[image: image1.png]OASIS)

LegalRuleML Core Specification Version 1.0

Working Draft 14e
09 March 2015
Specification URIs
This version:

http://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/csd01/legalruleml-core-spec-v1.0-csd01.html (Authoritative)

http://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/csd01/legalruleml-core-spec-v1.0-csd01.pdf
Previous version:
N/A
Latest version:

http://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/legalruleml-core-spec-v1.0.html
http://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/legalruleml-core-spec-v1.0.pdf
Technical Committee:

OASIS LegalRuleML TC
Chairs:
Monica Palmirani (monica.palmirani@unibo.it), CIRSFID, University of Bologna
Guido Governatori (guido.governatori@nicta.com.au), NICTA
Editors:

Monica Palmirani (monica.palmirani@unibo.it), CIRSFID, University of Bologna
Guido Governatori (guido.governatori@nicta.com.au), NICTA
Tara Athan, (taraathan@gmail.com), Individual
Harold Boley (harold.boley[AT]unb.ca), RuleML, Inc.
Adrian Paschke (paschke[AT]inf.fu-berlin.de), RuleML, Inc.
Adam Wyner (azwyner@abdn.ac.uk), University of Aberdeen
Abstract:

Summary of the technical purpose of the document

Status:

This document was last revised or approved by the OASIS LegalRuleML TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/legalruleml/.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/legalruleml/ipr.php).
Citation format:

When referencing this specification the following citation format should be used:
[LegalRuleML-Core]
LegalRuleML Core Specification Version 1.0. 07 August 2013. OASIS Committee Specification Draft 01. http://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/csd01/legalruleml-core-spec-v1.0-csd01.html.
Notices

Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/policies-guidelines/trademark for above guidance.
Table of Contents

6Introduction

6Terminology

6Normative References

6Non-Normative References

7Background and Motivation

73.1 Objective

83.2 Main Principles

94
Vocabulary

94.1 General Concepts (non-normative)

94.2 Node Elements (normative)

114.3 RuleML Node Elements (normative)

114.4 Edge elements (normative)

124.5 Attributes on LegalRuleML elements, unqualified (normative)

145
LegalRuleML Functional Requirements (non-normative)

145.1 Modelling Legal Norms

155.1.1 Defeasibility

175.1.2 Constitutive and Prescriptive Norms

185.1.3 Deontic

21Alternatives

215.2 Metadata of the LegalRuleML Specifications

215.2.1 Sources and Isomorphism

235.2.2 Agent, Authority

235.2.3 Figure, Role

245.2.4 Jurisdiction

245.2.5 Time and Events

255.3 Context Associations

276
LegalRuleML XML Meta Model (non-normative)

297
LegalRuleML XML Design Principles (non-normative)

297.1 Criteria of Good Language Design

297.1.1 XML Elements vs. Attributes

297.1.2 Different Syntactic and Semantic Layers

307.2 Syntax Design of LegalRuleML-Core

307.2.1 Namespaces

307.2.2 Node and edge Element Dichotomy

317.2.3 Serializations

317.2.4 Slot Design Pattern

317.2.5 Leaf edges

327.2.6 CURIES, Relative IRIs and the xsd:ID Datatype

327.2.7 Collection Design Pattern

327.2.8 Ordered-Children Design Pattern

337.3 Relax NG Schema Design

337.3.1 Modules

337.3.2 Relax NG Definition Templates

337.3.3 Drivers

347.4 XSD Schema Derivation

347.4.1 Alternate Drivers

347.4.2 Alternate Relax NG Modules

347.4.3 Modification of RuleML Modules

347.4.4 Conversion using Trang

347.4.5 Post-processing with XSLT

358
LegalRuleML Specifications (normative)

358.1 LegalRuleML RDFS Specifications

358.2 LegalRuleML XML Specifications

35LegalRuleML Main Elements

358.2 Subsidiary LegalRuleML Elements

369
A Comprehensive Example

3910
Conformance

40Acknowledgments

41Example Text

41A.1 Subsidiary section

41A.1.1 Sub-subsidiary section

42Revision History

Introduction
Introductory text.
Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

Normative References
[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
[RuleML]
xxxxx
Non-Normative References

[Reference]
[Full reference citation]
NOTE: The proper format for citation of technical work produced by an OASIS TC (whether Standards Track or Non-Standards Track) is:
[Citation Label]
Work Product title (italicized). Approval date (DD Month YYYY). OASIS Stage Identifier and Revision Number (e.g., OASIS Committee Specification Draft 01). Principal URI (version-specific URI, e.g., with filename component: somespec-v1.0-csd01.html).

For example:
[OpenDoc-1.2]
Open Document Format for Office Applications (OpenDocument) Version 1.2. 19 January 2011. OASIS Committee Specification Draft 07. http://docs.oasis-open.org/office/v1.2/csd07/OpenDocument-v1.2-csd07.html.
[CAP-1.2]
Common Alerting Protocol Version 1.2. 01 July 2010. OASIS Standard. http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html.
Background and Motivation

Legal texts, e.g. legislation, regulations, contracts, and case law, are the source of norms, guidelines, and rules. As text, it is difficult to exchange specific information content contained in the texts between parties, to search for and extract structured the content from the texts, or to automatically process it further. Legislators, legal practitioners, and business managers are, therefore, impeded from comparing, contrasting, integrating, and reusing the contents of the texts, since any such activities are manual. In the current web-enabled context, where innovative eGovernment and eCommerce applications are increasingly deployed, it has become essential to provide machine-readable forms (generally in XML) of the contents of the text. In providing such forms, the general norms and specific procedural rules in legislative documents, the conditions of services and business rules in contracts, and the information about arguments and interpretation of norms in the judgments for case-law would be amenable to such applications.

The ability to have proper and expressive conceptual, machine-readable models of the various and multifaceted aspects of norms, guidelines, and general legal knowledge is a key factor for the development and deployment of successful applications. The LegalRuleML TC, set up inside of OASIS (www.oasis-open.org), aims to produce a rule interchange language for the legal domain. Using the representation tools, the contents of the legal texts can be structured in a machine-readable format, which then feeds further processes of interchange, comparison, evaluation, and reasoning. The Artificial Intelligence (AI) and Law communities have converged in the last twenty years on modeling legal norms and guidelines using logic and other formal techniques [Ashley and van Engers, 2011]. Existing methods begin with the analysis of a legal text by a Legal Knowledge Engineer, who scopes the analysis, extracts the norms and guidelines, applies models and a theory within a logical framework, and finally represents the norms using a particular formalism. In the last decade, several Legal XML standards have been proposed to represent legal texts [Lupo et al., 2007] with XML-based rules (RuleML, SWRL, RIF, LKIF, etc.) [Gordon et al., 2009, Gordon, 2008]. At the same time, the Semantic Web, in particular Legal Ontology research combined with semantic norm extraction based on Natural Language Processing (NLP) [Francesconi et al., 2010], has given a strong impetus to the modelling of legal concepts [Boer et al., 2008, Benjamins et al., 2005, Breuker et al., 2006]. Based on this, the work of the LegalRuleML Technical Committee will focus on three specific needs:

1 To close the gap between legal texts that are expressed in natural language and semantic norm modeling. This is necessary in order to provide integrated and self-contained representations of legal resources that can be made available on the Web as XML representations [Palmirani et al., 2009] and so foster Semantic Web technologies such as: NLP, Information Retrieval and Extraction (IR/IE), graphical representation, as well as Web ontologies and rules.

2 To provide an expressive XML standard for modeling normative rules that satisfies legal domain requirements. This will enable use of a legal reasoning layer on top of the ontological layer, aligning with the W3C envisioned Semantic Web stack.

3 To extend the Linked Open Data [Berners-Lee, 2010] approach to modeling from raw data (acts, contracts, court files, judgments, etc.) to legal concepts and rules along with their functionality and usage. Without rules that apply to legal concepts, legal concepts constitute just a taxonomy [Sartor, 2009].
3.1 Objective
The objective of the LegalRuleML TC is to extend RuleML with formal features specific to legal norms, guidelines, policies and reasoning; that is, the TC defines a standard (expressed with XML-schema and Relax NG) that is able to represent the particularities of the legal normative rules with a rich, articulated, and meaningful markup language.

LegalRuleML models:

- defeasibility of rules and defeasible logic;

- deontic operators (e.g., obligations, permissions, prohibitions, rights);

- semantic management of negation;

- temporal management of rules and temporality in rules;

- classification of norms (i.e., constitutive, prescriptive);

- jurisdiction of norms;

- isomorphism between rules and natural language normative provisions;

- identification of parts of the norms (e.g. bearer, conditions);

- authorial tracking of rules.

Some matters are out of the scope of the TC and LegalRuleML such as specifications of core or domain legal ontologies.

3.2 Main Principles

The main principles of LegalRuleML are as follows.
Multiple Semantic Annotations: A legal rule may have multiple semantic annotations, where these annotations represent different legal interpretations. Each such annotation appears in a separate annotation block as internal or external metadata. A range of parameters provide the interpretation with respect to provenance, applicable jurisdiction, logical interpretation of the rule, and others.
Tracking the LegalRuleML Creators: As part of the provenance information, a LegalRuleML document or any of its fragments can be associated with its creators. This is important to establish the authority and trust of the knowledge base and annotations. Among the creators of the document can be the authors of the text, knowledge base, and annotations, as well as the publisher of the document.
Linking Rules and Provisions: LegalRuleML includes a mechanism, based on IRI, that allows many to many (N:M) relationships among the rules and the textual provisions: multiple rules are embedded in the same provision, several provisions contribute to the same rule. This mechanism may be managed in the metadata block, permitting extensible management, avoiding redundancy in the IRI definition, and avoiding errors in the associations.
Temporal Management: LegalRuleML's universe of discourse contains a variety of entities: provisions, rules, applications of rules, references to text, and references to physical entities. All of these entities exist and change in time; their histories interact in complicated ways. Legal RuleML represents these temporal issues in unambiguous fashion. In particular, a rule has parameters which can vary over time, such as its status (e.g. strict, defeasible, defeater), its validity (e.g. repealed, annulled, suspended), and its jurisdiction (e.g. only in EU, only in US). In addition, a rule has temporal aspects such as internal constituency of the action, the time of assertion of the rule, the efficacy, enforcement, and so on.
Formal Ontology Reference: LegalRuleML is independent from any legal ontology and logic framework. However it includes a mechanism, based on IRIs, for pointing to reusable classes of a specified external ontology.
LegalRuleML is based on RuleML: LegalRuleML reuses and extends concepts and syntax of RuleML wherever possible, and also adds novel annotations. RuleML includes Reaction RuleML.
Mapping: LegalRuleML is mappable to RDF triples for favoring Linked Data reuse.

