LegalRuleML Core Specification Version 1.0

Working Draft 01

26 June 2013
Technical Committee:

OASIS LegalRuleML TC
Chairs:

Monica Palmirani (monica.palmirani@unibo.it), CIRSFID, University of Bologna
Guido Governatori (guido.governatori@nicta.com.au), NICTA
Editors:

Monica Palmirani (monica.palmirani@unibo.it), CIRSFID, University of Bologna
Guido Governatori (guido.governatori@nicta.com.au), NICTA
Adam Wyner (azwyner@liverpool.ac.uk), University of Liverpool
Adrian Paschke (adrian.paschke@gmx.de), RuleML, Inc.
Tara Athan, (taraathan@gmail.com), Individual

Harold Boley (Harold.Boley@nrc-cnrc.gc.ca), RuleML, Inc.
Abstract:

Summary of the technical purpose of the document.

Status:

This Working Draft (WD) has been produced by one or more TC Members; it has not yet been voted on by the TC or approved as a Committee Draft (Committee Specification Draft or a Committee Note Draft). The OASIS document Approval Process begins officially with a TC vote to approve a WD as a Committee Draft. A TC may approve a Working Draft, revise it, and re-approve it any number of times as a Committee Draft.

Copyright © OASIS Open 2012. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Table of Contents

31
Introduction

31.1 Scope

31.2 Main Principles

41.3 Criteria of Good Language Design

41.3.1 XML Elements vs. Attributes

41.3.2 Different Syntactic and Semantic Layers

41.4 Glossary (non-normative)

51.5 Naming Convention

51.6 Schema Organization and Namespaces

61.7 Terminology

61.8 Normative References

61.9 Non-Normative References

72
Non-Normative

72.1 Requirements

72.1.1 Defeasibility

102.1.2 Deontic

112.1.3 Penalty and Reparation

122.1.4 Temporal Proprieties

132.1.5 Jurisdiction

132.1.6 Authority and Agent

132.1.7 Isomorphism

142.1.7.1 Norms, Provisions, Legal Rules

152.1.7.2 The Isomorphism Mechanism

162.1.7.3 Legal provisions and rules over time

162.1.8 Multiple interpretations of rules

172.2 LegalRuleML and RuleML

172.2.1 [Adrian and Harold]

183
2.3 Normative Metamodel Normative

183.1 Elements

183.1.1 Defeasibility Elements

183.1.2 <xxx> element

183.1.2.1 <xxx> element in plain-text

183.1.2.2 <xxx> element Oxygen Graph

183.1.2.3 <xxx> element relations

183.1.2.4 <xxx> element XML-schema

183.1.2.5 <xxx> element in RelaxNG

194
Conformance

20Appendix A.
Acknowledgments

21Appendix B.
Non-Normative Text

21B.1 Subsidiary section

21B.1.1 Sub-subsidiary section

22Appendix C.
Revision History

1 Introduction

[All text is normative unless otherwise labeled]

1.1 Scope

Scope of LegalRuleML TC is to extend RuleML with features specific to the formalisation of norms, guidelines, policies and legal reasoning.

The goal is to define a standard (expressed with XML-schema and Relax NG) that is able to represent the peculiarities of the legal normative rules easly and meaningfully.

LegalRuleML wants to model:

- defeasibility of rules and defeasible logic;

- deontic operators (e.g., obligations, permissions, prohibitions, values and Hohfeldian rights (http://www.austlii.edu.au/au/journals/MurUEJL/2005/9.html);

- semantic management of the negation;

- temporal management of the rules and into the rules;

- qualification of the norms (constitutive, technical, prescriptive, etc.);

- jurisdiction of the norms;

- isomorphism between rules and natural language normative provisions;

- identification of part of the norm: agent, verb, address, conditions;

- authorial tracking of the rules.

It is out of the scope to define a legal ontology, core or domain oriented.

1.2 Main Principles

LegalRuleML is basis on some main principles.

Multiple Semantic Annotations: A legal rule may have multiple semantic annotations where each annotation can represent a different legal interpretation. Each such annotation can appear in a separate annotation block as internal or external metadata. There is a range of parameters that can be set to provide the interpretation, e.g. provenance, applicable jurisdiction, logical interpretation of the rule, and others.

Tracking the LegalRuleML Creators: As part of the provenance information, a LegalRuleML document or any of its fragments can be associated with its creators. This is important to manage the authority and trust of the knowledge base and annotations. Among the creators of the document can be the authors of the text, knowledge base, and annotations, as well as the publisher of the document.

Linking Rules and Provisions: LegalRuleML includes a mechanism, based on IRI, that allows N:M relationships among the rules and the textual provisions: multiple rules are embedded in the same provision, several provisions contribute to the same rule. This mechanism may be managed in the metadata block for permitting an extensible management, avoiding redundancy in the IRI definition, and avoiding errors in the associations.

