 Technical Note: 2.1.1 Defeasibility.007
Author: Guido Governatori, Monica Palmirani

Date: July 31th, 2012

Contributors: Tara Athan, Harold Boley, Adrian Paschke
2.1.1 Defeasibility

According to Legal Theory scholars ‎[1] norms can be represented by rules with the form

if A_1,...,A_n then B

where A_1,...,A_n are the “pre-conditions of the norm”, B is the “effect of the norm”, and if ... then ... is a “normative conditional”.

One of the aims of the LegalRuleML Specifications is to propose a representation for such rules.

Again, it is well understood in Legal Theory ‎[1]
 that, typically, there are different types of “normative conditionals”, but in general normative conditionals are defeasible. There are several uses of defeasibility.

The first use of defeasible rules is to capture conflicting rules/norms without making the resulting set of rules inconsistent. Thus, given the rules (with -expression we mean the negation of expression)

body_1 => head

body_2 => -head

where the two rules would conclude the negation of each other, without defeasibility, in a situation where both bodies applies we would conclude a contradiction, i.e., head and -head. Defeasible reasoning, on the contrary, is sceptical: in case of a conflict it refrains from taking any of the two conclusions, unless there are mechanisms to solve the conflict (see the section of Superiority relation below).

Notice that an application of this is to model exceptions. Exceptions limit the applicability of basic norms/rules, for example

body => head

body, exception_condition => -head

In this case, the second rule is more specific than the first, and thus it forms an exception to the first, i.e., a case where there are extra conditions in the rule encoding the exception, blocking the conclusion of the first rule.

Often, exceptions in defeasible reasoning can be simply encoded as

body => head

exception_condition => -head

Going back to the definition above (i.e., pre-conditions/effect), we can see a rule as a binary relationship between the pre-conditions (or body) of the rule, and the (legal) effect (head) of the rule. Formally, a rule can be defined by the following signature

body ⨉ head

We can then investigate the nature of such a relationship. Given two sets we have the following seven possible relationships describing the “strength” of the connections between the body and the head of a rule:

body always head

body sometimes head

body not complement head

body no relationship head

body always complement head

body sometimes complement head

body not head

In defeasible logic we can represent the following relationships using the following rules (rule types)

body -> head

body => head

body ~> head

body -> -head

body => -head

body ~> -head

The seventh case is when there are no rules between the body and the head.

The correspondence between these relationships are summarized in the following table:

	Row
	head/body relationship
	Notation
	Strength

	1
	body always head
	body -> head
	strict

	2
	body sometimes head
	body => head
	defeasible

	3
	body not complement head
	body ~> head
	defeater

	4
	body no relationship head
	
	

	5
	body always complement head
	body -> -head
	strict

	6
	body sometimes complement head
	body => -head
	defeasible

	7
	body not head
	body ~> -head
	defeater

Rules of the form body -> head are known as strict rules, rules of the form body => head are known as defeasible rules, and rules of the form body ~> head are known as defeaters.

The meaning of the different types of rules is as follows:

Strict rules

body -> head

Every time the body holds then the head holds.

Defeasible rules

body => head

When the body holds, then, typically, the head holds. Alternatively we can say that the head holds when the body does unless there are reasons to assert that the head does not hold. This captures that it is possible to have exceptions to the rule/norm, and it is possible to have prescriptions for the opposite conclusion.

Defeaters

body ~> head

Defeaters are rules that cannot establish that the head holds. Instead they can be use to specify that the opposite conclusion does not hold. In argumentation two types of defeaters are recognized: undercutting defeaters and rebutting defeaters. Undercutting defeaters are used in situations where there is an argument attacking the preconditions of a rule (or an argument), while the use of rebutting defeaters is to say that there is no relationship between the premises of an argument (preconditions of a rule or body) and the conclusion of the argument (effect of the rule or head).