4 Vocabulary

This chapter defines the terminology for the internal documentation of LegalRuleML XML-schema and connected modules as well as general concepts used in the narrative about LegalRuleML. Those terms that are embedded in the XML-schema are appear under Node Elements, while those used as well in the narrative are indicated with +. Terminology that is being defined appears on the left, while terminology that has elsewhere been defined within a definition appears with capitals.
These definitions are duplicated in the Relax NG and XSD schemas and the RDFS meta-model. In the case of discrepancy, the definition in the Vocabulary section takes precedence.
4.1 General Concepts (non-normative)

Actor: an Agent or a Figure.

Deontic Specification: an Obligation, Permission, Prohibition, Right,

Internal Identifier : a local unique identifier of a node in a LegalRuleML document.

Isomorphism : a relationship between a set of Legal Rules with a set of Legal Sources such that the origin of the Legal Rules is tied to the Legal Sources.

Legal Norm : a binding directive from a Legal Authority to addressees (i.e. Bearers or Auxiliary Parties).

Legal Rule : a formal representation of a Legal Norm.

LegalRuleML Specification: an XML schema, Relax NG schema, metamodel, glossary, license, or any other technical normative specification that is an approved outcome of this OASIS TC.

Legal Statement : a LegalRuleML expression of a Legal Rule or a part of a Legal Rule.

Legal Status : a standing that can apply to a Legal Norm at a Time, e.g., "is applicable", "is in force", "has efficacy", "is valid".

Status Development : a kind of event (e.g., start, end) that changes the Legal Status of a Legal Norm, e.g. making a Legal Norm in force.

4.2 Node Elements (normative)

Agent(s)+: an entity that acts or has the capability to act.

Alternatives +: a mutually exclusive collection where every member is a LegalRuleML rendering of one or more Legal Norms.

Association(s) : a partial description of the extension of some relations where each non-target entity is paired with every target entity.

Authority(ies) +: a person or organization with the power to create, endorse, or enforce Legal Norms.

AuxiliaryParty +: a role in a Deontic Specification to which the Deontic Specification is related.

Bearer +: a role in a Deontic Specification to which the Deontic Specification is primarily directed.

Comment: a comment, which has no semantic effect.

Compliance +: an indication that an Obligation has been fulfilled or a Prohibition has not been violated.

ConstitutiveStatement +: a Legal Statement that defines concepts and does not prescribe behaviours.
Context +: an application of Associations to their target entities within a Scope.

DefeasibleStrength +: an indication that, in the absence of information to the contrary and where the antecedent of a Legal Rule holds, the conclusion of the Legal Rule holds.

Defeater +: an indication that, in the absence of information to the contrary and where the antecedent of a Legal Rule holds, the opposite of the conclusion of the Legal Rule does not hold.

FactualStatement +: an expression of fact.

Figure(s) +: an instantiation of a function by an Actor.

Jurisdiction(s) +: a geographic area or subject-matter over which an Authority applies its legal power.

LegalRuleML: a formal representation of one or more LegalSources using the LegalRuleML Specifications.

LegalSource(s) +: a source of one or more Legal Norms formulated in any format and endorsed by an Authority.

Obligation +: a Deontic Specification for a state, an act, or a course of action to which a Bearer is legally bound, and which, if it is not achieved or performed, results in a Violation.

Override +: an indication that a Legal Rule takes precedence over another Legal Rule. The ordered pair of Legal Rules is an instance in a defeasible priority relation.

OverrideStatement +: a Legal Statement of an Override.

Paraphrase +: a natural language rendering of a Legal Rule or fragment of it that is an alternative to its Legal Source(s).

PenaltyStatement +: a Legal Statement of a sanction (e.g. a punishment or a correction).

Permission (see also Right) +: a Deontic Specification for a state, an act, or a course of action where the Bearer has no Obligation or Prohibition to the contrary. A weak Permission is the absence of the Obligation or Prohibition to the contrary; a strong Permission is an exception or derogation of the Obligation or Prohibition to the contrary.

Prefix +: a prefix declaration in a LegalRuleML document.

PrescriptiveStatement +: a Legal Statement which prescribes behaviours, e.g. with Permissions, Obligations, or Prohibitions on states, actions, or courses of actions.

Prohibition +: a Deontic Specification for a state, an act, or a course of action to which a Bearer is legally bound, and which, if it is achieved or performed, results in a Violation.

Reference(s) +: a pair consisting of an internal ID and an enriched non-IRI identifier, where the non-IRI is paired with some additional information that is sufficient to disambiguate the non-IRI to a unique LegalSource.

Reparation +: an indication that a PenaltyStatement is linked with a PrescriptiveStatement. It indicates that a sanction may apply where the PrescriptiveStatement entails a Deontic Specification and when there is a Violation of the Deontic Specification.

ReparationStatement : a Legal Statement of a Reparation.

Right (see also Permission) +: a Deontic Specification that gives a Permission to a party (the Bearer) and implies there are Obligations or Prohibitions on other parties (the AuxiliaryParty) such that the Bearer can (eventually) exercise the Right.

Role(s) +: a function of or part played by an Actor relative to a LegalRuleML expression.

Statements +: a collection where every member is a Legal Statement or a FactualStatement.

Strength : the quality of a Legal Rule to resist or not to resist a rebuttal.

StrictStrength +: an indication that where the antecedent of a Legal Rule is indisputable, the conclusion of the Legal Rule is indisputable.

SuborderList : a Deontic Specification for a sequence of Deontic Specifications, i.e., Obligations, Prohibitions, Permissions, Rights and/or Suborder Lists. When a SuborderList holds, a Deontic Specification in the SuborderList holds if all Deontic Specifications that precede it in the SuborderList have been violated.
TemporalCharacteristic(s) +: a pair of Time with a qualification, which consists of a Legal Status and a Status Development, such that the qualification holds at the Time.

Times : a collection where each member is a Time.

Violation +: an indication that an Obligation or Prohibition has been violated.

4.3 RuleML Node Elements (normative)

ruleml:Rule :

a) a RuleML Rule encoding a Constitutive Statement.

b) a RuleML Rule encoding a Prescriptive Statement.

ruleml:Time +: a neutral temporal entity.

For nodes with the plural, i.e., <Node>(s) the node <Nodes> is defined as a collection where every member is a <Node>. The plural form is not a General Concept.

4.4 Edge elements (normative)

applies<Node> : a <node> applied by the Context or Association (e.g. appliesAuthority – an Authority applied by the Context or Association).

appliesAlternatives: a collection of Alternatives applied by the Context.

appliesAssociations: a collection of Associations applied by the Context.

appliesAssociation: an Association applied by the Context.

appliesAuthority: an Authority applied by the Context or Association.

appliesJurisdiction: a Jurisdiction applied by the Context or Association.

appliesStrength: a Strength applied by the Context or Association.

appliesTemporalCharacteristics: a collection of TemporalCharacteristics applied by the Context or
Association.

appliesTemporalCharacteristic: a TemporalCharacteristic applied by the Context or Association.

appliesModality : the deontic mode that applies to a Deontic Specification in a Context or
Association.

appliesPenalty : the PenaltyStatement that is linked to a LegalRule in a Reparation.

appliesSource : a LegalSource or Reference applied by the Context or Association.

atTime : the Time of the qualification of a TemporalCharacteristic.

filledBy : an Actor that fills the Role.

forExpression : a LegalRuleML expression for which the Role is responsible (e.g., the expression was created or endorsed by the role).

forStatus : the Legal Status of the qualification in a TemporalCharacteristic.

fromLegalSources: the LegalSources from which the Alternatives are derived.

has<Node> : a <node> in the collection (e.g. hasAgent – an Agent in the collection).

hasAlternative : an Alternative in the collection.

hasAgent: an Agent in the collection.

hasAssociation: an Association in the collection.

hasAuthority: an Authority in the collection.

hasFigure: a Figure in the collection.

hasJurisdiction: a Jurisdiction in the collection.

hasLegalSource: a LegalSource in the collection.

hasReference: a Reference in the collection.

hasRole: a Role in the collection.

hasStatement: a Legal Statement in the collection.

hasTemporalCharacteristic: a TemporalCharacteristic in the collection.

hasTime: a Time in the collection.

has<Node>s: a collection of <node>s (e.g. hasAgents – a collection of Agents).

hasAgents: a collection of Agents.

hasAlternatives: a collection of Alternatives.

hasAssociations: a collection of Associations.

hasAuthorities: a collection of Authorities.

hasFigures: a collection of Figures.

hasJurisdictions: a collection of Jurisdictions.

hasLegalSources: a collection of LegalSources.

hasReferences: a collection of References.

hasRoles: a collection of Roles.

hasStatements: a collection of Legal Statements.

hasTemporalCharacteristics: a collection of TemporalCharacteristics.

hasTimes: a collection of Times.

hasActor: an Actor that has the responsibility to fulfill the function of a Figure.

hasContext: a Context described in the LegalRuleML document.

hasComment: a Comment on the parent Node Element.

hasFunction: the function of a Figure.

hasParaphrase : a Paraphrase of the parent Node Element (e.g. a Legal Rule).

hasPrefix: a Prefix declared in the LegalRuleML document.

hasQualification: a qualification (e.g. an Override) of the Statements.

hasStatusDevelopment : the Status Development of the qualification in a TemporalCharacteristic.

hasStrength: the Strength of the Legal Rule.

hasTemplate: the template of a Legal Statement.

inScope: the Statement or (collection of) Statements that the Context is applied to.

hasMemberType: the type or class of members of the collection.

toPrescriptiveStatement: the PrescriptiveStatement that is linked to a PenaltyStatement in a Reparation.

toTarget: the target to which properties are applied by the Association.

hasType: the type or class of the parent Node Element.