Temporal Management: The universe of discourse to which LegalRuleML applies contains a variety of entities: provisions references, rules, applications of rules and physical entities. All of these entities exist and change in time, and their histories interact in complicated ways. Legal RuleML must represent these temporal issues in unambiguous fashion. In particular a rule has a range of parameters which can vary over time such as its status (e.g. strict, defeasible, defeater), its validity (e.g. repealed, annulled, suspended) and its jurisdiction (e.g. only in EU, only in US). In addition, a rule has a spectrum of temporal aspects such as internal constituency of the action, the time of assertion of the rule, the efficacy, enforcement, and so on.

Formal Ontology Reference: LegalRuleML is independent from any legal ontology and logic framework. However it includes a mechanism, based on IRIs, for pointing to reusable classes of a specified external ontology.

LegalRuleML is based on RuleML: LegalRuleML reuses and extends concepts and syntax of RuleML wherever possible, and also adds novel annotations. RuleML includes also Reaction RuleML.
Mapping: Investigate the mapping of LegalRuleML metadata to RDF triples for favoring Linked Data reuse, and the relationships between LegalRuleML and XACML.

1.3 Criteria of Good Language Design

Criteria of Good Language Design are:

· Minimality requires that the language provides only a small set of needed language constructs, i.e., the same meaning cannot be expressed by different language constructs

· Referential transparency is fulfilled if the same language construct always expresses the same semantics regardless of the context in which it is used

· Orthogonality asks for pairwise independent language constructs, thus permitting their meaningful systematic combination

1.3.1 XML Elements vs. Attributes

A general question regarding the implementation of a concrete rule markup language is where to use XML elements and where attributes to define the rule constructs and the rule information content.

· If the information in question could be itself marked up with elements, put it in an element.

· If the information is suitable for attribute form, but could end up as multiple attributes of the same name on the same element, use child elements instead.

· If the information is required to be in a standard XML schema attribute type such as ID, IDREF, ENTITY, KEYREF use an attribute.

· If the information should not be normalized for white space, use elements. (XML processors normalize attributes in ways that can change the raw text of the attribute value.)

RuleML's general markup conventions provide common principles for its language hierarchy. There is a distinction in type tags and role element tags, the former starting with upper case letters the latter with lower case letters. XML elements are used for representing language constructs as trees while XML attributes are used for distinguishing variations of a given element and, as in RDF, for webizing. Variation can thus be achieved by different attribute values rather than requiring different elements. Since the same attribute can occur in different elements, an orthogonal, two-dimensional classification ensues, which has the potential of quadratic tag reduction.

1.3.2 Different Syntactic and Semantic Layers

The syntax of markup languages always includes the concrete syntax of (XML) markup, perhaps indirectly defining the semantics of generic elements through type references and pointers to other languages such as an ontology.
1.4 Glossary (non-normative)

Agent - an entity that acts or has the capability to act.

Authority - any body with the power to create, endorse, or enforce legal norms.

AuxiliaryParty - a entity in addition to the bearer of a deontic specification.

Bearer - an entity that to which the deontic specification is primarily directed.

Comment - a comment with no semantic effect attached to its parent Node.

Compliance - a situation in which a obligation has been fulfilled or a prohibition has not been violated.

ConstitutiveStatement - a legal statement which is intended to define concepts and not to prescribe behaviours.

Context - a context or legal interpretation that applies associations of the proper author, authorities, jurisdiction, source, and other characteristics to a rule and/or to parts of the rule.

FactualStatement - a factual statement.

Jurisdiction - the geographic area or subject-matter over which an authority extends its legal authority or the authority to hear and determine causes of action.

LegalRuleML - a LegalRuleML text.

LegalSource - Any source of legal norms represented in any format.

Obligation - a situation, an act, or a course of action to which a bearer is legally bound, and if it is not achieved or performed results in a violation.

Overrides - a relationship of relative priority between rules.

Paraphrase - a paraphrase of the original legal statement expressing the statement of its parent Node in natural language.

Penalty - a legal statement of a sanction, independent of the situations which gave rise to it.

Permission (see also Right) - something is permitted if the obligation or prohibition to the contrary does not hold. A weak permission is the absence of the obligation or prohibition to the contrary; a strong permission is an exception or derogation of the obligation or prohibition to the contrary.

PrescriptiveStatement - a legal statement which is intended to prescribe behaviours.

Prohibition - a situation, an act, or a course of action which a bearer should avoid, and if it is achieved results in a violation.

Reference - establishes a relationship between an internal ID and an external source identified by a non-IRI based identification system.

Reparation - a legal statement of the penalty that may apply if a rule is violated. A rule is violated where the condition of applicability (antecedent of the rule) holds and the deontic specification (consequent of the rule) has been violated.

Right (see also Permission) - The right gives a permission to a party (the Bearer); and the right implies there are obligations or prohibitions on other parties (the AuxiliaryParty) such that the obligations or prohibitions guarantee that the party bearing the right (Bearer) can (eventually) exercise the right.

Role - the function of, status of, or part (author, editor,) played by an Agent.

SuborderList - A suborder list is a sequence of deontic elements, i.e., obligations, prohibitions, permissions, where an element holds if all the elements preceeding it have been violated.

