LegalRuleML: Design Principles and Foundational
Tara Athan1, Harold Boley1 Guido Governatori1, Monica Palmirani, Adrian Paschke, Adam Wyner1
1xxxxx
xxxxx
Abstract. xxxx
Keywords: LegalRuleML, RuleML, Legal Rule Modelling, Meta Model.
1. Introduction
The objective of the LegalRuleML TC is to extend RuleML with formal features specific to legal norms, guidelines, policies and reasoning; that is, the TC defines a standard (expressed with XML-schema and Relax NG) that is able to represent the particularities of the legal normative rules with a rich, articulated, and meaningful markup language.
LegalRuleML models:

· defeasibility of rules and defeasible logic;

· deontic operators (e.g., obligations, permissions, prohibitions, rights);

· semantic management of negation;

· temporal management of rules and temporality in rules;

· classification of norms (i.e., constitutive, prescriptive);

· jurisdiction of norms;

· isomorphism between rules and natural language normative provisions;

· identification of parts of the norms (e.g. bearer, conditions);

· authorial tracking of rules.

Some matters are out of the scope of the TC and LegalRuleML such as specifications of core or domain legal ontologies.
The main principles of LegalRuleML are as follows.

Multiple Semantic Annotations: A legal rule may have multiple semantic annotations, where these annotations represent different legal interpretations. Each such annotation appears in a separate annotation block as internal or external metadata. A range of parameters provide the interpretation with respect to provenance, applicable jurisdiction, logical interpretation of the rule, and others.

Tracking the LegalRuleML Creators: As part of the provenance information, a LegalRuleML document or any of its fragments can be associated with its creators. This is important to establish the authority and trust of the knowledge base and annotations. Among the creators of the document can be the authors of the text, knowledge base, and annotations, as well as the publisher of the document.

Linking Rules and Provisions: LegalRuleML includes a mechanism, based on IRI, that allows many to many (N:M) relationships among the rules and the textual provisions: multiple rules are embedded in the same provision, several provisions contribute to the same rule. This mechanism may be managed in the metadata block, permitting extensible management, avoiding redundancy in the IRI definition, and avoiding errors in the associations.

Temporal Management: LegalRuleML's universe of discourse contains a variety of entities: provisions, rules, applications of rules, references to text, and references to physical entities. All of these entities exist and change in time; their histories interact in complicated ways. Legal RuleML represents these temporal issues in unambiguous fashion. In particular, a rule has parameters which can vary over time, such as its status (e.g. strict, defeasible, defeater), its validity (e.g. repealed, annulled, suspended), and its jurisdiction (e.g. only in EU, only in US). In addition, a rule has temporal aspects such as internal constituency of the action, the time of assertion of the rule, the efficacy, enforcement, and so on.

Formal Ontology Reference: LegalRuleML is independent from any legal ontology and logic framework. However it includes a mechanism, based on IRIs, for pointing to reusable classes of a specified external ontology.

LegalRuleML is based on RuleML: LegalRuleML reuses and extends concepts and syntax of RuleML wherever possible, and also adds novel annotations. RuleML includes Reaction RuleML.

Mapping: LegalRuleML is mappable to RDF triples for favoring Linked Data reuse.
2. Functionalities
Specifically, LegalRuleML facilitates the following functionalities.

R1) Supports modelling different types of rules. There are constitutive rules, which define concepts or institutional actions that are recognised as such by virtue of the defining rules (e.g. the legal definition of “transfer property ownership”) and there are prescriptive rules, which regulated actions or the outcome of actions by making them obligatory, permitted, or prohibited.

R2) Represents normative effects. There are many normative effects that follow from applying rules, such as obligations, permissions, prohibitions, and more articulated effects. Rules are also required to regulate methods for detecting violations of the law and to determine the normative effects triggered by norm violations, such as reparative obligations, which are meant to repair or compensate violations. These constructions can give rise to very complex rule dependencies, because the violation of a single rule can activate other (reparative) rules, which in turn, in case of their violation, refer to other rules, and so forth.