4.5 Attributes on LegalRuleML elements, unqualified (normative)

@hasCreationDate : the creation date of the Context or LegalRuleML document.

@iri : an IRI providing details regarding the parent Node Element.
@key : a Node Element label.

@keyref : a Node Element reference.
@memberType : the type or class of members of the collection.

@over : the Legal Rule with higher priority.

@pre : the prefix in a Prefix declaration, following CURIE conventions.

@refersTo : the internal ID of the Reference.

@refID : the external ID of the Reference.

@refIDSystemName : the name of the ID system of the Reference (or of References contained by the References collection).

@refIDSystemSource : the IRI source of the ID system of the Reference (or of References contained by the References collection).

@refType : the conceptual type of the Reference (or of references contained by the References collection).

@sameAs : an IRI that denotes the same thing as the parent Node Element.

@strength : the (defeasible) Strength of the Legal Rule.

@type : the type or class of the parent Node Element.

@under : the Legal Rule with lower priority.

5 LegalRuleML Functional Requirements (non-normative)
Specifically, LegalRuleML facilitates the following functionalities.

· R1) Supports modelling different types of rules. There are constitutive rules, which define concepts or institutional actions that are recognised as such by virtue of the defining rules (e.g. the legal definition of “transfer property ownership”) and there are prescriptive rules, which regulated actions or the outcome of actions by making them obligatory, permitted, or prohibited.
· R2) Represents normative effects. There are many normative effects that follow from applying rules, such as obligations, permissions, prohibitions, and more articulated effects. Rules are also required to regulate methods for detecting violations of the law and to determine the normative effects triggered by norm violations, such as reparative obligations, which are meant to repair or compensate violations. These constructions can give rise to very complex rule dependencies, because the violation of a single rule can activate other (reparative) rules, which in turn, in case of their violation, refer to other rules, and so forth.

· R3) Implements defeasibility [Gordon, 1995, Prakken and Sartor, 1996, Sartor, 2005]. In the law, where the antecedent of a rule is satisfied by the facts of a case (or via other rules), the conclusion of the rule presumably, but not necessarily, holds. The defeasibility of legal rules consists of the means to identify exceptions and conflicts along with mechanisms to resolve conflicts.

· R4) Implements isomorphism [Bench-Capon and Coenen, 1992]. To ease validation and maintenance, there should be a one-to-one correspondence between collections of rules in the formal model and the units of (controlled) natural language text that express the rules in the original legal sources, such as sections of legislation.

· R5) Alternatives: often legal documents are left ambiguous on purpose to capture open ended aspects of the domain they are intended to regulate. At the same time legal documents are meant to be interpreted by end users. This means that there are cases where multiple (and incompatible) interpretations of the same textual source are possible. LegalRuleML offers mechanisms to specify such interpretations and to select one of them based on the relevant context.
R6) Manages rule reification [Gordon, 1995]. Rules are objects with properties, such as Jurisdiction, Authority, Temporal attributes [Palmirani et al., 2010, Governatori et al., 2009, 2005]. These elements are necessary to enable effective legal reasoning.
5.1 Modelling Legal Norms

According to scholars of legal theory [Sartor 2005], norms can be represented by rules with the form
if A_1, ... , A_n then C
where A_1,...,A_n are the pre-conditions of the norm, C is the effect of the norm, and if ... then ... is a normative conditional, which are generally defeasible and do not correspond to the if-then material implication of propositional logic. Norms are meant to provide general principles, but at the same time they can express exceptions to the principle. It is well understood in Legal Theory [Sartor 2005, Gordon et al 2009] that, typically, there are different types of “normative conditionals”, but in general normative conditionals are defeasible. Defeasibility is the property that a conclusion is open in principle to revision in case more evidence to the contrary is provided. Defeasible reasoning is in contrast to monotonic reasoning of propositional logic, where no revision is possible. In addition, defeasible reasoning allows reasoning in the face of contradictions, which gives rise to ex false quodlibet in propositional logic. One application of defeasible reasoning is the ability to model exceptions in a simple and natural way..
5.1.1 Defeasibility
The first use of defeasible rules is to capture conflicting rules/norms without making the resulting set of rules inconsistent. Given that -expression means the negation of expression, the following two rules conclude with the negation of each other

body_1 => head

body_2 => -head

Without defeasibile rules, rules with conclusions that are negations of each other could give rise, should body 1 and body 2 both hold, to a contradiction, i.e., head and - head, and consequently ex falso quodlibet. Instead, defeasible reasoning is sceptical; that is, in case of a conflict such as the above, it refrains from taking any of the two conclusions, unless there are mechanisms to solve the conflict (see the discussion below on the superiority relation). Notice that an application of this is to model exceptions. Exceptions limit the applicability of basic norms/rules, for example:
body => head

body, exception_condition => -head

In this case, the second rule is more specific than the first, and thus it forms an exception to the first, i.e., a case where the rule has extra conditions that encode the exception, blocking the conclusion of the first rule. Often, exceptions in defeasible reasoning can be simply encoded as
 body => head

exception_condition => -head

In the definition of rules as normative conditionals made up of preconditions and effect, we can see a rule as a binary relationship between the set of pre-conditions (or body or antecedent) of the rule, and the (legal) effect (head or conclusion) of the rule. Formally, a rule can be defined by the following signature:

body x head

We can then investigate the nature of such a relationship. Given two sets, we have the following seven possible relationships describing the “strength” of the connections between the body and the head of a rule:

body always head

body sometimes head

body not complement head

body no relationship head

body always complement head

body sometimes complement head

body not head

In defeasible logic we can represent the relationships using the following formalisation of rules (rule types):

body -> head

body => head

body ~> head

body -> -head

body => -head

body ~> -head

The seventh case is when there are no rules between the body and the head. The following table summarises the relationships, the notation used for them, and the strength of the relationship.

	body always head
	body -> head
	Strict rule

	body sometimes head
	body => head
	Defeasible rule

	body not complement head
	body ~> head
	Defeater

	body no relationship head
	
	

	body always complement head
	body -> -head
	Strict rule

	body sometimes complement head
	body => -head
	Defeasible rule

	body not head
	body ~> -head
	Defeater

The meaning of the different types of rules is as follows:

For a strict rule body -> head the interpretation is that every time the body holds then the head holds.

For a defeasible rule body => head the reading is when the body holds, then, typically, the head holds. Alternatively we can say that the head holds when the body does unless there are reasons to assert that the head does not hold. This captures that it is possible to have exceptions to the rule/norm, and it is possible to have prescriptions for the opposite conclusion.

For a defeaters body ~> head the intuition is as follows: defeaters are rules that cannot establish that the head holds. Instead they can be use to specify that the opposite conclusion does not hold. In argumentation two types of defeaters are recognized: defeaters used when an argument attacks the preconditions of another argument (or rule); other defeaters used when there is no relationship between the premises of an argument (preconditions of a rule or body) and the conclusion of the argument (effect of the rule or head)

Given the possibility to have conflicting rules, i.e., rules with opposite or contradictory heads, for example

body1 => head

body2 => -head
systems for defeasible reasoning include mechanisms to solve such conflicts. Different methods to solve conflicts have been proposed: specificity, salience, and preference relation. According to specificity, in case of a conflict between two rules, the most specific rule prevails over the less specific one, where a rule is more specific if its body subsumes the body of the other rule. For salience, each rule has an attached salience or weight, where in case of a conflict between two rules, the one with the greatest salience or weight prevails over the other. Finally, a preference relation (also known as superiority relation) defines a binary relation over rules, where an element of the relation states the relative strength between two rules. Thus, in case of a conflict between two rules, if the preference relation is defined order such rules, the strongest of the two rules wins over the other.

Various researchers have taken different views on such methods. Specificity corresponds to the well know legal principle of lex specialis. Prakken and Sartor [1997] argue that specificity is not always appropriate for legal reasoning and that there are other well understood legal principles such as lex superior and lex posterior apply instead. Prakken and Sartor [1997] cite cases in which the lex specialis principle might not be the one used to solve the conflict, for example, a more specific article from a local council regulation might not override a less specific constitutional norm. Prakken and Sartor [1997] propose to use a dynamic preference relation to handle conflicting rules. The preference relation is dynamic in the sense that it is possible to argue about which instances of the relation hold and under which circumstances. Antoniou [2004] proposes that instances of the superiority relation appear in the head of rules, namely:
body => superiority

where superiority is a statement with the form

r1 > r2

where r1 and r2 are rule identifiers.