TemporalCharacteristic - legal qualifications and descriptions of the relationships between a temporal entity and legal elements to which the relationships can apply.

Time - neutral temporal entity.

Violation - a situation in which an obligation or prohibition has been violated.
1.5 Naming Convention

The naming convention for the elements and attributes uses the Java class-vs.-method naming convention by distinguishing upper-case node tags from lower-case edge tags.

1.6 Schema Organization and Namespaces

The LegalRuleML syntax is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:legalruleml:1.0:core:schema:wd-1

1.7 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

1.8 Normative References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

 MACROBUTTON NoMacro [Reference]
 MACROBUTTON NoMacro [Full reference citation]

1.9 Non-Normative References

 MACROBUTTON NoMacro [Reference]
 MACROBUTTON NoMacro [Full reference citation]
NOTE: The proper format for citation of technical work produced by an OASIS TC (whether Standards Track or Non-Standards Track) is:
[Citation Label]
Work Product title (italicized). Approval date (DD Month YYYY). OASIS Stage Identifier and Revision Number (e.g., OASIS Committee Specification Draft 01). Principal URI (version-specific URI, e.g., with filename component: somespec-v1.0-csd01.html).
For example:

[OpenDoc-1.2]
Open Document Format for Office Applications (OpenDocument) Version 1.2. 19 January 2011. OASIS Committee Specification Draft 07. http://docs.oasis-open.org/office/v1.2/csd07/OpenDocument-v1.2-csd07.html.

[CAP-1.2]
Common Alerting Protocol Version 1.2. 01 July 2010. OASIS Standard. http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html.
2 Non-Normative

Preliminary list of requirements of LegalRuleML.

2.1 Requirements

Specifically, the LegalRuleML work facilitates the following functionalities.

R1) Support for modelling different types of rules:

Constitutive rules, which define concepts or constitute activities that cannot exist without such rules (especially Legal definitions such as “property”).

Prescriptive rules, which regulate actions by making them obligatory, permitted, or prohibited (especially obligations in contracts).
R2) Implement isomorphism [Bench-Capon and Coenen, 1992]. To ease validation and maintenance, there should be a one-to-one correspondence between collections of rules in the formal model and the units of (controlled) natural language text that express the rules in the original legal sources, such as sections of legislation.
R3) Manage rule reification [Gordon, 1995]. Rules are objects with properties, such as Jurisdiction, Authority, Temporal attributes [Palmirani et al., 2010, Governatori et al., 2009, 2005]. These elements necessary to enable effective legal reasoning.
R4) Represent normative effects and values. There are many normative effects that follow from applying rules [Gordon et al., 2009]. For prescriptive rules we consider deontic effects such as obligations, permissions, prohibitions, and eventually more articulated effects. Usually, legal rules promote social values, e.g. freedom, privacy, or effciency as well.
R5) Implement defeasibility [Gordon, 1995, Prakken and Sartor, 1996, Sartor, 2005]. In the law, where the antecedent of a rule is satisfied by the facts of a case (or via other rules), the conclusion of the rule presumably, but not necessarily, holds. The defeasibility of legal rules breaks down into conflictual and exclusionary relations amongst rules.
R6) Model legal procedural rules. Rules not only regulate the procedures for resolving legal conflicts, but also are used for arguing or reasoning about whether or not some action or state complies with other, substantive rules. In particular, rules are required for procedures which regulate methods for detecting violations of the law and for determining the normative effects triggered by norm violations, such as reparative obligations, which are meant to repair or compensate violations. These constructions can give rise to very complex rule dependencies, because the violation of a single rule can activate other (reparative) rules, which in turn, in case of their violation, refer to other rules, and so forth.

2.1.1 Defeasibility

According to Legal Theory scholars ‎[1] norms can be represented by rules with the form

if A_1,...,A_n then B

where A_1,...,A_n are the “pre-conditions of the norm”, B is the “effect of the norm”, and if ... then ... is a “normative conditional”.

One of the aims of the LegalRuleML Specifications is to propose a representation for such rules.

Again, it is well understood in Legal Theory ‎[1] that, typically, there are different types of “normative conditionals”, but in general normative conditionals are defeasible. There are several uses of defeasibility.

The first use of defeasible rules is to capture conflicting rules/norms without making the resulting set of rules inconsistent. Thus, given the rules (with -expression we mean the negation of expression)

body_1 => head

body_2 => -head

where the two rules would conclude the negation of each other, without defeasibility, in a situation where both bodies applies we would conclude a contradiction, i.e., head and -head. Defeasible reasoning, on the contrary, is sceptical: in case of a conflict it refrains from taking any of the two conclusions, unless there are mechanisms to solve the conflict (see the section of Superiority relation below).

Notice that an application of this is to model exceptions. Exceptions limit the applicability of basic norms/rules, for example

body => head

body, exception_condition => -head

In this case, the second rule is more specific than the first, and thus it forms an exception to the first, i.e., a case where there are extra conditions in the rule encoding the exception, blocking the conclusion of the first rule.