R3) Implements defeasibility [Gordon, 1995, Prakken and Sartor, 1996, Sartor, 2005]. In the law, where the antecedent of a rule is satisfied by the facts of a case (or via other rules), the conclusion of the rule presumably, but not necessarily, holds. The defeasibility of legal rules consists of the means to identify exceptions and conflicts along with mechanisms to resolve conflicts.

R4) Implements isomorphism [Bench-Capon and Coenen, 1992]. To ease validation and maintenance, there should be a one-to-one correspondence between collections of rules in the formal model and the units of (controlled) natural language text that express the rules in the original legal sources, such as sections of legislation.

R5) Alternatives: often legal documents are left ambiguous on purpose to capture open ended aspects of the domain they are intended to regulate. At the same time legal documents are meant to be interpreted by end users. This means that there are cases where multiple (and incompatible) interpretations of the same textual source are possible. LegalRuleML offers mechanisms to specify such interpretations and to select one of them based on the relevant context.

R6) Manages rule reification [Gordon, 1995]. Rules are objects with properties, such as Jurisdiction, Authority, Temporal attributes [Palmirani et al., 2010, Governatori et al., 2009, 2005]. These elements are necessary to enable effective legal reasoning.
3. Criteria of Good Language

The syntax design should follow from semantic intuitions from the subject matter domain - labelling entities, properties, and relations as well as some of the type constraints amongst them that guide how the labels are combined and used.
· Criteria of Good Language Design are:

· Minimality, which requires that the language provides only a small set of needed language constructs, i.e., the same meaning cannot be expressed by different language constructs.

· Referential transparency, which means that the same language construct always expresses the same semantics regardless of the context in which it is used.

· Orthogonality, where language constructs are independent of each other, thus permitting their systematic combination.

· Pattern,

· LegalRuleML was designed based on such principles. In particular its vocabulary is inspired by terms from the legal domain, which then facilitates the used by users familiar with such domain. Also, the LegalRuleML meta-model captures the common meaning of such terms as understood in the legal field.In what follows we illustrate the connections among the various concepts and their representation in the language.
4. Design Principles

The syntax design should follow from semantic intuitions from the subject matter domain - labelling entities, properties, and relations as well as some of the type constraints amongst them that guide how the labels are combined and used.

Criteria of Good Language Design are:

· Minimality, which requires that the language provides only a small set of needed language constructs, i.e., the same meaning cannot be expressed by different language constructs.

· Referential transparency, which means that the same language construct always expresses the same semantics regardless of the context in which it is used.

· Orthogonality, where language constructs are independent of each other, thus permitting their systematic combination.

Pattern

LegalRuleML was designed based on such principles. In particular its vocabulary is inspired by terms from the legal domain, which then facilitates the used by users familiar with such domain. Also, the LegalRuleML meta-model captures the common meaning of such terms as understood in the legal field.In what follows we illustrate the connections among the various concepts and their representation in the language.

4.1. XML Elements vs. Attributes

4.2. Different Syntactic and Semantic Layers

4.3. Node and Edge Elements

4.4. Normalized and Compact Serialization

4.5. Collection Design Pattern

4.6. CURIES, Relative IRIs and the xsd:ID Datatype
5. Meta Model

xxxx
6. Modelling norms
According to scholars of legal theory [Sartor 2005], norms can be represented by rules with the form
if A_1, ... , A_n then C

where A_1,...,A_n are the pre-conditions of the norm, C is the effect of the norm, and if ... then ... is a normative conditional, which are generally defeasible and do not correspond to the if-then material implication of propositional logic. Norms are meant to provide general principles, but at the same time they can express exceptions to the principle. It is well understood in Legal Theory [Sartor 2005, Gordon et al 2009] that, typically, there are different types of “normative conditionals”, but in general normative conditionals are defeasible. Defeasibility is the property that a conclusion is open in principle to revision in case more evidence to the contrary is provided. Defeasible reasoning is in contrast to monotonic reasoning of propositional logic, where no revision is possible. In addition, defeasible reasoning allows reasoning in the face of contradictions, which gives rise to ex false quodlibet in propositional logic. One application of defeasible reasoning is the ability to model exceptions in a simple and natural way.
6.1. Defeasibility
The first use of defeasible rules is to capture conflicting rules/norms without making the resulting set of rules inconsistent. Given that -expression means the negation of expression, the following two rules conclude with the negation of each other