Gordon et al. [2007] propose Carneades as a rule-based argumentation system suitable for legal reasoning where they use weights attached to the arguments (rules) to solve conflicts and to define proof standards. Governatori [2011] shows how to use the weights to generate an equivalent preference relation, and, consequently, how to capture the proposed proof standards. In addition, Governatori [2011] shows that there are situations where a preference relation cannot be captured by using weights on the rules.
To handle defeasibility, LegalRuleML has to capture the superiority relation and the strength of rules. For the superiority relation, LegalRuleML offers the element <Overrides>, which defines a relationship of superiority where cs2 overrides cs1, where cs2 and cs1 are Legal Statement (see the glossary definition) identifiers. These elements are included in hasQualification blocks.

<lrml:hasQualification>

<lrml:Overrides over="#cs1" under="#cs2"/>

</lrml:hasQualification>

For the representation of the strength of rules, LegalRuleMLhas two options:

The first is to include it in a <Context> block, where a <Context> specifies a context in which the rule is applied:
<lrml:Context key="ruleInfo2">

<lrml:appliesStrength iri="&defeasible-ontology;#defeasible2"/>

<lrml:toStatement keyref="#cs1"/>

</lrml:Context>

The second (and optional) way to express the qualification of the rule is directly inside of the rule, with an hasStrength block. The difference is that <Context> localises the strength of a rule, while the hasStrength block in effect relates the strength to the rule in all contexts:

<lrml:hasStrength>

<lrml:Defeater key="str4"/>
</lrml:hasStrength>

5.1.2 Constitutive and Prescriptive Norms

As we have discussed, a Legal Rule can be seen as binary relationship between its antecedent (a set of formulas, encoding the pre-conditions of a norm, represented in LegalRuleML by a formula, where multiple pre-conditions are joined by some logical connective) and its conclusion (the effect of the norm, represented by a formula). It is possible to have different types of relations. In the previous section, we examined one such aspect: the strength of the link between the antecedent and the conclusion. Similarly, we can explore a second aspect, namely what type of effect follows from the pre-condition of a norm. In Legal Theory norms are classified mostly in two main categories: constitutive norms and prescriptive norms, which will be then represented as constitutive rules (also known as counts-as rules) and prescriptive rules.

The function of constitutive norms is to define and create so called institutional facts [Searle, 1996], where an institutional fact is how a particular concept is understood in a specific institution. Thus, constitutive rules provide definitions of the terms and concepts used in a jurisdiction. On the other hand, prescriptive rules dictate the obligations, prohibitions, permissions, etc. of a legal system, along with the conditions under which the obligations, prohibitions, permissions, etc hold. LegalRuleML uses deontic operators to capture such notions (see Section 4.1.3). Deontic operators are meant to qualify formulas. A Deontic operator takes as its argument a formula and returns a formula. For example, given the (atomic) formula PayInvoice(guido), meaning ‘Guido pays the invoice’, and the deontic operator [OBL] (for obligation), the application of the deontic operator to the formula generates the new formula [OBL]PayInvoice(guido), meaning that “it is obligatory that Guido pays the invoice”.

The following is the LegalRuleML format for prescriptive rules. Notice, that in LegalRuleML Legal rules are captured by the broader class of Statements:
<lrml:PrescriptiveStatement key="ps1">

<ruleml:Rule key=":key1">

<lrml:hasStrength>

strength of the rule

</lrml:hasStrength>

<ruleml:if>

set of deontic formulas and formulas

</ruleml:if>

<ruleml:then>

<lrml:SuborderList>

list of deontic formulas

</lrml:SuborderList>

</ruleml:then>

</ruleml:Rule>

</lrml:PrescriptiveStatement>

The difference between constitutive rules and prescriptive rules is in the content of the head, where the head of a prescriptive rule is list of deontic operators, i.e., [D1]formula1,...,[Dn]formulan which is called a suborder list (see section 4.1.4 below), and represented in LegalRuleML by the <lrml:Suborder> block. Prescriptive and constitutive rules can have deontic formulas as their preconditions (body). The conclusion (head) of a constitutive rule cannot be a deontic formula.

<lrml:ConstitutiveStatement key="ps1">

<ruleml:Rule key=":key1">

<lrml:hasStrength>

strength of the rule

</lrml:hasStrength>

<ruleml:if>

formula, including deontic formula

</ruleml:if>

<ruleml:then>

non-deontic formula

</ruleml:then>

</ruleml:Rule>

</lrml:ConstitutiveStatement>

5.1.3 Deontic
One of the functions of norms is to regulate the behaviour of their subjects by imposing constraints on what the subjects can or cannot do, what situations are deemed legal, and which ones are considered to be illegal. There is an important difference between the constraints imposed by norms and other types of constraints. Typically a constraint means that the situation described by the constraint cannot occur. For example, the constraint A means that if -A (the negation of A, that is, the opposite of A) occurs, then we have a contradiction, or in other terms, we have an impossible situation. Norms, on the other hand, can be violated. Namely, given a norm that imposes the constraint A, yet we have a situation where -A, we do not have a contradiction, but rather a Violation (see also the glossary), or in other terms we have a situation that is classified as "illegal". From a logical point of view, we cannot represent the constraint imposed by a norm simply by A, since the conjunction of A and -A is a contradiction. Thus we need a mechanism to identify the constraints imposed by norms. This mechanism is provided by modal (deontic) operators.

5.1.3.1 Modal and Deontic Operators
Modal logic is an extension of classical logic with modal operators. A modal operator applies to a proposition to create a new proposition. The meaning of a modal operator is to "qualify" the truth of the proposition that the operator applies to. The basic modal operators are those of necessity and possibility. Accordingly, given a proposition p expressing, for example that "the snow is white" and the necessity modal operator [NEC], [NEC]p is the proposition expressing that "necessarily the snow is white". Typically, the necessity and possibility operators are the dual of each other, namely:

[NEC]p equiv -[POS]-p
[POS]p equiv -[NEC]-p
The modal operators have received different interpretations: for example, necessity can be understood as logical necessity, physical necessity, epistemic necessity (knowledge), doxastic necessity (belief), temporal necessity (e.g., always in the future), deontic necessity (obligatory), and many more.

In the context of normative reasoning and representation of norms the focus is on the concepts of deontic necessity and deontic possibility. These two correspond to the notions of Obligation (see also the glossary) and Permission (see also the glossary). In addition, we consider the notion of Prohibition (see also the glossary), which corresponds to the operator of deontic impossibility. For something to be "deontically necessary" means that it holds in all situations deemed legal; similarly something is "deontically possible" if there is at least one legal state where it holds. Finally, "deontically impossible" indicates that something does not hold in any legal state.

We will use [OBL] for the modal/deontic operator of Obligation, [PER] for Permission, and [FOR] for Prohibition (or Forbidden).

Standard deontic logic assumes the following relationships between the operators:

[OBL]p equiv -[PER]-p
If p is obligatory, then its opposite, -p, is not permitted.

[FOR]p equiv [OBL]-p
If p is forbidden then its opposite is Obligatory. Alternatively, a Prohibition can be understood as Obligation of the negation.

Accordingly, the following is an example of mathematical statement of a Prescriptive Rule (see also the glossary):

p_1_, ..., p_n_, [DEON_1_]p_n+1_, ..., [DEON_m_]p_n+m_ =>[DEON] q
The antecedent, p_1_, ..., p_n_, [DEON_1_]p_n+1_, ..., [DEON_m_]p_n+m_, conditions the applicability of the norm in the consequent [DEON] q; that is, when the antecedent conditions are met, then the consequent is the deontic effect of them. Thus, given the antecedent, the rule implies [DEON] q.

The operators of Obligation, Prohibition and Permission are typically considered the basic ones, but further refinements are possible, for example, two types of permissions have been discussed in the literature on deontic logic: weak permission (or negative permission) and strong permission (or positive permission). Weak permission corresponds to the idea that some A is permitted if -A is not provable as mandatory. In other words, something is allowed by a code only when it is not prohibited by that code [von Wright 1963]. The concept of strong permission is more complicated, as it amounts to the idea that some A is permitted by a code if and only if such a code explicitly states that A is permitted, typically as an exception to the prohibition of A or the obligation of its contrary, i.e., -A. It follows that a strong permission is not derived from the absence of a prohibition, but is explicitly formulated in a permissive (prescriptive) norm [Alchurron & Bulygin 1984]. An example of an explicit permissive norm is manifested by a "U-turn permitted" sign exposed at a traffic light, which derogates the (general) prohibition to U-turn at traffic lights.

Refinements of the concept of obligation have been proposed as well. For example it possible to distinguish between achievement and maintenance obligations, where an achievement obligation is an obligation that is fulfilled if what the obligation prescribes holds at least once in the period when the obligation holds, while a maintenance obligation must be obeyed for all the instants when it holds (see [Governatori 2014] for a classification of obligations).
LegalRuleML is neutral about the different subclasses of the deontic operators; to this end LegalRuleML is equipped with a mechanism to point to the semantics of various Deontic Specifications (see also the glossary) in a document. The first mechanism is provided by the iri attribute of a Deontic Specification for example:
<lrml:Obligation
 key="oblig1
 iri="http://example.org/deontic/vacab#achievementobligation">
 ...
</lrml:Obligation>
The second alternative is to use an Association to link a Deontic Specification to its meaning using the applyModality element, namely:

<lrml:Association>
 <lrml:appliesModality
 iri="http://example.org/deontic/vocab#maintenanaceobligation"/>
 <lrml:toTarget keyref="#oblig101"/>
</lrml:Association>
Furthermore, Obligations, Prohibitions and Permissions in LegalRuleML are directed operators [Herrestad & Krogh 1995], thus they have parties (e.g. Bearer - see also the glossary), specifying, for example, who is the subject of an Obligation or who is the beneficiary of a Permission.