Often, exceptions in defeasible reasoning can be simply encoded as

body => head

exception_condition => -head

Going back to the definition above (i.e., pre-conditions/effect), we can see a rule as a binary relationship between the pre-conditions (or body) of the rule, and the (legal) effect (head) of the rule. Formally, a rule can be defined by the following signature

body ⨉ head

We can then investigate the nature of such a relationship. Given two sets we have the following seven possible relationships describing the “strength” of the connections between the body and the head of a rule:

body always head

body sometimes head

body not complement head

body no relationship head

body always complement head

body sometimes complement head

body not head

In defeasible logic we can represent the following relationships using the following rules (rule types)

body -> head

body => head

body ~> head

body -> -head

body => -head

body ~> -head

The seventh case is when there are no rules between the body and the head.

The correspondence between these relationships are summarized in the following table:

	Row
	head/body relationship
	Notation
	Strength

	1
	body always head
	body -> head
	strict

	2
	body sometimes head
	body => head
	defeasible

	3
	body not complement head
	body ~> head
	defeater

	4
	body no relationship head
	
	

	5
	body always complement head
	body -> -head
	strict

	6
	body sometimes complement head
	body => -head
	defeasible

	7
	body not head
	body ~> -head
	

Rules of the form body -> head are known as strict rules, rules of the form body => head are known as defeasible rules, and rules of the form body ~> head are known as defeaters.

The meaning of the different types of rules is as follows:

Strict rules

body -> head

Every time the body holds then the head holds.

Defeasible rules

body => head

When the body holds, then, typically, the head holds. Alternatively we can say that the head holds when the body does unless there are reasons to assert that the head does not hold. This captures that it is possible to have exceptions to the rule/norm, and it is possible to have prescriptions for the opposite conclusion.

Defeaters

body ~> head

Defeaters are rules that cannot establish that the head holds. Instead they can be use to specify that the opposite conclusion does not hold. In argumentation two types of defeaters are recognized: undercutting defeaters and rebutting defeaters. Undercutting defeaters are used in situations where there is an argument attacking the preconditions of a rule (or an argument), while the use of rebutting defeaters is to say that there is no relationship between the premises of an argument (preconditions of a rule or body) and the conclusion of the argument (effect of the rule or head).

Superiority relation

Given the possibility to have conflicting rules, i.e., rules with opposite or contradictory heads, for example

body1 => head

body2 => -head

Systems for defeasible reasoning include mechanisms to solve such conflicts. Different methods to solve conflicts have been proposed: specificity, salience and preference relation. According to specificity, in case of a conflict between two rules, the most specific rule prevails over the less specific one, where a rule is more specific if its body subsumes the body of the other rule. For salience each rule has attached to it its salience or weight, and in case of a conflict between two rules, the one with the greatest salience or weight prevails over the other. Finally, a preference relation (also known as superiority relation) defines a binary relation over rules, where an element of the relation states the relative strength between two rules. Thus, in case of a conflict between two rules, if the preference relation is defined over such rules, the strongest of the two rules wins over the other.

Specificity corresponds to the well know legal principle of lex specialis.‎‎[2] argue the specificity is not always appropriate for legal reasoning and that there are other well understood legal principles such as lex superior and lex posterior and there are cases where several of them apply, and the lex specialis principle might not the one used to solve the conflict, for example a more specific article from a local council regulation might not override a less specific constitutional norm. ‎[2] propose to use a dynamic preference relation to handle conflicting rules. The preference relation is dynamic in the sense that it is possible to argue about which instances of the relation hold and under which circumstances. ‎‎[3] proposes that instances of the superiority relation appear in the head of rules, namely:

body => superiority

where superiority is a statement with the form

r1 > r2

where r1 and r2 are rule identifiers.

‎[4] proposes Carneades as a rule based argumentation system suitable for legal reasoning where they use weights attached to the arguments (rules) to solve conflicts and to define proof standards. ‎[5] shows how to use the weights to generate an equivalent preference relation, and, consequently, how to capture the proposed proof standards. In addition ‎[5] shows that there are situations where a preference relation cannot be captured by weight on the rules.
2.1.2 Deontic

In Legal Theory norms are classified mostly in two main categories: constitutive norms and prescriptive norms, which will be then represented as constitutive rules (also known as counts-as rules) and prescriptive rules. The function of constitutive norms is to define and create the so called institutional facts [Searle, 1996]. Where an institutional fact is how a particular concept is understood in a specific institution. Thus, constitutive rules provide definitions of the terms and concept used in a jurisdiction. On the other hand the scope of prescriptive rules is to dictate what are the obligations, prohibitions, permissions in a legal system, and the conditions under which we have them. LegalRuleML uses deontic operators to capture such notions. Deontic operators are meant to qualify formulas. A Deontic operator takes as its argument a formula and returns a formula. For example, given the (atomic) formula PayInvoice(guido), meaning ‘Guido pays the invoice’, and the deontic operator [OBL] (for obligation), the application of the deontic operator to the formula generates the new formula [OBL]PayInvoice(guido), meaning that “it is obligatory that Guido pays the invoice”. The deontic operators currently defined in the core of Legal- RuleML are given in the the following XSD fragment: Gordon et al. [2009] identify more types of norms/rules. However, most of them can be reduced to the two types described here insofar as the distinction is not on structure of the rules but it depends on the meaning of the content (specific e_ect) of the rules, while keeping the same logical format.
<xs:group name="Deontic.Node.choice">