body_1 => head

body_2 => -head

Without defeasibile rules, rules with conclusions that are negations of each other could give rise, should body 1 and body 2 both hold, to a contradiction, i.e., head and - head, and consequently ex falso quodlibet. Instead, defeasible reasoning is sceptical; that is, in case of a conflict such as the above, it refrains from taking any of the two conclusions, unless there are mechanisms to solve the conflict (see the discussion below on the superiority relation). Notice that an application of this is to model exceptions. Exceptions limit the applicability of basic norms/rules, for example:
body => head

body, exception_condition => -head

In this case, the second rule is more specific than the first, and thus it forms an exception to the first, i.e., a case where the rule has extra conditions that encode the exception, blocking the conclusion of the first rule. Often, exceptions in defeasible reasoning can be simply encoded as
body => head

exception_condition => -head

In the definition of rules as normative conditionals made up of preconditions and effect, we can see a rule as a binary relationship between the set of pre-conditions (or body or antecedent) of the rule, and the (legal) effect (head or conclusion) of the rule. Formally, a rule can be defined by the following signature:

body x head

We can then investigate the nature of such a relationship. Given two sets, we have the following seven possible relationships describing the “strength” of the connections between the body and the head of a rule:

body always head

body sometimes head

body not complement head

body no relationship head

body always complement head

body sometimes complement head

body not head

In defeasible logic we can represent the relationships using the following formalisation of rules (rule types):

body -> head

body => head

body ~> head

body -> -head

body => -head

body ~> -head

The seventh case is when there are no rules between the body and the head. The following table summarises the relationships, the notation used for them, and the strength of the relationship.

	body always head
	body -> head
	Strict rule

	body sometimes head
	body => head
	Defeasible rule

	body not complement head
	body ~> head
	Defeater

	body no relationship head
	
	

	body always complement head
	body -> -head
	Strict rule

	body sometimes complement head
	body => -head
	Defeasible rule

	body not head
	body ~> -head
	Defeater

The meaning of the different types of rules is as follows:

For a strict rule body -> head the interpretation is that every time the body holds then the head holds.

For a defeasible rule body => head the reading is when the body holds, then, typically, the head holds. Alternatively we can say that the head holds when the body does unless there are reasons to assert that the head does not hold. This captures that it is possible to have exceptions to the rule/norm, and it is possible to have prescriptions for the opposite conclusion.

For a defeaters body ~> head the intuition is as follows: defeaters are rules that cannot establish that the head holds. Instead they can be use to specify that the opposite conclusion does not hold. In argumentation two types of defeaters are recognized: defeaters used when an argument attacks the preconditions of another argument (or rule); other defeaters used when there is no relationship between the premises of an argument (preconditions of a rule or body) and the conclusion of the argument (effect of the rule or head)

Given the possibility to have conflicting rules, i.e., rules with opposite or contradictory heads, for example

body1 => head

body2 => -head
systems for defeasible reasoning include mechanisms to solve such conflicts. Different methods to solve conflicts have been proposed: specificity, salience, and preference relation. According to specificity, in case of a conflict between two rules, the most specific rule prevails over the less specific one, where a rule is more specific if its body subsumes the body of the other rule. For salience, each rule has an attached salience or weight, where in case of a conflict between two rules, the one with the greatest salience or weight prevails over the other. Finally, a preference relation (also known as superiority relation) defines a binary relation over rules, where an element of the relation states the relative strength between two rules. Thus, in case of a conflict between two rules, if the preference relation is defined order such rules, the strongest of the two rules wins over the other.