Superiority relation

Given the possibility to have conflicting rules, i.e., rules with opposite or contradictory heads, for example

body1 => head

body2 => -head

Systems for defeasible reasoning include mechanisms to solve such conflicts. Different methods to solve conflicts have been proposed: specificity, salience and preference relation. According to specificity, in case of a conflict between two rules, the most specific rule prevails over the less specific one, where a rule is more specific if its body subsumes the body of the other rule. For salience each rule has attached to it its salience or weight, and in case of a conflict between two rules, the one with the greatest salience or weight prevails over the other. Finally, a preference relation (also known as superiority relation) defines a binary relation over rules, where an element of the relation states the relative strength between two rules. Thus, in case of a conflict between two rules, if the preference relation is defined over such rules, the strongest of the two rules wins over the other.

Specificity corresponds to the well know legal principle of lex specialis.‎[2]‎
 argue the specificity is not always appropriate for legal reasoning and that there are other well understood legal principles such as lex superior and lex posterior and there are cases where several of them apply, and the lex specialis principle might not the one used to solve the conflict, for example a more specific article from a local council regulation might not override a less specific constitutional norm. ‎[2]
 propose to use a dynamic preference relation to handle conflicting rules. The preference relation is dynamic in the sense that it is possible to argue about which instances of the relation hold and under which circumstances. ‎[3]‎

 proposes that instances of the superiority relation appear in the head of rules, namely:

body => superiority

where superiority is a statement with the form

r1 > r2

where r1 and r2 are rule identifiers.

‎[4]
 proposes Carneades as a rule based argumentation system suitable for legal reasoning where they use weights attached to the arguments (rules) to solve conflicts and to define proof standards. ‎[5]
 shows how to use the weights to generate an equivalent preference relation, and, consequently, how to capture the proposed proof standards. In addition ‎[5]‎[5]

 shows that there are situations where a preference relation cannot be captured by weight on the rules.

XML representation of defeasibility
Based on the discussion above, the most appropriate representation of a defeasible rule is

<Implies legalruleml:strenght="&dfs;defeasible"

 node="#ruleID">
<-- Entity dfs should be declared to be the name of the ontology providing a definition of strict, defeasible, undercutting, ... --!>

 <if>

 Body

 </if>

 <then>

 Head

 </then>

</Implies>

for Body => Head.

To represent Body => -Head, we also need the strong negation element <Neg>:

<Implies legalruleml:strenght="&dfs;defeasible" node="#ruleID">

 <if>

 Body

 </if>

 <then>

<Neg>

 Head

</Neg>

 </then>

</Implies>

Note that for the most general representation of defeasible logic, the formula that appears as the “Head” is not restricted to be an Atom or its negation, but may include, for example, quantifications [9].

An undercutting defeater, say Body ~> Head, can be represented as

<Implies legalruleml:strenght="&dfs;defeter" node="#ruleID">

 <if>

 Body

 </if>

 <then>

 Head

 </then>

</Implies >

The method illustrated here to specify that a rule is defeasible is a special case of the “embedded” style of metaknowledge. See Section 2.1.12 for other methods of representation.
Superiority Relation

It has been argued ‎[7] and ‎[8]
 that the preference (also called superiority, priority or overrides) relation does not need any specific construct in RuleML, and it can be captured by a simple Atom element with a Rel of the form <Rel>overrides</Rel>.

Nevertheless such an overrides relation would not be semantically codified in the standard and different authors could use different predicates for expressing the same concept (e.g., hierarchy, rank, etc.). However, referencing such a relation as an IRI allows it to be semantically codified in the standard:

<Atom node="#overrides1">

 <Rel iri = "&dfs;Overrides"/>

 <Ind iri="#r1"/>

 <Ind iri="#r2"/>

 </Atom>

An alternate representation that emphasizes the superiority relation, so that it can be easily recognized by reasoners, is

<legalruleml:Overrides node="#overrides1">

 <Ind iri="#r1"/>

 <Ind iri="#r2"/>

</legalruleml:Overrides>

Like other formulas, a rule precedence fact can be annotated. For example, any of the metaknowledge representations (see Section 2.1.12) permit the specification of the author and the temporal attributes pertaining to the Overrides statement.