<xs:choice>

<xs:group ref="lrml:Obligation.Node.choice"/>

<xs:group ref="lrml:Permission.Node.choice"/>

<xs:group ref="lrml:Prohibition.Node.choice"/>

<xs:group ref="lrml:Right.Node.choice"/>

<xs:group ref="lrml:Violation.Node.choice"/>

<xs:group ref="lrml:Compliance.Node.choice"/>

</xs:choice>

</xs:group>
The operators Obligation, Permission and Prohibition are the standard operators of deontic logic. The deontic operators admit children nodes for specifying the Bearer and the AuxiliaryParty of the operator, for example of the operator specifying a right we have:
<lrml:Right>

<ruleml:slot>

<lrml:Bearer

iri="&deontic-ontology;#oblbsub1"/>

<ruleml:Ind>X</ruleml:Ind>

</ruleml:slot>

<ruleml:slot>

<lrml:AuxiliaryParty

iri="&deontic-ontology;#oblbAdd1"/>

<ruleml:Ind>Y</ruleml:Ind>

</ruleml:slot>

<ruleml:Atom>

<ruleml:Rel iri="#copyright"/>

<ruleml:Var>X</ruleml:Var>

<ruleml:Ind>book</ruleml:Ind>

</ruleml:Atom>

</lrml:Right>
Thus LegalRuleML can model the well understood semantics of Right which is a permission on one party implying an obligation (or prohibition) on a second party. Violation and Compliance have a nature different from the others, and instead of taking a formula as their argument, the argument is a reference to a rule. Thus the meaning is that the rule the Violation operator refers to has been violated, similarly for Compliance, the rule has been complied with. Given the intended reading these two operators can only appear in the body of rules. Constitutive rules have the following form: body => head

Where body is a set of formulas and deontic formulas, and head is a formula. Thus constitutive rules do not allow deontic formulas in the head part or consequent of the rule. This restriction is due to the meaning of this type of rule which is intended to define concepts and not to prescribe behaviours.
<lrml:ConstitutiveStatement key="cs1">

<ruleml:Rule key=":key1">

<lrml:hasStrength>

strength of the rule

</lrml:hasStrength>

<ruleml:if>

set of formulas and deontic formulas

</ruleml:if>

<ruleml:then>

formula

</ruleml:then>

</ruleml:Rule>

</lrml:ConstitutiveStatement>
The if part corresponds to the body of the rule and the then part is the head of the rule. LegalRuleML defines specifics a sophisticated mechanism of prescriptiveness to prevent them to occur in the head of constitutive rules. To implement this constraint RuleML was extended and integrated with LegalRuleML. For prescriptive rules the form is as follows:
body => [D1]formula1,...,[Dn]formulan
where body is a set of formulas and deontic formulas and the head is a list of deontic formulas (where [Di] are deontic operators). The following is the LegalRuleML format for prescriptive rules.

<lrml:PrescriptiveStatement key="ps1">

<ruleml:Rule key=":key1">

<lrml:hasStrength>

strength of the rule

</lrml:hasStrength>

<ruleml:if>

set of deontic formulas and formulas

</ruleml:if>

<ruleml:then>

<lrml:SuborderList>

list of deontic formulas

</lrml:SuborderList>

</ruleml:then>

</ruleml:Rule>

</lrml:PrescriptiveStatement>

The difference between constitutive rules and prescriptive rules is in the content of the head where the head of a prescriptive rule is list of deontic operators, i.e., [D1]formula1,...,[Dn]formulan which is called suborder list, and represented in LegalRuleML by the <lrml:Suborder> block.
2.1.3 Penalty and Reparation

One of the characteristics of the norms is the possibility to violate them and to compensate their violation penalties. To model this feature of norms and legal reasoning Governatori and Rotolo [2006] introduced what is called here suborder list, and Governatori [2005] show how to combine them with defeasible reasoning for the modelling of (business) contracts. As we have seen above a suborder list is a list of deontic formulas, i.e., formulas of the form [D]A, where [D] is one of [OBL] (obligation), [FORB] (prohibition, or forbidden), PERM (permission) and [RIGHT] (right). Suborder list have the restriction that if [Di] is either [PERM] or [RIGHT] the elements after it cannot be [OBL] or [FORB]. To illustrate the meaning of suborder lists, consider the following example

[OBL]A, [OBL]B, [FORB]C, [PERM]D

The expression means that A is obligatory, but if it is violated, i.e., we have its opposite -A, then the obligation in force to compensate the violation of [OBL]A is B. If also this obligation of B is violated, then we have the prohibition of C. At this stage, if we have a violation of such a prohibition, i.e., we have C, then the permission of D kicks in. Governatori and Rotolo [2006], Governatori [2005] also discuss mechanisms to combine the suborder lists from di_erent rules. For example, given the rules

body => [OBL]A

-A => [OBL]B

Here the body of the second rule is the negation of the content of the obligation in the head of the first rule. It is possible to merge the two rules above in the following rule

body => [OBL]A, [OBL]B

stating that to compensate the violation of the obligation of A one as the obligation of B. This suggests that suborder lists provide a simple and convenient mechanism to model penalties. It is not uncommon for legal text (for example contracts) to include sections about penalties (see Section 4 below for a concrete example of this phenomenon), and one penalty can be related as compensation for many norms. To model this and to maintain the isomorphism between a sources and its formalisation LegalRuleML includes a <Penalty> element whose scope is to represent a penalty as a suborder list (including the trivial not empty list of a single element).