<lrml:Obligation iri="http://example.org/deontic/vocab#obl1”>

 <ruleml:slot>

 <lrml:Bearer iri="http://example.org/deontic/vocab#oblBearer"/>

 <ruleml:Ind>Y</ruleml:Ind>

 </ruleml:slot>

 <ruleml:Atom key=":atom2">

 <ruleml:Rel iri="#rel2"/>

 <ruleml:Ind>X</ruleml:Ind>

 </ruleml:Atom>

</lrml:Obligation>
5.1.3.2
Violation, Suborder, Penalty and Reparation
Obligations can be violated; according to some legal scholars, the possibility of being violated can be used to define an obligation. A violation means that the content of the obligation has not been met. It is important to notice that a violation does not result in an inconsistency. A violation is, basically, a situation where we have

([OBL]p) and -p:

One of the characteristics of norms is that having violated them, a penalty can be introduced to compensate for the violation, where a penalty is understood to also be a deontic formula. To model this feature of norms and legal reasoning Governatori and Rotolo [2006] introduced what is called here a suborder list, and Governatori [2005] showed how to combine them with defeasible reasoning for the modelling of (business) contracts. As we have seen above, a suborder list (SuborderList in the glossary) is a list of deontic formulas, i.e., formulas of the form [D]A, where [D] is one of [OBL] (Obligation), [FOR] (Prohibition, or forbidden), [PER] (Permission) and [RIGHT] (Right). To illustrate the meaning of suborder lists, consider the following example:
[OBL]A, [OBL]B, [FOR]C, [PER]D
The expression means that A is obligatory, but if it is violated, i.e., we have its opposite -A, then the obligation comes into force to compensate for the violation of [OBL]A with [OBL]B. If also this Obligation of B is violated, then we have [FOR]C, the Prohibition of C. At this stage, if we have a Violation of such a Prohibition, i.e., we have C, then the Permission of D kicks in. Obligations and Prohibitions should not be preceded by Permissions and Rights in a suborder list, for the semantics of Suborder lists is such that an element holds in the list only if all the elements that precede it in the list have been violated. It is not possible to have a Violation of a Permission, so it cannot serve a purpose in the Suborder list. Accordingly, an element following a permission in a suborder list would never hold.
Governatori and Rotolo [2006], Governatori [2005] also discuss mechanisms to combine the suborder lists from different rules. For example, given the rules

body => [OBL]A
-A => [OBL]B
Here the body of the second rule is the negation of the content of the obligation in the head of the first rule. It is possible to merge the two rules above in the following rule

body => [OBL]A, [OBL]B
stating that one compensates for the violation of the obligation of A with the obligation of B. This suggests that suborder lists provide a simple and convenient mechanism to model penalties. It is not uncommon for a legal text (e.g., a contract) to include sections about penalties, where one Penalty (see also the glossary) is provided as compensation for many norms. To model this and to maintain the isomorphism between a source and its formalisation, LegalRuleML includes a <Penalty> element, the scope of which is to represent a penalty as a suborder list (including the trivial not empty list of a single element).

<lrml:Penalty key="pen2">
 <lrml:SuborderList>
 list of deontic formulas
 </lrml:SuborderList>
</lrml:Penalty>
LegalRuleML not only models penalties, but aims to connect the penalty with the correspondent Reparation (see also the glossary):
 <lrml:Reparation key="rep1">

 <lrml:appliesPenalty keyref="#pen1"/>

 <lrml:toPrescriptiveStatement keyref="#ps1"/>

 </lrml:Reparation>

With the temporal model of LegalRuleML (see section xxx), we can model a unique deontic rule (e.g., a prohibition) and several penalties that are updated over time according to the modifications of the law. Dynamically, the legal reasoner can point out the correct penalty according to the time of the crime (e.g., statutory damage 500$ in 2000, 750$ in 2006, 1000$ in 2010).

Alternatives

tbd
5.2 Metadata of the LegalRuleML Specifications

5.2.1 Sources and Isomorphism

For legal rule modelling, it is important to maintain the connection between the formal norms and the legally binding textual statements that express the norms for several reasons. Legal knowledge engineers and end users should know and be able to track the textual source of the formal representation. Furthermore, because the legal text is the only legally binding element, the connection between text and the rule(s) (or fragment of rule) guarantees the provenance, authoritativeness, authenticity of the rules modelled by the legal knowledge engineer. In addition, legal experts (judges, lawyers, legal operators) request a mechanism to connect text and rules for legibility and validation of the rules. Finally, because the legal sources of rules change over time, the formal rules need to be updated according to the textual changes; as there is usually no automatic mechanism to correlate and track modifications to rules, the connection between text and rules helps to do so. For these reasons LegalRuleML includes a mechanism for managing this connection, which is called "isomorphism" in the AI&Law community.

The mechanism MUST support a fine granularity (rules, fragments of rules, atoms, fragments of atoms connected with provisions, fragments of provisions, letters, numbers, paragraphs, sentences, and word) as well as to represent temporal modifications.

LegalRuleML dedicates two blocks (<lrml:References>, <lrml:LegalSources>) to annotate the original legal sources and to connect them to rules, so permitting an N:M relationship (e.g. many rules in relation to one textual provision; many textual provisions for one rule). There are blocks for sources and blocks that associate
 sources with rules, assuming references to rules such as rule1.

<lrml:References> is the block dedicated to record non-IRI based identifier sources, and the attribute re- fIDSystemName is able to annotate the naming convention used. In the following example, the /au/2012-05/30/C628:2012/eng@/main#sec2.2 represents the section 2.2 of the Australian code C628 using the naming convention “AkomaNtoso2.0-2011-10”:
<lrml:References refType="http://example.legalruleml.org/lrml#LegalSource">
 <lrml:Reference refersTo="ref1" refID="/au/2012-05-30/C628:2012/eng@/main#sec2.2"
 refIDSystemName="AkomaNtoso2.0-2011-10"/>

</lrml:References>
<lrml:LegalSource> is the block dedicated to record the IRI based identifier sources. The following example define the source of the U.S. Code, section 504, paragraph 1, title 17 published in the Cornell University portal http://www.law.cornell.edu/:
<lrml:LegalSources>

<lrml:LegalSource key="ref2" sameAs="http://www.law.cornell.edu/uscode/text/17/504#psection-1"/>

</lrml:LegalSources>
The list of the resources connected with the legal rules that are modelled in a LegalRuleML document are defined once in the first part of the XML file. This minimizes redundant definitions of the resources and avoids errors.

As we see later, using the attribute value specified in @key, rules (or fragments of a rule) can be connected to References or Legalsources.
The block <lrml:Association> links Sources and References
 with rules (or fragment of rule), thus implementing the N:M relationship. For one source to many rules, we have:

<lrml:Association>
 <lrml:appliesSource keyref="#ref1"/>

<lrml:toTarget keyref="#rule1"/>

<lrml:toTarget keyref="#rule2"/>

</lrml:Association>
For one rule with multiple sources, we have the following, where rule1 is connected to ref1 (above) and to ref2 (below
):

<lrml:Association>

<lrml:appliesSource keyref="#ref2"/>

<lrml:toTarget keyref="#rule1"/>

</lrml:Association>

The combination of <lrml:References>/<lrml:LegalSources> and <lrml:Association> permits to implement the principle of isomorphism.
5.2.2 Agent, Authority

In LegalRuleML, we want to represent the parameters for provenance, authoritativeness and the authenticity of the legal rules, which we model with Agent, Authority, Role, Figure.

Agent is an entity that acts or has the capability to act. Usually, the Agent is a physical person (e.g., legal knowledge engineer) that models the legal rules, but it could be also a computer or a bot that is able to mark-up legal rules using NLP and AI&LAW techniques
.

Authority is a person (e.g., Minister of Justice) or organization (e.g., House of Representatives) with the power to create, endorse, or enforce Legal Norms.

For Agent
 and Authority, we have blocks that specify the
 IRI of the Source and, if necessary, also the type using the attribute hasType (e.g. in the example MonicaPalmirani is a Person):
<lrml:Agents>
 <lrml:Agent key="mp" sameAs="http:example.org/agents#MonicaPalmirani">
 <lrml:hasType iri="http://example.org/types#Person"/>
 </lrml:Agent>

</lrml:Agents>

The Authority follows the same principles of design, houseOfRepersentatives is an legal institution:
<lrml:Authorities>
 <lrml:Authority key="house" sameAs="http://example.org/authority#houseOfRepresentatives">
 <lrml:hasType iri="http://example.org/types#LegalInsitution"/>
 </lrml:Agent>

</lrml:Authorities>
5.2.3 Figure, Role
The Agent
 and the Authority can act in a particular Figure with respect to the legal rules represented in the LegalRuleML XML file. A Figure is an instantiation of a function by an Agent or an Authority. An example of Figure is President Obama
. Where Mr. Obama is an Agent, “President Obama” is a particular function instantiated by Mr. Obama
. However Mr. Obama personifies different functions: he can a bill into law, he is also Commander in Chief of the armed forces of the United States, and he is the head of the executive branch, etc.

For this reason, we have introduced the block Figure that specifies the function in which the Agent or the Authority is acting:
<lrml:Figures>
 <lrml:hasMemberType iri="ex:LegislativeFigure"/>
 <lrml:Figure key="fs">
 <lrml:hasFunction iri="ex:Senator"/>
 <lrml:hasActor keyref="#mp"/>
 </lrml:Figure>
 </lrml:Figures>

In addition to Figure, we need to specify the Role of an Agent, e.g. MonicaPalmirani, with respect to the production of the legal rules that are modelled in the LegalDocML XML file, where MonicaPalmirani could be the author of the rules or simply the editor
.

The following example shows how to combine the role of author with the actor
 using the attribute filledBy and the rules involved using the attribute forExpression.
<lrml:Roles>

 <lrml:Role key="role1" iri="http://example.org/roles#author">

 <lrml:filledBy keyref="#mp"/>

 <lrml:forExpression keyref="#rule1"/>

 </lrml:Role>

 <lrml:Role key="role1" iri="http://example.org/roles#editor">

 <lrml:filledBy keyref="#mp"/>

 <lrml:forExpression keyref="#rule2"/>

 <lrml:forExpression keyref="#rule3"/>

 </lrml:Role>

</lrml:Roles>
This specification permits a query such as: “give me all the rules modelled by MonicaPalmirani in the function of senator and in the role of author

”..