Various researchers have taken different views on such methods. Specificity corresponds to the well know legal principle of lex specialis. Prakken and Sartor [1997] argue that specificity is not always appropriate for legal reasoning and that there are other well understood legal principles such as lex superior and lex posterior apply instead. Prakken and Sartor [1997] cite cases in which the lex specialis principle might not be the one used to solve the conflict, for example, a more specific article from a local council regulation might not override a less specific constitutional norm. Prakken and Sartor [1997] propose to use a dynamic preference relation to handle conflicting rules. The preference relation is dynamic in the sense that it is possible to argue about which instances of the relation hold and under which circumstances. Antoniou [2004] proposes that instances of the superiority relation appear in the head of rules, namely:
body => superiority

where superiority is a statement with the form

r1 > r2

where r1 and r2 are rule identifiers.

Gordon et al. [2007] propose Carneades as a rule-based argumentation system suitable for legal reasoning where they use weights attached to the arguments (rules) to solve conflicts and to define proof standards. Governatori [2011] shows how to use the weights to generate an equivalent preference relation, and, consequently, how to capture the proposed proof standards. In addition, Governatori [2011] shows that there are situations where a preference relation cannot be captured by using weights on the rules.

To handle defeasibility, LegalRuleML has to capture the superiority relation and the strength of rules. For the superiority relation, LegalRuleML offers the element <Overrides>, which defines a relationship of superiority where cs2 overrides cs1, where cs2 and cs1 are Legal Statement (see the glossary definition) identifiers. These elements are included in hasQualification blocks.

<lrml:hasQualification>

<lrml:Overrides over="#cs1" under="#cs2"/>

</lrml:hasQualification>

For the representation of the strength of rules, LegalRuleMLhas two options:

The first is to include it in a <Context> block, where a <Context> specifies a context in which the rule is applied:

<lrml:Context key="ruleInfo2">

<lrml:appliesStrength iri="&defeasible-ontology;#defeasible2"/>

<lrml:toStatement keyref="#cs1"/>

</lrml:Context>

The second (and optional) way to express the qualification of the rule is directly inside of the rule, with an hasStrength block. The difference is that <Context> localises the strength of a rule, while the hasStrength block in effect relates the strength to the rule in all contexts:

<lrml:hasStrength>

<lrml:Defeater key="str4"/>
</lrml:hasStrength>

6.2 Constitutive and Prescriptive Norms

As we have discussed, a Legal Rule can be seen as binary relationship between its antecedent (a set of formulas, encoding the pre-conditions of a norm, represented in LegalRuleML by a formula, where multiple pre-conditions are joined by some logical connective) and its conclusion (the effect of the norm, represented by a formula). It is possible to have different types of relations. In the previous section, we examined one such aspect: the strength of the link between the antecedent and the conclusion. Similarly, we can explore a second aspect, namely what type of effect follows from the pre-condition of a norm. In Legal Theory norms are classified mostly in two main categories: constitutive norms and prescriptive norms, which will be then represented as constitutive rules (also known as counts-as rules) and prescriptive rules.

The function of constitutive norms is to define and create so called institutional facts [Searle, 1996], where an institutional fact is how a particular concept is understood in a specific institution. Thus, constitutive rules provide definitions of the terms and concepts used in a jurisdiction. On the other hand, prescriptive rules dictate the obligations, prohibitions, permissions, etc. of a legal system, along with the conditions under which the obligations, prohibitions, permissions, etc hold. LegalRuleML uses deontic operators to capture such notions (see Section 4.1.3). Deontic operators are meant to qualify formulas. A Deontic operator takes as its argument a formula and returns a formula. For example, given the (atomic) formula PayInvoice(guido), meaning ‘Guido pays the invoice’, and the deontic operator [OBL] (for obligation), the application of the deontic operator to the formula generates the new formula [OBL]PayInvoice(guido), meaning that “it is obligatory that Guido pays the invoice”.