<lrml:Penalty key="pen2">

<lrml:SuborderList>

list of deontic formulas

</lrml:SuborderList>

</lrml:Penalty>

LegalRuleML not only models penalty, but aims to connect the

penalty with the correspondent reparation:

<lrml:Reparation key="rep1">

<lrml:appliesAssociation>

<lrml:Association key="assoc1">

<lrml:appliesPenalty keyref="#pen1"/>

<lrml:toTarget keyref="#ps1"/>

</lrml:Association>

</lrml:appliesAssociation>

</lrml:Reparation>
With the temporal model of LegalRuleML, we can model a unique deontic rule (e.g. prohibition) and several penalties that are updated over the time according to the modifications of the law. Dynamically the legal reasoner can point out to the correct penalty according to the time of the crime. (e.g. statutory damage 500$ in 2000, 750$ in 2006, 1000$ in 2010).
2.1.4 Temporal Proprieties

Legal texts are often amended over time following the evolution of the society or judicial system. The norms and the related rules are valid in a particular interval of time and with respect to three main legal axes: entry into force, efficacy, and applicability. In this section, we model the external temporal dimensions of the norms (when the norm is valid) and not the complex events that are the content of the textual provision (e.g., when a person is to present a tax application). Therefore, we only model the events, intervals and temporal parameters that define the period of validity of the rules. Moreover, in keeping with the sources, it is important to link the temporal parameters to any part of a rule (e.g. atom, rel, ind, if, then, etc.) with a very fine granularity.

<lrml:TimeInstants>

<ruleml:Time key="t1">

<ruleml:Data xsi:type="xs:dateTime">

1978-01-01T00:00:00

</ruleml:Data>

</ruleml:Time>

</lrml:TimeInstants>

The events are combined in intervals according with the legal temporal

situation that is modelled, e.g. enforceability, e_cacy, applicability.

<lrml:TemporalCharacteristics>

<lrml:TemporalCharacteristic>

<lrml:forRuleStatus

iri="&lrmlv;#Efficacious"/>

<lrml:hasStatusDevelopment

iri="&lrmlv;#Starts"/>

<lrml:atTimeInstant keyref="#t1"/>

</lrml:TemporalCharacteristic>

<lrml:TemporalCharacteristic>

<lrml:forRuleStatus

iri="&lrmlv;#Efficacious"/>

<lrml:hasStatusDevelopment

iri="&lrmlv;#End"/>

<lrml:atTimeInstant keyref="#t2"/>

</lrml:TemporalCharacteristic>

</lrml:TemporalCharacteristics>

The block with key e1-b can be reused in any part of the rule formalization avoiding redundancy in the legal situation definition.
2.1.5 Jurisdiction

2.1.6 Authority and Agent
We must represent the parameters concerning the provenance and the authoritativeness of the rules: the author of the rule formalization and the associated the authority. To indicate such parameters, we have blocks for the specification of agents and authorities:
<lrml:Agents>

<lrml:Agent key="aut1" sameAs="&unibo;/person.owl#m.palmirani"/>

<lrml:Agent key="aut2" sameAs="&unibo;/person.owl#g.governatori"/>

</lrml:Agents>

<lrml:Authorities>

<lrml:Authority key="congress" sameAs="&unibo;/org.owl#congress">

<lrml:type iri="&lrmlv;Legislature"/>

</lrml:Authority>

</lrml:Authorities>

In Section 2.4, we introduce other parameters to associate the proper author, authorities, jurisdiction, source, and other characteristics to the rule using <Context> block. Here, we have neutrally and simply modelled the agents and the authorities. In this way, it is possible, for example, to model a norm that follows two different jurisprudential doctrines (e.g. Positivism and Realism) by qualifying the rule with respect to multiple authorities or agents.
2.1.7 Isomorphism

One of the main problems of legal rule modelling is to maintain isomorphism — the connection between the formal rules and the legally binding textual statements modelled by the rules. As the legal source changes over time, the formal rules need to be updated, and usually there is no automatic mechanism to correlate and track such modifications. Moreover, it is fundamental for the judge, citizen, or legal operator to verify that the formalisations of the norms as modelled by legal knowledge engineers are conceptually consistent with the original legally binding texts. For this reason LegalRuleML includes a component to help manage the isomorphism at a fine granularity and to represent modifications with respect to the temporal dimension. Several blocks of XML are dedicated to annotate the original legal sources and to connect them to rules, so permitting an N:M relationship (e.g. many rules in one textual provision, many textual provision for only one rule). There are blocks for sources and blocks that associate sources with rules, assuming references to rules such as rule1. <References> is the block dedicated to record non-IRI based identifier sources and the attribute refIDSystemName is able to annotate the naming convention used:
<lrml:References>

