

A Prototype for XML-based

E-Filing of Criminal Complaints
Using the JXDD 3.0, ebXML Messaging Handling Service 2.0, and a customized
LegalXML Court Filing 1.1 based schema to implement a prototype e-filing delivery
system for criminal complaint documents.

October, 2003
A report on research sponsored by the Los Angeles County Information Systems
Advisory Body and conducted by Sierra Systems.

http://wwwsierrasystems.com

Introduction... 4

Reference XML Standards for Project Development ... 4

Our Approach to Mapping Criminal Complaints and Juvenile Petitions to XML 6

Definitions... 6

What did we do (and why)? .. 6

Specific Modifications .. 9

Problems Encountered and Recommendations... 11

Conclusions... 11

Prototype Implementation... 12

What were the functional requirements for the prototype? 12

What ebXML compliant products were considered?.. 13

What product did we choose and why? .. 14

Prototype Architecture .. 15

The Prototype in Action.. 19

Lessons Learned.. 19

Performance Testing the Prototype... 20

Results... 23

Final Notes .. 24

Summary ... 24

Credits ... 25

Appendix A - Resources ... 26

Appendix B - Sample XML Filing Response ... 27

Appendix C - Sample XML Filing (Felony Complaint w/o Attachments) 28

Appendix D - LA County Sample Felony Complaint (BLOB) 33

2

3

Introduction
The Los Angeles County Information Systems Advisory Body (ISAB) sponsored the
development of a secured delivery method for filing prosecution documents, specifically
the criminal complaint, with the County of Los Angeles Superior Court. Currently, the
LA County District Attorney Office performs e-filing of case management data from the
Prosecutor Information Management System (PIMS) but hand carries the complaint
document for the court clerk to file. This pilot project will enhance the e-filing process to
include the complaint document and PIMS case filing data in a single e-filing process
utilizing evolving Justice XML standards and an existing secured message delivery
standard. The message delivery standard is referred to as Message Handling Services for
Electronic Business XML (MSH v2.x for ebXML).

The efforts of this project were divided between two goals: to create a prototype set of
XML-mapped criminal filings that rely on the Justice XML Data Dictionary (JXDD) and
take structural cues from the LegalXML Court Filing 1.1 (CF1.1) standard, and to
implement a prototype e-filing delivery system using the ebXML Messaging Handling
Services.

By moving XML complaint filings through a prototype delivery system, we aimed to
assess the strengths and weaknesses of ebXML as a delivery mechanism, and to find
missing or misplaced components of the JXDD and CF1.1 that affect the handling of
complaint filings. From this process we derived recommendations regarding each of the
technologies and standards used.

Reference XML Standards for Project Development

LegalXML Court Filing 1.1
LegalXML is a member section of the non-profit OASIS consortium that “brings legal
and technical experts together to create standards for the electronic exchange of legal
data.1” Court Filing 1.1 is an early-proposed standard from the LegalXML technical
committee on court filing.

Court Filing provides a single DTD for validating XML formatted court filings. The
DTD includes document structure for filings, responses to filings, queries, and responses
to queries; as well an XML vocabulary for court related subjects. The CF1.1 proposed
standard also specifies a high-level architecture and XML protocols for sending and
receiving court filing documents.

JXDD 3.0
A subset of the Justice XML Project, the JXDD provides “An object-oriented data model,
database, and XML schema specification (generated from the database) that represent the

1 http://www.legalxml.org/about/index.shtml

4

http://www.legalxml.org/about/index.shtml

semantics and structure of common data elements and types required to exchange
information consistently within the justice and public safety communities.2”

The JXDD is currently dependant on approximately 20 external schemas, and internally
describes approximately 2,000 components relating directly to justice and public safety.
The JXDD is defined using XML schema, a newer standard that provides for more
flexibility than DTD, which Court Filing 1.1 uses.

ebXML Messaging Service 2.0
“ebXML (Electronic Business using eXtensible Markup Language), sponsored by
UN/CEFACT and OASIS, is a modular suite of specifications that enables enterprises of
any size and in any geographical location to conduct business over the Internet.3” The
ebXML Message Specification 2.0 (ebMS) defines a protocol for businesses to
communicate transaction information using XML over the Internet. A number of
companies provide ebMS software that function as “Message Service Handlers.” These
MSH packages generally provide installable software that enable computers to send and
receive ebMS messages securely and reliably.