The following is the LegalRuleML format for prescriptive rules. Notice, that in LegalRuleML Legal rules are captured by the broader class of Statements:

<lrml:PrescriptiveStatement key="ps1">

<ruleml:Rule key=":key1">

<lrml:hasStrength>

strength of the rule

</lrml:hasStrength>

<ruleml:if>

set of deontic formulas and formulas

</ruleml:if>

<ruleml:then>

<lrml:SuborderList>

list of deontic formulas

</lrml:SuborderList>

</ruleml:then>

</ruleml:Rule>

</lrml:PrescriptiveStatement>

The difference between constitutive rules and prescriptive rules is in the content of the head, where the head of a prescriptive rule is list of deontic operators, i.e., [D1]formula1,...,[Dn]formulan which is called a suborder list (see section 4.1.4 below), and represented in LegalRuleML by the <lrml:Suborder> block. Prescriptive and constitutive rules can have deontic formulas as their preconditions (body). The conclusion (head) of a constitutive rule cannot be a deontic formula.

<lrml:ConstitutiveStatement key="ps1">

<ruleml:Rule key=":key1">

<lrml:hasStrength>

strength of the rule

</lrml:hasStrength>

<ruleml:if>

formula, including deontic formula

</ruleml:if>

<ruleml:then>

non-deontic formula

</ruleml:then>

</ruleml:Rule>

</lrml:ConstitutiveStatement>

6.3 Deontic
One of the functions of norms is to regulate the behaviour of their subjects by imposing constraints on what the subjects can or cannot do, what situations are deemed legal, and which ones are considered to be illegal. There is an important difference between the constraints imposed by norms and other types of constraints. Typically a constraint means that the situation described by the constraint cannot occur. For example, the constraint A means that if -A (the negation of A, that is, the opposite of A) occurs, then we have a contradiction, or in other terms, we have an impossible situation. Norms, on the other hand, can be violated. Namely, given a norm that imposes the constraint A, yet we have a situation where -A, we do not have a contradiction, but rather a Violation (see also the glossary), or in other terms we have a situation that is classified as "illegal". From a logical point of view, we cannot represent the constraint imposed by a norm simply by A, since the conjunction of A and -A is a contradiction. Thus we need a mechanism to identify the constraints imposed by norms. This mechanism is provided by modal (deontic) operators.

6.3.1. Modal and Deontic Operators
Modal logic is an extension of classical logic with modal operators. A modal operator applies to a proposition to create a new proposition. The meaning of a modal operator is to "qualify" the truth of the proposition that the operator applies to. The basic modal operators are those of necessity and possibility. Accordingly, given a proposition p expressing, for example that "the snow is white" and the necessity modal operator [NEC], [NEC]p is the proposition expressing that "necessarily the snow is white". Typically, the necessity and possibility operators are the dual of each other, namely:

[NEC]p equiv -[POS]-p
[POS]p equiv -[NEC]-p
The modal operators have received different interpretations: for example, necessity can be understood as logical necessity, physical necessity, epistemic necessity (knowledge), doxastic necessity (belief), temporal necessity (e.g., always in the future), deontic necessity (obligatory), and many more.

In the context of normative reasoning and representation of norms the focus is on the concepts of deontic necessity and deontic possibility. These two correspond to the notions of Obligation (see also the glossary) and Permission (see also the glossary). In addition, we consider the notion of Prohibition (see also the glossary), which corresponds to the operator of deontic impossibility. For something to be "deontically necessary" means that it holds in all situations deemed legal; similarly something is "deontically possible" if there is at least one legal state where it holds. Finally, "deontically impossible" indicates that something does not hold in any legal state.

We will use [OBL] for the modal/deontic operator of Obligation, [PER] for Permission, and [FOR] for Prohibition (or Forbidden).

Standard deontic logic assumes the following relationships between the operators:

[OBL]p equiv -[PER]-p
If p is obligatory, then its opposite, -p, is not permitted.