<lrml:Reference refersTo="ref1"

refID="/us/USCode/eng@/main#title17-sec504

-rclsc-pnt1"

refIDSystemName="AkomaNtoso2.0-2012-10"/>

</lrml:References>

<LegalSource> is the block dedicated to record the IRI based

identifier sources:

<lrml:LegalSources>

<lrml:LegalSource key="ref2"

sameAs="http://www.law.cornell.edu/uscode/text/

17/504#psection-1"/>

</lrml:LegalSources>

Finally the block <Association> links sources/references with the relatives rules, thus implementing the N:M relationship. For one source to many rules, we have: <lrml:Association>

<lrml:appliesSource keyref="#ref1"/>

<lrml:toTarget keyref="#rule1"/>

<lrml:toTarget keyref="#rule2"/>

</lrml:Association>

For one rule with multiple sources, we have the following, where rule1 is connected to ref1 (above) and to ref2 (below):

<lrml:Association>

<lrml:appliesSource keyref="#ref2"/>

<lrml:toTarget keyref="#rule1"/>

</lrml:Association>
2.1.7.1 Norms, Provisions, Legal Rules

Norm: Following to the Kelsen (Kelsen,Hans, Reine Rechtslehre, 2d. ed., Wien 1992 [1960]) definition a norm is an abstract mandatory command concerning rights or duties. The norm usually is expressed in written using legal text or in oral way (e.g. social norm, oral contract) or in other representations (e.g. picture like road signs).

Textual Provision: We concentrate our attention on the norms represented using legal text form. The text that expresses one or more norms is called textual provision or simply provision.

Legal Rules: Legal rules are a logic model and representation of the norms using antecedents and consequents for representing duties, obligations, permissions, constitutional rules, etc.

A provision can includes different norms or a norm could be expressed by different provisions. The relationship between norms and provisions is N:M association.

Atom -– connectedTo-- provision(s)

Body -– connectedTo-- provision(s)

Head -– connectedTo-- provision(s)

Rule -– connectedTo-- provision(s)

1a
R1:if A_1(art1), A_2(art5), A_3 (art7)...,A_n (art15) then B (art23)

The pre-conditions are connected to different provision

Atom -– connectedTo-- provision

2a
R2:if (A_1, A_2, A_3,...A_n (art4)) then (B (art28))

R3:if (A_1, A_2,...A_n (art4)) then (C (art29))

The body is connected with the provisions

Different body are connected with the same provision (art4)

Body-– connectedTo-- provision

Head-– connectedTo-- provision

3a
R4:((if A_1, A_2, A_3,...,A_n then B)(art4, art7, art15))

The enter rule is connected with different provisions

Rule-– connectedTo-- provision

4a
R5:(if A_1, A_2, A_3,...,A_n then B)(art4)

R6:(if A_1, A_2, A_3,...,A_n then B)(art4)

Different rules are connected with different provision

2.1.7.2 The Isomorphism Mechanism
The isomorphism (Bench-Capon T. and Coenen F.: Isomorphism and legal knowledge based systems. Artificial Intelligence and Law, 1(1):65–86, 1992) is the concept to associate any rule to its provision(s) in order:

1) to have a relationship between rule(s) and legal provision(s) that originated it/them;

2) to have a clear explanation, supported by the original legal text, to provide to the end user as outcome of the legal reasoning process (demonstration). The original legal provision is the only legal binding text;

3) to help the maintenance of the rules knowledge base when the text changes (change management).

Following the above goal, we associate the rules with the legal provisions using URI. Each legal provision has an URI that is annotate in the LegalRuleML XML file once.

0b
References

URIAct1#art1-->ID1

URIAct1#art4-->ID2

URIAct1#art5-->ID3

URIAct1#art7-->ID4

URIAct2#art15-->ID5

URIAct2#art23-->ID6

URIAct2#art27-->ID7

URIAct2#art28-->ID8

URIAct2#art29-->ID9

1b
R1:if A_1(#ID1), A_2(#ID3), A_3 (#ID4)...,A_n (#ID5) then B (#ID6)

The pre-conditions are connected to different provision

Atom -– connectedTo-- provision

2b
R2:if (A_1, A_2, A_3,...A_n (#ID2)) then (B (#ID8))

R3:if (A_1, A_2,...A_n (#ID2)) then (C (#ID9))

The body is connected with the provisions

Different body are connected with the same provision (art4)

Body-– connectedTo-- provision

Head-– connectedTo-- provision

3b
R4:((if A_1, A_2, A_3,...,A_n then B)(#ID2, #ID4, #ID5))

The enter rule is connected with different provisions

Rule-– connectedTo-- provision

4b
R5:(if A_1, A_2, A_3,...,A_n then B)(#ID2)

R6:(if A_1, A_2, A_3,...,A_n then B)(#ID2)

Different rules are connected with different provision

This annotation has three important advantages:

a)
the provisions are not duplicated in their URI inside of the rules;

b)
in case of errors in the URI, we modify only in one place (source block) this information;

c)
in case of modification of one article (e.g. article 4) it is immediate the possibility to detect all the rules involved in.