2 http://it.ojp.gov/jxdd/faq.html, http://justicexml.gtri.gatech.edu/

3 http://www.ebxml.org/geninfo.htm

5

http://it.ojp.gov/jxdd/faq.html
http://justicexml.gtri.gatech.edu/
http://www.ebxml.org/geninfo.htm

Our Approach to Mapping Criminal Complaints and Juvenile
Petitions to XML

Definitions
The following definitions apply within this section:

• CF1.1 refers to the Court Filing 1.1 standard prior to our customization

• cf11:elementName refers to an element in the Court Filing 1.1 schema namespace

• jxdd: elementName refers to an element in the JXDD 3.0 schema namespace

• ebms:elementName refers to an element in the ebXML Messaging Service 2.0
namespace.

What did we do (and why)?
The court-filing prototype examined new possibilities for the creation and filing of
criminal complaints that would best leverage emergent standards and technologies, as
well as solve domain specific problems.

A set of LA County District Attorney complaint filings (1 juvenile petition and 1 criminal
complaint) were mapped, using a customized schema that borrows from the CF1.1 DTD
but uses JXDD 3.0 data elements and defers messaging elements to the ebXML
messaging infrastructure. In doing so, we first ran an automated conversion of the CF1.1
DTD to an XML schema (using Trang4) in order to make it easier to integrate with the
large number of schemas linked into the JXDD. We then customized the CF1.1 schema
using the following guidelines:

1. For our purposes, ebXML provides a wire (transmission) protocol.

2. For our purposes, CF1.1 provides a document management framework.

3. For our purposes, the JXDD provides consistently defined data description
elements within the justice domain.

4. We replaced CF1.1 elements with JXDD wherever the ONLY function of the
CF1.1 is to describe data.

5. We use CF1.1 elements when they provided document(s) with cardinal structure.

6. We use CF1.1 elements when they provided document version information.

7. We retained the ebXML messaging software without modification.

4 http://www.thaiopensource.com/relaxng/trang.html

6

http://www.thaiopensource.com/relaxng/trang.html

8. We retained the CF1.1 legalEnvelope element as the root XML element for
assembling our filings.

9. The actual court documents were included as “blobs”5 within the Court Filing
XML document

In general, modifications to the Court Filing 1.1 schema were restricted to areas relating
to filing and filing confirmation. Our prototype system doesn’t currently support
concepts of query and response and those elements remain unchanged. Other non-
compliant related elements of CF1.1 were also considered beyond the scope of this
exercise.

The following sections describe significant issues discovered in creating the custom
CF1.1 based schema.

Cardinality and the JXDD
One significant issue in our work has been at what depth in our CF1.1 based schema to
incorporate JXDD elements. Primarily, our concern is with min/max occurrence within
the custom CF1.1 schema. Being a dictionary only, the JXDD has no rules on
cardinality, so any JXDD element introduced into our CF1.1 based schema makes it
possible to introduce an “empty” element where the CF1.1 based schema would have
required a minimal or maximal number of occurrences of a particular element.

We generally choose to retain CF1.1 elements in any case where the element in question
provides a clear function in structuring the filing document. For example, we retain the
CF1.1 elements for filingInformation and legalEnvelope because they enforce the
minimally necessary items that should be included in a proper filing.

Senders and Addressees
CF1.1 contains its own mechanism for routing messages to recipients and providing
recipients with a channel to respond to those messages. ebXML implements sender and
recipient information by placing references in the ebXML envelope that provide enough
information to deliver messages to a precise address, but also may be linked to more
comprehensive information about the parties involved in the transaction in a separate
ebXML document called a Collaboration Protocol Profile (CPP6). We chose to use
ebXML for these functions as opposed to the CF1.1 legal envelope elements. Our
prototype has removed the cf11:to, cf11:from, cf11:cc, and cf11:bcc elements from the
cf11:legalEnvelope.

5 Binary Large OBjects.

6 The CPP is part of the Registry and Repository service in ebXML that we did not implement for our
prototype.

7

Actors
A cf11:actor may have a “role” that establishes a relationship between one cf11:actor
and either another cf11:actor or a cf11:matter. The JXDD supports an idea of roles,
however it establishes them quite differently. The JXDD uses an object-based model- so
that there may be sub-classes of jxdd:PersonType or jxdd:ActorType whose roles are
implied by their name, e.g. jxdd:CaseDefendantActor or jxdd:CaseDefenseAttorney. In
the case of jxdd:CaseOfficialType elements, a jxdd:CaseOfficialRoleText element is
provided that is similar to the cf11:role element.

The difference between cf11:actor and jxdd:Actor presented a number of alternatives for
this project.