5.2.4 Jurisdiction

The Jurisdiction element is a geographic area or subject-matter over which an Authority applies its legal power. It annotates the legal rules that are applicable to a given region (e.g. the rules applicable only in Scotland respect the all UK legal rules).
 <lrml:Jurisdictions>
 <lrml:Jurisdiction key="us" sameAs="http://example.org/jurisdiction#unitedStatesOfAmerica"/>
 </lrml:Jurisdictions>

We can use Jurisdiction also to specify a limited subject-matter, for instance, legal rules which are applicable only to the executive departments.
 <lrml:Jurisdictions>
 <lrml:Jurisdiction key="us" sameAs="http://example.org/jurisdiction#executiveDepartments"/>
 </lrml:Jurisdictions>

5.2.5 Time and Events

Legal texts are often amended as a society or judicial system evolves. Norms and rules are valid in a particular interval of time and with respect to three main legal axes: when they come into force (entry), when they effect the intended or desired result (efficacy), and when they apply (applicability). In this section, we model the external temporal dimensions of the norms (e.g., when the norm is valid) and not the temporal dimensions of the complex events that are the content of the textual provision (e.g., when a person is to present a tax application). Therefore, we only model the intervals and temporal parameters that define the period of validity of the rules
. Moreover, in keeping with the sources, it is important to link the temporal parameters to any part of a rule (e.g. atom, rel, ind, if, then, etc.) with a very fine granularity.

The following fragment shows the definition of the instant time using the <ruleml:time> element wrapped by the <lrml:Time> element:

<lrml:Time>

<ruleml:Time key="t1">

<ruleml:Data xsi:type="xs:dateTime">1978-01-01T00:00:00</ruleml:Data>

</ruleml:Time>

</lrml:Time>
The events are combined in intervals according with the legal temporal situation that is modelled, e.g. enforceability, efficacy, applicability
.
<lrml:TemporalCharacteristics key="tblock1">

 <lrml:TemporalCharacteristic key="nev1">

 <lrml:forStatus iri="http://docs.oasis-open.org/legalruleml/ns/v1.0/vocab#Efficacious"/>

 <lrml:hasStatusDevelopment iri="http://docs.oasis-open.org/legalruleml/ns/v1.0/vocab#Starts"/>

 <lrml:atTime keyref="#t1"/>

 </lrml:TemporalCharacteristic>

 <lrml:TemporalCharacteristic key="nev2">

 <lrml:forStatus iri="http://docs.oasis-open.org/legalruleml/ns/v1.0/vocab#InForce"/>

 <lrml:hasStatusDevelopment iri="http://docs.oasis-open.org/legalruleml/ns/v1.0/vocab#Starts"/>

 <lrml:atTime keyref="#t2"/>

 </lrml:TemporalCharacteristic>

 </lrml:TemporalCharacteristics>

In the following fragment, we associate ref1, which is a legal source, with the appropriate temporal parameters defined using the temporalCharecteristic nev1 and nev2:
 <lrml:Associations>

 <lrml:Association>

 <lrml:appliesSource keyref="#ref1"/>

 <lrml:toTarget keyref="#nev1"/>

 <lrml:toTarget keyref="#nev2"/>

 </lrml:Association>

 </lrml:Associations>
In the <lrml:Context> block (see the next section) ,the block tblock1 uses the <lrml:Associations> mechanism to associate Temporal Characteristics with any part of the rule formalization, avoiding redundancy in the definition of a legal situation
.

<lrml:Context key="ruleContext1">

<lrml:appliesAssociations>

 <lrml:Associations>

 <lrml:Association>

 <lrml:appliesTemporalCharacteristics keyref="#tblock1"/>

 <lrml:toTarget keyref="#rule1"/>

 <lrml:toTarget keyref="#atom1"/>

 <lrml:toTarget keyref="#body1"/>

 </lrml:Association>

 </lrml:appliesAssociations>

 <lrml:inScope keyref="#rule1"/>

</lrml:Context>

5.3 Context Associations

A rule may be associated with a variety of contextual parameters which bear on the interpretation; for instance, sometimes the interpretation of a textual source of a rule (and its associated formalisation) is associated with a jurisdiction, e.g. regional, national, or international levels, meaning that in one jurisdiction, the rule is interpreted one way, while in another jurisdiction, it is interpreted in another way.
Similarly, temporal parameters can change over time.

To represent such parameters, we introduce the <lrml:Context> block, which permits the description of all the characteristics that are linked to a particular rule (e.g. rule1) using the operator <appliesXXX>, substituting the following relationships for XXX:
_ Rule1 has Modality deontic
_ Rule1 has Source sec504-clsc-pnt1
_ Rule1 has TemporalCharateristics tblock1
_ Rule1 has Strength defeasible
_ Rule1 has Jurisdiction US
_ Rule1 has Authority Congress
For example, we have the following contextual parameters for rule1.

<lrml:Context key="ruleInfo1" hasCreationDate="#t8">

<lrml:appliesModality iri="/ontology/deontic/"/>

<lrml:appliesSource keyref="#sec504-clsc-pnt1"/>

<lrml:appliesTemporalCharacteristics keyref="#tblock1"/>

<lrml:appliesStrength iri="/ontology/defeasible"/>

<lrml:appliesAuthority keyref="#congress"/>

<lrml:appliesJurisdiction keyref="/ontology/jurisdiction/us"/>

<lrml:inScope keyref="#rule1"/>

</lrml:Context>

We can use also the mechanism of <lrml:Associations>, which can be used to group meta information, together with <lrml:Context> in order to reuse the information and so avoid redundancy:
<lrml:Associations key="sourceBlock1">

 <lrml:Association>

 <lrml:appliesAuthority keyref="ex:#house"/>

 <lrml:appliesJurisdiction keyref="ex:#us"/>

 <lrml:toTarget keyref="#atom_1b"/>

 </lrml:Association>

</lrml:Associations>
 <lrml:Context key="ruleInfo1">

 <lrml:appliesAssociations keyref="#sourceBlock1"/>

 <lrml:inScope keyref="#rule_1a"/>

 </lrml:Context>
6 LegalRuleML XML Meta Model (non-normative)
The LegalRuleML syntax design follow from semantic intuitions from the legal domain. See Sec. 5 (Functional Requirements).
7 LegalRuleML XML Design Principles (non-normative)

7.1 Criteria of Good Language Design

The syntax design should follow from semantic intuitions from the subject matter domain - labelling entities, properties, and relations as well as some of the type constraints amongst them that guide how the labels are combined and used.
Criteria of Good Language Design are:

Minimality, which requires that the language provides only a small set of needed language constructs, i.e., the same meaning cannot be expressed by different language constructs
.

Referential transparency, which means that the same language construct always expresses the same semantics regardless of the context in which it is used.
Orthogonality, which provides (?) for pairwise independent language constructs, thus permitting their meaningful systematic combination
.
7.1.1

XML Elements vs. Attributes

Regarding the implementation of a concrete rule markup language, a common design decision is whether to use an XML element or an attribute to represent a particular abstract syntactic feature in the rule constructs and rule information content.:
If the information in question could be itself marked up with elements, put it in an element;
If the information is suitable for attribute form, but could end up as multiple attributes of the same name on the same element, use child elements instead;
If the information is required to be in a standard XML schema attribute type such as ID, IDREF, ENTITY, KEYREF use an attribute;
If the information should not be normalized for white space, use elements (XML processors normalize attributes in ways that can change the raw text of the attribute value.).
RuleML's general markup conventions provide common principles for its language hierarchy. There is a distinction between type (also called node) tags and role (also called edge
) element tags, the former starting with upper case letters the latter with lower case letters. Main XML elements are used for representing language constructs as trees while XML attributes and header elements are used for distinguishing variations of a given element and, as in RDF, for webizing
 (using names that are IRIs).
Variation can thus be achieved by different attribute values and header elements rather than requiring a different element name. Since the same attribute or header element can occur on or within different elements, an orthogonal, two-dimensional classification ensues, which has the potential of quadratic reduction
 of the element vocabulary
.

7.1.2 Different Syntactic and Semantic Layers

The syntax of markup languages always includes the concrete syntax of (XML) markup, perhaps indirectly defining the semantics of generic elements through type references and pointers to other languages such as an ontology.

7.2 Syntax Design of LegalRuleML-Core

7.2.1 Namespaces

The LegalRuleML namespace is “http://docs.oasis-open.org/legalruleml/ns/v1.0/”.
The LegalRuleML metamodel namespace is “http://docs.oasis-open.org/legalruleml/ns/mm/v1.0/”
Other namespaces used in LegalRuleML documents are:

· The RuleML namespace “http://ruleml.org/spec”

· The XML namespace “http://www.w3.org/XML/1998/namespace”

· The XML Schema namespaces “http://www.w3.org/2001/XMLSchema-instance” and http://www.w3.org/2001/XMLSchema
7.2.2 Node and edge Element Dichotomy

The node-edge dichotomy for XML elements adopted, with modification, from RuleML

 is inspired by, but not limited to, the striped form of RDF/XML (@@@cite http://www.w3.org/2001/10/stripes/).

7.2.2.1 Node Elements

In general, Node elements:

· have UpperCamelCase local names

· have only edges as children in the normalized serialization

· may be leaf elements (elements with no child elements)

The only Node elements that may have text content are leaf Node element in the RuleML namespace.

The root element of every LegalRuleML document is a Node element (in particular, <lrml:LegalRuleML>).

