Bug #93 – Confusion problems with references (ID and IDREF)
Submitted on behalf of Shane Durham via OASIS Electronic Court Filing Technical Committee:

ID and IDREF

For every complex dataItem defined in the JXDD, the JXDD has defined that the dataItem can be assigned an ID, so that references to that dataItem content can ALSO be expressed in the same XML message.

This technique allows XML assemblers to eliminate redundant XML data from their messages and to more accurately reflect data relationships. (For example, by using references, I can explicitly express that two or more items are related the exact SAME parent item.)

I am pleased to see this important ID/IDREF technique has been implemented in the JXDD. I am a big advocate of the use of IDREFs to eliminate the redundant (and often inconsistent) expression of the same data within a single XML message.

An example of its use:

If I were to query for a list of fully-populated cases in which ‘John Doe’ is a participant, the JXDD would support the use of IDREFs to eliminate the repetition of the ‘John Doe’ actor for every case in the queryResponse.

Example:

Case 1

Particpant name=“John Doe” ID=’12’

Case 2

Participant IDREF=’12’

Case 3

Particpant IDREF=’12’

Without the use of IDREFs, the same message would look something like this:

Case 1

Particpant name=“John Doe”

Case 2

Particpant name=“John Doe”

Case 3

Particpant name=“John Doe”

The consumer would be left to guess as to whether or not those three ‘John Does’ are the same person or not.

For XML messages, IDREFS are a good thing!

Where I think the JXDD could be improved is to further distinguish between when an element is the explicit definition of a data item, and when it is intended to be a reference.

In the current schema, many dataItems, such as ‘Person’, can be assigned an ID or an IDREF. The element simultaneously supports BOTH.

It is my suggestion that an JXDD dataItem not be defined for simultaneous use as BOTH an ID or as an IDREF. I think, the schema and our intent would be much clearer, if a single XMLElement is defined for use as an ID or defined for use as an IDREF.. but NOT as BOTH.

So, for example…

Instead of ‘CaseType’ being defined to include both an ‘ID’ and an ‘IDREF’ attributes…

I suggest that the JXDD define a ‘CaseType’ which has an ‘ID’ attribute, plus all of the other ‘Case’-related values. This element would NOT be defined to include an IDREF attribute.

Then, the JXDD would also define as a separate dataType, a ‘CaseRefType’, which contains nothing other than an IDREF attribute.

To illustrate the differences:

In the current JXDD, a list of cases might look like this:

(No problem)

Case id=1

Participants

RegisterOfActions

Case id=2

Participants

RegisterOfActions

RelatedCaseList

Case IDREF=’1’

Case id=3

Participants

RegisterOfActions

RelatedCaseList

Case IDREF=’2’

However, in the current JXDD, a list of cases might ALSO look like this:

(Issue: The example is meant to highlight a very confusing set of data. Note how the content of case 1 and case 2 are redundantly repeated throughout the message and, their content is inconsistent.)

Case id=1

Participants

RegisterOfActions

Case id=2

Participants

RegisterOfActions

RelatedCaseList

Case IDREF=’1’

(no participants)

RegisterOfActions

Case id=3

Participants

RegisterOfActions

RelatedCaseList

Case IDREF=’2’

Participants

RegisterOfActions

(no related case list)

The proposed enhancement would help to assure that the resulting data looks like this:

(Solution: The proposed enhancement would forbid CaseRef types from containing any case data).

Case id=”1”

Participants

RegisterOfActions

Case id=2

Participants

RegisterOfActions

RelatedCaseList

CaseRef IDREF=’1’.

Case id=3

Participants

RegisterOfActions

RelatedCaseList

CaseRef IDREF=’1’.

CaseRef IDREF=’2’

Or, heck, it could even look like this!

(Just demonstrating that an ID and IDREF are synonymous with the same explcit data, wherever it resides in the message.)

CaseRef IDREF=’1’.

CaseRef IDREF=’2’

Case id=3

Participants

RegisterOfActions

RelatedCaseList

Case id=”1”

Participants

RegisterOfActions

Case id=2

Participants

RegisterOfActions

RelatedCaseList

The point is, the redundant data is more likely to be eliminated in the proposed enhancement than is currently defined in the JXDD.

All I am really advocating here is that the JXDD make a clear distinction between a dataItem, and a dataItem reference, which, I believe will make XML assembly and consumption even better.