<legalruleml:Override
 node="#override1"
 dcterms:creator="#aut2"
 dcterms:created="2012-03-30">

 <Ind iri="#r1"/>
 <Ind iri="#r2"/>

</legalruleml:Override>

The superiority relation provides a general mecahnism for implementing a conflict resolution strategy. The elements of the overrides relations can be given by a domain expert or can be obtained from a conflict resolution strategy defined in the <evaluation> part or dynamically derived from rules.

<Rulebase node=”rulebase1”>

 <evaluation>
<Profile type="ruleml;Defeasible" direction="backward" style=”reasoning”/>
 </evaluation>

<qualification>

 <Overrides>

 <Rule noderef="#r1"/>

 <Rule noderef="#r2"/>

 </Overrides>

</qualification>

<qualification>

 <Overrides>

 <Rule noderef="#r2"/>

 <Rule noderef="#r3"/>

 </Overrides>

</qualification>

 <And>
 <Rule legalruleml:strengh="&dfs;defeasible" node="r1"> </Rule>
 <Rule legalruleml:strengh="&dfs;defeasible" node="r2"></Rule>
 <Rule legalruleml:strengh="&dfs;defeasible" node="r3"></Rule>
 </And>
</Rulebase>

Disclaimer

Currently, the XML syntax is under development, and the XML snippets above may not be representative of the final LegalRuleML Specifications.
Acknowledgement

This specification is being developed in collaboration with RuleML (http://ruleml.org/) in particular the Defeasible RueML TG (http://ruleml.org/1.0/defeasible.html)
History

The document 2.1.1defeasibility.003.doc is an excerpt of the document 2.1defeasibility.002.002.doc. Recorded changes reflect the discussion of the TC meetings of 2012/5/2 and 2012/5/17.
Updated to verison 005 which makes use of the rulebase/rule’s <evaluation> semantics and <qualification> definitions
Updated version 006 that includes the TC decision of June 29th.
Updated version 007 that includes the Acknowledgement decided in the TC meeting at July 25th.
References

[1] sartor2005Giovanni Sartor. Legal Reasoning: A Cognitive Approach to the Law. Vol. 5. Treatise on Legal Philosophy and General Jurisprudence. Berlin: Springer, 2005.

[2] pratorHenry Prakken and Giovanni Sartor. Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-Classical Logics 7 (1997): 25–75.

[3] grigorisGrigoris Antoniou. Defeasible logic with dynamic priorities. International Journal of Intelligent Systems 19 (2004): 463–472.

[4] carneadesThomas Gordon and Doug Walton. Proof burdens and standards. In I. Rahwan and G. Simari, editors, Argumentation in Artificial Intelligence, pages 239–260. Springer, 2009.

[5] icailGuido Governatori. On the relationship between Carneades and defeasible logic. In T. van Engers, editor, Proceedings of the 13th International Conference on Artificial Intelligence and Law (ICAIL 2011), pages 31–40. ACM Press, 2011.

[6] igplGuido Governatori and Antonino Rotolo. Changing legal systems: legal abrogations and annulments in defeasible logic. Logic Journal of IGPL 18 (2009): 157–194.

[7] grosofBenjamin N. Grosof and Terrence C. Poon:. SweetDeal: representing agent contracts with exceptions using XML rules, ontologies, and process descriptions. In WWW 2003, pages 340–349. ACM Press, 2003.

[8] Governatori2005Guido Governatori. Representing Business Contracts in RuleML. International Journal of Cooperative Information Systems 14 (2005): 181–216.

[9] D. Billington. Proving quantified literals in defeasible logic, In: Advanced Topics in Artificial Intelligence. A. SATTAR, ed., pp.265-273. Springer Berlin / Heidelberg, 1997.
�<Atom> may not contain <Neg> in RuleML, which uses <Neg> wrapped around <Atom> to indicated a negated fact.

PAGE
6

