere in the text, of the moment in which the remark, agenda item or question was proposed.

· A new section of meta elements has been added, persons, to list all the people whose remarks have been recorded in the minutes or reports.

· Element item, within TOC (Table Of Content), has been renamed tocitem to avoid clashes with debates’ items. Also, element TOC has been converted into lowercase for consistency with other element names.

� Contiguity does NOT mean that the id must be called "id", or that it must be the only attribute to exhibit identification characteristics

� Transferability does not mean "identical value", but only that a transformation between the two values must be possible in an automatic way.

�	As of September 2013, all mentions of Uniform Resource Identifiers (URIs) in these Release Notes and in the documentation associated with the Akoma Ntoso schema have been replaced with as many mentions of International Resource Identifiers (IRIs), as per RFC 3987 (� HYPERLINK "http://tools.ietf.org/html/rfc3987" ��http://tools.ietf.org/html/rfc3987�).

� http://tools.ietf.org/html/rfc3986

�	in fact, this is a simplification of RFC 3986, that calls global IRI refs as “absolute path references” and local IRI refs as “relative path references”.