2.1.7.3 Legal provisions and rules over time

Another requirement in the legal domain is the multiple association between the source(s) and the rule(s) due to a different version of the text provision over the time (changes of the law) or to a different interpretation by different authors.

Suppose the following rule, where art1, art5, art7 and art15 belong to the ACT1 and the consequence (head B) belong to the art. 23 of the ACT2.

R1:if A_1(art1), A_2(art5), A_3 (art7) and A_4 (art15) then B (art23)

“Anyone who violates Art. 1 and Art. 5 and Art. 7 and Art. 15 of the ACT 20 shall be punished following the Art. 23 in the Act 30”

Now we suppose that the Art. 23 is modified and the provision source changed in 2011-12-20.

The modification is the substitution of Art. 23 from “not less of 3 years of prison” to “not less of 5 years of prison”. The rule1 don’t change but the legal provision connected with the head is modified.

In this way we can modify only the URIAct2#art23 adding the information related the qualification of the version (URIAct2@2011-12-20) (FRBR naming convention of the Work, Expression, Manifestation, Item). All the other part of the rule don’t need modifications because based on ID mechanism.

0b
References

URIAct1#art1-->ID1

URIAct1#art4-->ID2

URIAct1#art5-->ID3

URIAct1#art7-->ID4

URIAct2#art15-->ID5

URIAct2@2011-12-20#art23-->ID6

1c
R1:if A_1(#ID1), A_2(#ID3), A_3 (#ID4)...,A_n (#ID5) then B (#ID6)

2.1.8 Multiple interpretations of rules

Suppose to have a new scenario where two legal experts have a different opinion on the legal provision resources connected with a rule. It is the case of different judges opinions or it is the case of a different interpretation over the time (time1 and time2).

In time1 the author1 interprets the provision

“Anyone who violates Art. 1 and Art. 5 and Art. 7 and Art. 15 of the ACT 20 shall be punished following the Art. 23 in the Act 30” with:

(R1, Author1, Time1): if A_1(art1), A_2(art5), A_3 (art7),A_4 (art15) then B (art23)

In time2 the author2 interprets the provision

“Anyone who violates Art. 1 and Art. 5 and Art. 7 and Art. 15 of the ACT 20 shall be punished following the Art. 27 in the Act 30” with:

(R1, Author2, Time2): if A_1(art4), A_2(art5), A_3 (art7),,A_4 (art15) then B (art27)

0b
Sources

URIAct1#art1-->ID1

URIAct1#art4-->ID2

URIAct1#art5-->ID3

URIAct1#art7-->ID4

URIAct2#art15-->ID5

URIAct2@2011-12-20#art23-->ID6

URIAct2#art27-->ID7

RuleInfo1

R1, Author1, time1,(#A_1,#ID1), (#A_2, #ID3), (#A_3, #ID4), (#A_4, #ID5), (#B, #ID6)

RuleInfo2

R1, Author2, time2,(#A_1,#ID2), (#A_2, #ID3), (#A_3, #ID4), (#A_4, #ID5), (#B, #ID7)

1c
(R1): if A_1, A_2, A_3...,A_n then B
2.2 LegalRuleML and RuleML

2.2.1 [Adrian and Harold]
3 2.3 Normative Metamodel Normative

3.1 Elements

3.1.1 Defeasibility Elements

3.1.2 <xxx> element

3.1.2.1 <xxx> element in plain-text

<In this part we explain in plain text the element, using also the EBNF annotation. Examples help to understand the main essence of the use of the element.>

3.1.2.2 <xxx> element Oxygen Graph

3.1.2.3 <xxx> element relations

	Name
	xxx

	Used by (from the same schema document)
	root element

	Type
	xxxxxxxx

	Nillable
	no

	Attributes
	no

	Mandatory
	no

	Abstract
	no

	Documentation
	This element is used to xxxxx

3.1.2.4 <xxx> element XML-schema

3.1.2.5 <xxx> element in RelaxNG

4 # Conformance

The last numbered section in the specification must be the Conformance section. Conformance Statements/Clauses go here. [Remove # marker]

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
[Participant Name, Affiliation | Individual Member]

[Participant Name, Affiliation | Individual Member]

Appendix B. Non-Normative Text

text

B.1 Subsidiary section

text

B.1.1 Sub-subsidiary section

text

Appendix C. Revision History

	Revision
	Date
	Editor
	Changes Made

	[Rev number]
	[Rev Date]
	[Modified By]
	[Summary of Changes]

legalruleml-core-spec-wd01
Working Draft 01
08 February 2012

Standards Track Draft
Copyright © OASIS Open 2012. All Rights Reserved.
Page 1 of 22