[FOR]p equiv [OBL]-p
If p is forbidden then its opposite is Obligatory. Alternatively, a Prohibition can be understood as Obligation of the negation.

Accordingly, the following is an example of mathematical statement of a Prescriptive Rule (see also the glossary):

p_1_, ..., p_n_, [DEON_1_]p_n+1_, ..., [DEON_m_]p_n+m_ =>[DEON] q
The antecedent, p_1_, ..., p_n_, [DEON_1_]p_n+1_, ..., [DEON_m_]p_n+m_, conditions the applicability of the norm in the consequent [DEON] q; that is, when the antecedent conditions are met, then the consequent is the deontic effect of them. Thus, given the antecedent, the rule implies [DEON] q.

The operators of Obligation, Prohibition and Permission are typically considered the basic ones, but further refinements are possible, for example, two types of permissions have been discussed in the literature on deontic logic: weak permission (or negative permission) and strong permission (or positive permission). Weak permission corresponds to the idea that some A is permitted if -A is not provable as mandatory. In other words, something is allowed by a code only when it is not prohibited by that code [von Wright 1963]. The concept of strong permission is more complicated, as it amounts to the idea that some A is permitted by a code if and only if such a code explicitly states that A is permitted, typically as an exception to the prohibition of A or the obligation of its contrary, i.e., -A. It follows that a strong permission is not derived from the absence of a prohibition, but is explicitly formulated in a permissive (prescriptive) norm [Alchurron & Bulygin 1984]. An example of an explicit permissive norm is manifested by a "U-turn permitted" sign exposed at a traffic light, which derogates the (general) prohibition to U-turn at traffic lights.

Refinements of the concept of obligation have been proposed as well. For example it possible to distinguish between achievement and maintenance obligations, where an achievement obligation is an obligation that is fulfilled if what the obligation prescribes holds at least once in the period when the obligation holds, while a maintenance obligation must be obeyed for all the instants when it holds (see [Governatori 2014] for a classification of obligations).
LegalRuleML is neutral about the different subclasses of the deontic operators; to this end LegalRuleML is equipped with a mechanism to point to the semantics of various Deontic Specifications (see also the glossary) in a document. The first mechanism is provided by the iri attribute of a Deontic Specification for example:

<lrml:Obligation
 key="oblig1
iri="http://example.org/deontic/vacab#achievementobligation">
 ...
</lrml:Obligation>
The second alternative is to use an Association to link a Deontic Specification to its meaning using the applyModality element, namely:

<lrml:Association>
 <lrml:appliesModality
iri="http://example.org/deontic/vocab#maintenanaceobligation"/>
 <lrml:toTarget keyref="#oblig101"/>
</lrml:Association>
Furthermore, Obligations, Prohibitions and Permissions in LegalRuleML are directed operators [Herrestad & Krogh 1995], thus they have parties (e.g. Bearer - see also the glossary), specifying, for example, who is the subject of an Obligation or who is the beneficiary of a Permission.

<lrml:Obligation iri="http://example.org/deontic/vocab#obl1”>

 <ruleml:slot>

 <lrml:Bearer iri="http://example.org/deontic/vocab#oblBearer"/>

 <ruleml:Ind>Y</ruleml:Ind>

 </ruleml:slot>

 <ruleml:Atom key=":atom2">

 <ruleml:Rel iri="#rel2"/>

 <ruleml:Ind>X</ruleml:Ind>

 </ruleml:Atom>

</lrml:Obligation>
6.3.2. Violation, Suborder, Penalty and Reparation
Obligations can be violated; according to some legal scholars, the possibility of being violated can be used to define an obligation. A violation means that the content of the obligation has not been met. It is important to notice that a violation does not result in an inconsistency. A violation is, basically, a situation where we have

([OBL]p) and -p:

One of the characteristics of norms is that having violated them, a penalty can be introduced to compensate for the violation, where a penalty is understood to also be a deontic formula. To model this feature of norms and legal reasoning Governatori and Rotolo [2006] introduced what is called here a suborder list, and Governatori [2005] showed how to combine them with defeasible reasoning for the modelling of (business) contracts. As we have seen above, a suborder list (SuborderList in the glossary) is a list of deontic formulas, i.e., formulas of the form [D]A, where [D] is one of [OBL] (Obligation), [FOR] (Prohibition, or forbidden), [PER] (Permission) and [RIGHT] (Right). To illustrate the meaning of suborder lists, consider the following example:

[OBL]A, [OBL]B, [FOR]C, [PER]D
The expression means that A is obligatory, but if it is violated, i.e., we have its opposite -A, then the obligation comes into force to compensate for the violation of [OBL]A with [OBL]B. If also this Obligation of B is violated, then we have [FOR]C, the Prohibition of C. At this stage, if we have a Violation of such a Prohibition, i.e., we have C, then the Permission of D kicks in. Obligations and Prohibitions should not be preceded by Permissions and Rights in a suborder list, for the semantics of Suborder lists is such that an element holds in the list only if all the elements that precede it in the list have been violated. It is not possible to have a Violation of a Permission, so it cannot serve a purpose in the Suborder list. Accordingly, an element following a permission in a suborder list would never hold.

Governatori and Rotolo [2006], Governatori [2005] also discuss mechanisms to combine the suborder lists from different rules. For example, given the rules

body => [OBL]A
-A => [OBL]B
Here the body of the second rule is the negation of the content of the obligation in the head of the first rule. It is possible to merge the two rules above in the following rule

body => [OBL]A, [OBL]B
stating that one compensates for the violation of the obligation of A with the obligation of B. This suggests that suborder lists provide a simple and convenient mechanism to model penalties. It is not uncommon for a legal text (e.g., a contract) to include sections about penalties, where one Penalty (see also the glossary) is provided as compensation for many norms. To model this and to maintain the isomorphism between a source and its formalisation, LegalRuleML includes a <Penalty> element, the scope of which is to represent a penalty as a suborder list (including the trivial not empty list of a single element).

<lrml:Penalty key="pen2">
 <lrml:SuborderList>
 list of deontic formulas
 </lrml:SuborderList>
</lrml:Penalty>
LegalRuleML not only models penalties, but aims to connect the penalty with the correspondent Reparation (see also the glossary):

 <lrml:Reparation key="rep1">

 <lrml:appliesPenalty keyref="#pen1"/>

 <lrml:toPrescriptiveStatement keyref="#ps1"/>

 </lrml:Reparation>

With the temporal model of LegalRuleML (see section xxx), we can model a unique deontic rule (e.g., a prohibition) and several penalties that are updated over time according to the modifications of the law. Dynamically, the legal reasoner can point out the correct penalty according to the time of the crime (e.g., statutory damage 500$ in 2000, 750$ in 2006, 1000$ in 2010).

6.3.3. Alternatives

In the legal interpretation theory [2] the norms are interpreted by the judges in order to apply them to the concrete cases. Sometime the legal interpretation theories conflict and diverge each others [Dworkin] [Raz] [Hart]. Linguistic elements are added to this also for different reasons such as jurisdiction (e.g., national and regional level) or for competences (e.g., civil or criminal court). The practice of law over time has developed its own catalogue of hermeneutical principles, a range of techniques to interpret the law, such as catalogued and discussed in [5]. In addition, in Linguistics, issues about interpretation have long been of central concern (from [3] to [4]), where the need for interpretation arises given that the meanings (broadly construed) of “linguistic signs”, (e.g. words, sentences, and discourses), can vary depending on participants, context, purpose, and other parameters. Interpretation is, then, giving the meaning of the linguistic signs for a given set of parameters.
LegalRuleML endeavours not to account for how different interpretations arise, but to provide a mechanism to record and represent them. We have four different templates:
	1)
	[image: image1.png]

	Same legal provision(s) and different alternatives.

	2)
	
[image: image2]
	Different alternatives that share one or more pieces of text but others are not shared.