Every LegalRuleML Node element may optionally have an <lrml:hasComment> child.

Common optional attributes for most LegalRuleML Node elements are:

· @key (exception <lrml:Reference>)

· @keyref

· @type (exception <lrml:Reference>)

· @xml:base

· @xsi:schemaLocation

Common optional attributes for most RuleML Node elements within LegalRuleML documents are

· @key, but with a different content model than the @key attribute in LegalRuleML elements

· @keyref

· @xml:base

Specialized attributes may be applicable to one or a small group of Node elements

The qualified name of a Node element corresponds to the type of a subject or object node in the equivalent RDF representation (@@@ refer to meta-model section).

7.2.2.2 Edge Elements

LegalRuleML (and RuleML) elements that are edges:

· have lowerCamelCase local names

· with the exception of <ruleml:slot>, <lrml:hasComment> and <lrml:hasParaphrase>, have at most one child

· have only Node elements as children

· may be a leaf element (applies only to elements in the LegalRuleML namespace), in which case it may have mixed content (text and XML markup) and optionally either a keyref or iri attribute

· may have an @index attribute in those cases where child order is semantically significant

The qualified name of an edge element corresponds to a predicate in the equivalent RDF representation (@@@ refer to meta-model section), with the exception of <ruleml:slot>.

7.2.3 Serializations

Two equivalent normative serializations are defined in the schemas – a normalized serializations and a compact serialization.

7.2.3.1 Normalized Serialization

The normalized serialization of LegalRuleML is fully-striped, which is advantageous for:

· ease of translation to graph-oriented representations

· generation of object-oriented compilers

In the normalized serialization:

· Node elements may have only edge elements as children.

· Optional attributes on RuleML elements that have default values must be explicit.

· Child elements occur in a canonical order.

The data structure of the normalized serialization may be represented as a bipartite graph of alternating Node elements and edge elements or attributes.

7.2.3.2 Compact Serialization

The compact serialization of LegalRuleML reduces verbosity without loss of information. The compact serialization may be derived from the normalized serialization as follows::

· any non-leaf edge element in the normalized serialization that can be uniquely reconstructed based on the type of its parent and the type and position of its child must be skipped In the compact serialization

· any attribute whose value is the default value must be omitted (applicable to RuleML only)

Note that RuleML has a relaxed serialization that allows edges to be optionally skipped, attributes with default values to be optionally omitted and also allows a (mostly) arbitrary ordering of child elements. RuleML in the relaxed serialization is not allowed to be embedded within LegalRuleML – the embedded RuleML must be in either normalized or compact serialization, consistent with the serialization of the parent LegalRuleML.

7.2.4 Slot Design Pattern

The <ruleml:slot> element always has two Node children.

 In LegalRuleML, this edge is re-used to indicate roles in deontic situations. The first child, the slot key, is restricted to be either <lrml:Bearer/> or <lrml:AuxiliaryParty/>.

 For schema details, see stripe_required_module.rnc

7.2.5 Leaf edges

LegalRuleML introduces a syntactic pattern that is not present in RuleML – the leaf edge element:

· is an edge element that is empty

· always has at least one attribute, typically @keyref

See stripe_leaf_module.rnc (Stripe Required, Leaf Not Obligatory

 and Stripe Optional, Leaf Not Obligatory) and stripe_required_module.rnc (Leaf Obligatory)

7.2.6 CURIES, Relative IRIs and the xsd:ID Datatype

· LegalRuleML employs a variety of syntactic forms for labeling components with identifiers, and for referring to these or other identifiers. In this section, we discuss the syntactic forms that are based on the IRI system, and compare to the corresponding forms employed in RuleML.

· Need overview of prefixing and abbreviation of IRIs

· qualified names (<ruleml:Rule>, “xs:integer”)

· xsd:ID datatype (key = “rule1”)

· same-document reference (keyref = “#rule1”)

· relative IRIs other than same-document reference (“../otherdoc.lrml#rule2”)

· CURIEs (iri=”ex:servb/otherdoc.lrml”, keyref=”:#rule1”)

· IRI (iri=”http://servb/otherdoc.lrml”)

· CURIE datatype follows RDFa (@@@citation)

· conflicting ID-types for attribute "key" of element "TemporalCharacteristic" from namespace "http://docs.oasis-open.org/legalruleml/ns/v1.0/"

7.2.7 Collection Design Pattern

· LegalRuleML uses a collection design pattern for organizing and efficiently representing and referring to metadata.

· The name of the collection element indicates the type of its members.

· Properties can be assigned to all members using an attribute on or header child element within the collection element.

· Metadata collections must occur in a prescribed order in a LegalRuleML document.

· Collections may be labelled using @key and referenced using @keyref.

· Collection elements

· are Node elements

· local name is plural form of type of member (e.g. Agents)

· common attributes on Collections (exception <lrml:References>)

· in addition to the optional attributes allowed on all Node elements

· attribute memberType is optional

· children other than Collection members are

· element hasMemberType (exception <lrml:References>)

· Collection member elements

7.2.8 Ordered-Children Design Pattern

· In the normalized serialization, when the order of children is significant to the semantics of the parent Node element, an index attribute is required on the edges so that the order is made explicit.

· In the compact serialization, the edge elements that would have an index attribute are skipped, so that the order of occurrence of children in the XML document is significant.

· Example: SuborderList

7.3 Relax NG Schema Design

The normative definition of the LegalRuleML syntax is provided by modular Relax NG schemas.

7.3.1 Modules

· The Relax NG schema modules are written in the “chameleon” style, without specifying a target namespace, to maximum the potential for re-use.

· The LegalRuleML modules follow the monotonic design pattern (citation @@@) developed for the RuleML 1.0 Relax NG schemas, for best compatibility with the included RuleML modules.

· This design pattern is based on restricting the definition combining mechanisms (choice, interleave or no-combine) depending on the suffix of the definition name.

· Choice Suffixes: .choice,

· Interleave Suffixes

· No-Combine Suffixes

7.3.2 Relax NG Definition Templates

· .Node.choice

· .Node.def

· .type.def (for Node)

· .attlist (for Node)

· .main

· .edge.choice

· .edge.def

· .type.def (for edge)

· .attlist (for edge)

· .content

· Formula.choice

· .attrib.opt.choice

· .attrib.choice

· .attrib.def

· .lrml.datatype

· any.type.choice

7.3.3 Drivers

· Core

· Compact and Normal

· LRML Drivers

7.4 XSD Schema Derivation

7.4.1 Alternate Drivers

To accomplish the automated conversion from Relax NG to XSD, alternate driver schemas were constructed (lrml4xsd-compact and lrml4xsd-normal). These schemas differ from the normative Relax NG schemas only in the following ways:

· inclusion of a different module (modules-xsd/id_datatype_ID) defining the type of the key attribute in LegalRuleML elements to be xsd:ID.

· inclusion of a different module (modules-xsd/time4xsd) defining the type of <ruleml:Data> within <ruleml:Time> to be xs:any.

· inclusion of a modified RuleML schema suitable for conversion to XSD.

7.4.2 Alternate Relax NG Modules

· id_datatype_ID

· time4xsd

7.4.3 Modification of RuleML Modules

7.4.4 Conversion using Trang

The Trang software (https://code.google.com/p/jing-trang/downloads/detail?name=trang-20091111.zip) was used to convert the Relax NG schemas into XSD, selecting he options to disable abstract elements and select lax processing of elements of type xs:any.
7.4.5 Post-processing with XSLT

Due to differences in the expressivity of the Relax NG and XSD schema languages, and the particularities of the Trang software used to make the conversion, some post-processing of the generated XSD was necessary to obtain a valid XSD schema that approximates the original Relax NG schemas. The post-processing was accomplished with XSLT transformations.
8 LegalRuleML Specifications (normative)

8.1 LegalRuleML RDFS Specifications
8.2 LegalRuleML XML Specifications

LegalRuleML Main Elements

8.2 Subsidiary LegalRuleML Elements
9 A Comprehensive Example
In this section we illustrate the use of LegalRuleML by modelling

a fragment of Section 29 of the Australian “National Consumer

Credit Protection Act 2009” (Act No. 134 of 2009). The

section of the act entitled “Prohibition on engaging in credit activities

without a licence” recites

(1) A person must not engage in a credit activity if the

person does not hold a licence authorising the person

to engage in the credit activity.

Civil penalty: 2,000 penalty units.

[. . .]

Criminal penalty: 200 penalty units, or 2 years imprisonment,

or both.

In the norm above we can notice that the penalties are stated as separate

statements. Accordingly the best way to capture the structure

is to use <Penalty> elements for them. The text of the provision

can be paraphrased as follows:
_ It is forbidden for a person to engage in a credit activity.