1.) We could retain cf11:actor as it exists (DTD shown7):

<!ELEMENT actor (title?, name?, postalAddress*, telephone*,
email*, group*, personDescription*,
designation*, role*, characteristic*)>

2.) We could retain the cf11:actor element, but replace elements within cf11:actor
with their JXDD counterparts:

<!ELEMENT actor (JXDD:PersonPrefixName8? JXDD:PersonName?,
JXDD:Location*, JXDD:ContactInformation*...>

3.) We could replace cf11:actor entirely with jxdd:Actor (or- more appropriate to our
scenario, we could replace them with jxdd:CaseParticipants):

<!ELEMENT filingInformation (specialHandling?,...actor*...)>

becomes:

<!ELEMENT filingInformation (specialHandling?,...
JXDD:CaseParticipants...)>

In the end we chose option 3, to replace lists of cf11:actors with jxdd:CaseParticipants,
an element that holds an arbitrary number of jxdd:Actor elements and elements that
extend from the jxdd:Actor such as jxdd:CaseDefendantActor and
jxdd:CaseInitiatingActor. jxdd:Actor is significantly more expansive as a data type than
cf11:actor. More importantly, moving to the JXDD model provides the ability to

7 We have chosen to use DTD in our examples so that users can easily find refer to the original Court Filing
1.1 specification. Also, the DTD code snippets are exceptional more compact than the equivalent XML
Schema.

8 This is not true DTD, as DTD does not support multiple namespaces. Assume that, in our custom
schema, elements prefixed by “jxdd:” refer to JXDD elements while non-prefixed elements refer to Court
Filing 1.1 elements.

8

guarantee normalized comparison between other JXDD entities. The downside to this is
that we lost the ability to use cf11:roles in some cases.

Dispositions
CF1.1 provides a mechanism for describing the disposition of cases, documents, and
supporting documents. JXDD has similar elements. The fundamental difference
between the two specifications is that the disposition elements within the CF1.1 spec
provide strict controls over the options that a disposition may carry. For instance, a
cf11:filingDisposition may ONLY carry the value of acknowledged or
transmissionError. JXDD disposition elements on the other-hand simply provide a string
value representing whatever the user desires. We have chosen to leave all of the CF1.1
disposition elements as is because the specified disposition responses relate directly to
our domain specific needs.

Specific Modifications
The following specific modifications were made to our custom CF1.1 based schema. For
simplicity, examples shown are DTD9 code, not the actual code from our custom schema.

cf11:to, cf11:from, cf11:cc, cf11:bcc,cf:replyTo, cf11:dataIntegrity,
cf11:authentication were removed from the cf11:legalEnvelope element because
ebXML provides these functions.

Before:

<!ELEMENT legalEnvelope (messageIdentification, to, from, cc?, bcc?,
replyTo?, memo*, creation, dataIntegrity?,
paymentInformation? authentication?, legal)>

After:

<!ELEMENT legalEnvelope (messageIdentification, memo*, creation,
paymentInformation? legal)>

9 This isn’t true DTD, as DTD doesn’t support multiple namespaces. Assume elements prefixed by “jxdd:”
refer to JXDD elements while non-prefixed elements refer to Court Filing 1.1 elements in our custom
schema.

9

cf11:filingInformation and cf11:confirmationInformation were revised to use
jxdd:Case. jxdd:Case internally includes jxdd:CaseParticipants, jxdd:Court, and
jxdd:CaseCourtEvent.

Before:

<!ELEMENT filingInformation (specialHandling?, paymentInformation*,
authentication*, courtInformation,
caseInformation, actor*, courtEvent*,
memo?)>

After:

<!ELEMENT filingInformation (specialHandling?, paymentInformation*,
jxdd:Court, jxdd:Case, memo?)>

cf11:documentInformation and cf11:attachmentDocumentInformation were revised to
use: jxdd:CaseParticipants, jxdd:Submission, and jxdd:Document in place of
cf11:actor, cf11:submitted, and cf11:documentDescription

Before:

<!ELEMENT documentInformation (actor+, submitted, documentDescription,
(administrativeLaw | appeals |
bankruptcy | civil | criminal |
domesticRelations | juvenile | probate |
smallClaims | traffic)?, matter*,
causeOfAction*)>

After:

<!ELEMENT documentInformation (jxdd:CaseParticipants, jxdd:Submission,
jxdd:Document, (administrativeLaw |
appeals | bankruptcy | civil | criminal
| domesticRelations | juvenile | probate
| smallClaims | traffic)?, matter*,
causeOfAction*)>

10

cf11:criminal and cf11:juvenile were modified to use jxdd:Actor, jxdd:Arrest,
jxdd:Booking, and jxdd:Offense.