	3)
	
[image: image3]
	Different alternatives sharing the same legal provision(s), but embedding different rules.

	4)
	
[image: image4]
	Different alternatives that share the same legal provision(s), but one or more rules are in common.

The element <lrml:Alternatives> permits to express all these interpretation templates.
Case 1:
<lrml:Alternatives key="alt1">

 <lrml:LegalSources>

 <lrml:hasLegalSource keyref="#ref1"/>

 </lrml:LegalSources>

 <lrml:hasAlternative keyref="#ps1"/>

 <lrml:hasAlternative keyref="#ps2"/>

</lrml:Alternatives>

Case 2:

<lrml:Alternatives key="alt2">

 <lrml:LegalSources>

 <lrml:hasLegalSource keyref="#ref1"/>

 <lrml:hasLegalSource keyref="#ref2"/>

 </lrml:LegalSources>

 <lrml:hasAlternative keyref="#ps1"/>

 <lrml:hasAlternative keyref="#ps2"/>

</lrml:Alternatives>
Case 3:
<lrml:Alternatives key="alt3">

 <lrml:LegalSources>

 <lrml:hasLegalSource keyref="#ref1"/>

 </lrml:LegalSources>

 <lrml:hasAlternative keyref="#ss1"/>

 <lrml:hasAlternative keyref="#ss2"/>

</lrml:Alternatives>
 <lrml:Statements key="ss1">

 <lrml:ConstitutiveStatement keyref="ps1"/>

 <lrml:ConstitutiveStatement keyref="ps2"/>

</lrml:Statements>

 <lrml:Statements key="ss2">

 <lrml:ConstitutiveStatement keyref="ps3"/>

</lrml:Statements>
Case 4:
<lrml:Alternatives key="alt3">

 <lrml:LegalSources>

 <lrml:hasLegalSource keyref="#ref1"/>

 <lrml:hasLegalSource keyref="#ref2"/>

 </lrml:LegalSources>

 <lrml:hasAlternative keyref="#ss1"/>

 <lrml:hasAlternative keyref="#ss2"/>

</lrml:Alternatives>
 <lrml:Statements key="ss1">

 <lrml:ConstitutiveStatement keyref="ps1"/>

 <lrml:ConstitutiveStatement keyref="ps2"/>

</lrml:Statements>

 <lrml:Statements key="ss2">

 <lrml:ConstitutiveStatement keyref="ps1"/>
 <lrml:ConstitutiveStatement keyref="ps3"/>

</lrml:Statements>
7. Meta Data of the Norms

7.1 Sources and Isomorphism
7.2 Agent, Authority
7.3 Figure, Role
7.4 Jurisdiction

7.5 Time and Events
7.6 Context Associations
8. Examples
9. Related Work
LKIF
SVBR

Consumer RuleML 1.02 – intersection of Deliberative RuleML and Reaction RuleML.
10. Conclusion

xxxx
References

[1] Athan T., Boley H., Governatori G., Palmirani M., Paschke A., Wyner A.: OASIS LegalRuleML. In Bart Verheij, ed, Proceedings of 14th International Conference on Artificial Intelligence and Law (ICAIL 2013). ACM, 2013.
[2] http://plato.stanford.edu/entries/law-interpretivist/
[3] S. Lappin, editor. The Handbook of Contemporary Semantic Theory. Blackwell Publishers, 1997.
[4] F. de Saussure. Cours de Linguistique Générale. Payot, Lausanne and Paris, 1916.
[5] A. Scalia and B. A. Garner. Reading Law: The Interpretation of Legal Texts. West, 2012.

�	 The syntax presented here is based on Defeasible Logic, see Nute [1994], Antoniou et al. [2001].

�	 Gordon et al. [2009] identify more types of norms/rules. However, most of them can be reduced to the two types described here insofar as the distinction is not on structure of the rules but it depends on the meaning of the content (specific effect) of the rules, while keeping the same logical format.

[image: image5.png]R1 R2 R3

[image: image6.png]

[image: image7.png]