A person is permitted to engage in a credit activity if the

person hold a licence

Based on the observation and paraphrases above we can model the

norm with the following rules (and auxiliary statements)
ps1: Person(x) => [FORB]EngageCreditActivity(x)

ps2: HasLicence(x) => [PERM]EngageCreditActivity(x)
ps2 > ps1

pen1: [OBL] PayCivilUnits(x,2000)

pen2: [OBL] PayPenalUnits(x,200),

[OBL] Imprisonment(x,2m),

[OBL] PayPenaltyUnitsPlusImprisonment(x,200,2m)

rep1: [Violation]ps1, pen1

rep2: [Vioaltion]ps1, pen2
This norm can be represented in LegalRuleML as follows:
<lrml:LegalSources>

<lrml:LegalSource key="ls1"

sameAs="http://www.comlaw.gov.au/Details/

C2009A00134/Html/Text#param43"/>

</lrml:LegalSources>
the block above is for declaring the source of the legal provisions

and to give it a key to refer to it. After that we an Associations
block allows to link legal provisions with the rules (and other statements)

modelling them
<lrml:Context key="psInfo1">
<lrml:appliesAssociations>

<lrml:Associations>

<lrml:Association>
<lrml:appliesSource keyref="#ls1"/>

<lrml:toTarget keyref="#ps1"/>

<lrml:toTarget keyref="#ps2"/>

<lrml:toTarget keyref="#pen1"/>

<lrml:toTarget keyref="#pen2"/>

</lrml:Association>
</lrml:Associations>

</lrml:appliesAssociations>

</lrml:Context>
In this case we have that the norm referred to the key ls1 is modelled

by a set of statements, namely ps1, ps2, pen1, pen2. The

LegalRuleML statements for representing the norms are given in

the code below.
<lrml:Statements key="textblock1">

<lrml:hasQualification>

<lrml:Overrides over="#ps2" under="#ps1"/>

</lrml:hasQualification>

<lrml:PrescriptiveStatement key="ps1">

<ruleml:Rule key=":rule1" closure="universal">

<lrml:hasStrength>

<lrml:Defeasible/>

</lrml:hasStrength>

<ruleml:if>

<ruleml:Atom>

<ruleml:Rel iri="#person"/>
<ruleml:Var>X</ruleml:Var>
</ruleml:Atom>

</ruleml:if>

<ruleml:then>

<lrml:SuborderList>

<lrml:Prohibition>

iri="#engageCreditActivity"/>
<ruleml:Var>X</ruleml:Var>
</ruleml:Atom>

</lrml:Permission>

</lrml:SuborderList>

</ruleml:then>

</ruleml:Rule>

</lrml:PrescriptiveStatement>

<lrml:Penalty key="pen1">

<lrml:SuborderList>

<lrml:Obligation>

<ruleml:Atom>

<ruleml:Rel iri="#payCivilUnits"/>

<ruleml:Var>X</ruleml:Var>

<ruleml:Ind>2000</ruleml:Ind>

</ruleml:Atom>

</lrml:Obligation>

</lrml:SuborderList>

</lrml:Penalty>

<lrml:Penalty key="pen2">

<lrml:SuborderList>

<lrml:Obligation>

<ruleml:Atom>

<ruleml:Rel iri="#payPenalUnits"/>
<ruleml:Var>X</ruleml:Var>
<ruleml:Ind>200</ruleml:Ind>

</ruleml:Atom>

</lrml:Obligation>

<lrml:Obligation>

<ruleml:Atom>

<ruleml:Rel iri="#imprisonment"/>

<ruleml:Var>X</ruleml:Var>

<ruleml:Ind>2 months</ruleml:Ind>

</ruleml:Atom>

</lrml:Obligation>

<lrml:Obligation>

<ruleml:Atom>

<ruleml:Rel>

iri="#payPenalUnitPlusImprisonment"/>
<ruleml:Var>X</ruleml:Var>

<ruleml:Ind>200</ruleml:Ind>

<ruleml:Ind>2 months</ruleml:Ind>

</ruleml:Atom>

</lrml:Obligation>

</lrml:SuborderList>

</lrml:Penalty>

<lrml:Reparation key="rep1">

<lrml:appliesAssociation>

<lrml:Association key="assoc1">

<lrml:appliesPenalty keyref="#pen1"/>

<lrml:toTarget keyref="#ps1"/>

</lrml:Association>

</lrml:appliesAssociation>

</lrml:Reparation>

<lrml:Reparation key="rep2">

<lrml:appliesAssociation>

<lrml:Association keyref="assoc1">

<lrml:appliesPenalty keyref="#pen2"/>

<lrml:toTarget keyref="#ps1"/>

</lrml:Association>
</lrml:appliesAssociation>

</lrml:Reparation>

</lrml:Statements>
10 Conformance
The last numbered section in the specification must be the Conformance section. Conformance Statements/Clauses go here. [Remove # marker]
Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged:
Participants:

[Participant Name, Affiliation | Individual Member]
[Participant Name, Affiliation | Individual Member]

Example Text

text

A.1 Subsidiary section

text

A.1.1 Sub-subsidiary section

text

Revision History

	Revision
	Date
	Editor
	Changes Made

	[01]
	[09 May 2014]
	[Monica Palmirani]
	[Creation]

	[02]
	[1 July 2014]
	[Monica Palmirani]
	[Inclusion of fragment of text]

	[03]
	[17 July 2014]
	[Monica Palmirani]
	[Inclusion of fragment of text]

	[04]
	[05 August 2014]
	[Monica Palmirani]
	[Updating of the paragraph 4.2.1, 4.2.3, 4.2.4, 4.2.5.]

	[05]
	[12 August 2014]
	[Tara Athan]
	[Updating of the paragraph 5.2., 5.3., 5.4.]

	[06]
	[2 October 2013]
	[Guido Governatori]
	[Updating of paragraph 4.1, 4.1.1, swapped order between Deontic (4.1.2)and Constitutive/Prescriptive (4.1.3), updated new 4.1.2]

	[07]
	[2 October 2013]
	[Monica Palmirani]
	[Accepted all the revisions]

	[08]
	[2 October 2013]
	[Monica Palmirani]
	[Accepted all the revisions. Revised 4.2.6 and 4.2.7]

	[09]
	[7 January 2015]
	[Guido Governatori]
	[5.1 part: Modelling Legal Norms]

	[10]
	[7 January 2015]
	[Adam Wyner, Tara Athan]
	[revision and comments]

	[11]
	[12 January 2015]
	[Monica Palmirani]
	[consolidation and editing]

	[12]
	[12 January 2015]
	[Guido Governatori]
	[refining some little part]

	[13]
	[12 January 2015]
	[Guido Governatori, Adam Wyner, Tara Athan, Monica Palmirani]
	[refining some little part]

	[14]
	[09 March 2015]
	[Guido Governatori, Adam Wyner, Tara Athan, Monica Palmirani]
	[refining part concerning the metadata]

�	 The syntax presented here is based on Defeasible Logic, see Nute [1994], Antoniou et al. [2001].

�	 Gordon et al. [2009] identify more types of norms/rules. However, most of them can be reduced to the two types described here insofar as the distinction is not on structure of the rules but it depends on the meaning of the content (specific effect) of the rules, while keeping the same logical format.

�Do we want to use this word "associate" here since this has a particular meaning for us.

�Capitals here?

�Must this relation (many ref to one rule) always happen in two blocks as in the example? Is there a syntactic constraint that requires this?

�Section 14b goes from this section forward.

�I wish we were not using Agent this way, but had some more specific notion, e.g. AgentAuthor. Agent is a special notion and rather generic. Here it is being used in a rather specific way. I know this is a late comment.

�This must be Agent, not author.

�Took out: a block in the meta part for specifying. Did not see the point of 'meta part' here.

�Must be Agent, not Author here. Some terminology is getting mixed up.

�Does this instance of President Obama need to go in italics or something to separate it off from the text?

�I find this presentation awkard since one can mix the maths notion with this informal notion as in 'who is functioning as a waiter at the reception'. In the maths notion, 'functions' are never instantiated, while in the informal notion, it is ok. Could we say 'informal notion of function'? Also, I wonder if the waiter example is better than 'President Obama' which is almost a proper name in the US. The function is 'President', no?

�Author and editor are not, I believe, in the glossary. Correct? Had to straighten this out since Author is used incorrectly earlier, where there was Author rather than Agent.

I also should say that it would be best if the notions/intuitions for Figure and Role could be more strongly differentiated. This paragraph does not, IMHO, descriptively help. And this is the place were it would be best to make such a distinction.

Question - is it possible for some individual to instantiate a Figure and with respect to that Figure have several roles? For instance, Waiter Joe (the Figure) has several roles, e.g. server, order taker, cleaner.... Or, are these notions entirely distinct? Putting them together into one sections implies some connection.

�I don't see actor earlier. What are we using for individuals here? Has to be mp is the 'actor' or 'individual'.

�Why introduce a query here as support? This is not done elsewhere.

�See, this passage exemplifies the sort of relation between Figure and Role mentioned above.

�Temporal Characterics

�I think this should read: Therefore, we only model intervals, temporal parameters, and status development events that define the period of validity of the rules.

�I don't understand the original sentence about "events". Nothing is really said anywhere (so far as I recall) about what an event is or isn't. There is discussion elsewhere about what 'counts as' an event, so we need to be careful not to confuse this with other notions.

�I do wonder about introducing Context here, since it could just as well appear later and have a backwards pointer.

�Picking up from here on 16.02.2015

�Two things are said here. Minimality can be about a small set of needed language constructs. The point about "the same meaning ...constructs" is about a one to one correspondence between language constructs and meanings. I'd suggest this as another design criteria. Precise semantics, where the language is fully formal and fully specified at the syntactic and semantic levels. Each text has exactly one meaning. (Tobias Kuhn. 2014. A Survey and Classification of Controlled Natural Languages. Computational Linguistics. 40.1. pp 121-170). There is a question here about the semantics. But something like this should be said.

�What does "pairwise" mean here? Furthermore, the language of "meaningful systematic combination" skirts close to a statement of compositionality, though that is not part of the agenda since the semantics we have here is not formally specified.

�Prima del meta model.

�Adrian – New RuleML

�No capital on Node since capitals are reserved for the language unless it is absolutely clear the term is not in the language, e.g. RDF, XML, RuleML....

�webification? webizingability? webinanaficationistica?

�Tara deve metterlo apposto.

�Tara

�Ok, I don't understand this phrase or its purpose. If we are going to discuss formal aspects of the language, then it would need to be fully spelled out. But, that is not the purpose of this specification. Either it should be clarified or cut.

legalruleml-core-spec-v1.0-csd01

09 March 2015

Standards Track Work Product
Copyright © OASIS Open 2014. All Rights Reserved.
Page 5 of 42