Before:

<!ELEMENT criminal (identification, charge+, bail?, booking?, custody?,
incident*)>

After:

<!ELEMENT criminal (jxdd:CaseParticipants, jxdd:Charge+, jxdd:Arrest?,
jxdd:Booking?, jxdd:Offense*)>

Problems Encountered and Recommendations
We had a handful of unresolved issues in our mapping mostly within the JXDD.

• JXDD secondary relationships proved too cumbersome for our use.

• There is no way to specify the last school a person attended, only the highest
grade they attended using jxdd:PersonEducationLevelText.

Conclusions
Using the custom CF1.1 based schema with the modifications detailed above, we were
able to map both a felony complaint (see Appendix C) and a juvenile petition. We found
that our solution was generally successful, with the few exceptions of the elements
described in the preceding section.

11

Prototype Implementation

What were the functional requirements for the prototype?
ebXML was designed to solve a number of problems in ways that match e-filing business
needs. These include securing the identification of parties involved in the exchange of
documents, securing the content while in transit, and guaranteeing that documents are
delivered reliably. ebXML supports the development of low-cost and highly
interoperable software by implementing its Messaging Service protocol. ebXML also
specifies a number of collaboration protocol services that we did not currently require,
such as the registration of exchange capabilities and services within the ebXML registry.
Fortunately, ebXML is a modular set of specifications and no additional work was
required to exclusively use the ebXML messaging services functions.

Security
Our prototype system is designed to exchange sensitive information across the WAN or
Internet. It is crucial that senders and receivers are able to authenticate that they are who
they say they are, and that no one can read or modify documents that aren’t intended for
them. For our prototype we searched for an ebXML product that would enable us to use
SSL encrypted HTTPS connections with certificate based authentication.

Reliability
It is important for our prototype that documents are sent reliably- meaning that when a
connection is broken mid-transfer, both the sender and receiver are aware of that break
and how to properly deal with it.

Cost
As a prototype, we chose to make a minimal investment in software.

Platform considerations
Our prototype must be capable of running on a number of platforms- specifically,
HP/UX, Windows 2000, Windows XP, and possibly LINUX.

Why we didn’t utilize ebXML registry services?
ebXML provides a layer for “discovering” services. In practice, two court systems from
two different states could use such a service to find each other and learn how to
communicate documents between each other. ebXML’s Registry and Repository service
as well as UDDI10 also exist for this purpose. While either of these might add
functionality to our prototype, we have chosen to avoid using any kind of registry,
assuming that for our purposes criminal filing(s) will be between known sender and
receiver organizations.

10 Universal Description, Discovery, and Integration: http://www.uddi.org/

12

http://www.uddi.org/

What ebXML compliant products were considered?

Options
A fairly substantial number of ebXML MSH software packages are available, both in
commercial and open source formats. Of the existing options, we examined the
following three packages: CEBIT Hermes (available through FreebXML.org), Sybase’s
Open Source ebXML MSH, and Sun’s Secure Transaction Server 1.0. The first two of
these packages are available freely through open source licenses. The last is a
commercial product.

FreebXML - http://www.freebxml.org/msh.htm
Hermes is produced by the Center for E-Commerce Infrastructure Development at the
University of Hong Kong and distributed by the FreebXML initiative. CECID is a
member of the OASIS group that oversees XML projects, in particular ebXML.
FreebXML is a centralized site for developers to share and access “free” ebXML code
and applications. Hermes is provided under the Academic Free License11.

FreebXML

Strengths
Free
Has been implemented for similar scaled projects
Passed Drummond Asian interoperability testing
Supports QOS
Platform independent

Weakness
Requires developer to setup and optimize servlet container separately

11 http://www.opensource.org/licenses/academic.php

13

http://www.freebxml.org/msh.htm
http://www.opensource.org/licenses/academic.php

Sybase Open Source ebXML Messaging - http://www.sybase.com/developer/opensource
Sybase Open Source ebXML is provided via the Sybase Open Source License and
sourced from the software they provide commercially through their Web Integration
Services product.

Sybase Open Source ebXML Messaging

Strengths
Free
Passed Drummond group interoperability in March 2002
Based on Sybase’s enterprise product for ebXML messaging
Can be implemented through both Servlets and J2EE

Weakness
Fair number of API dependencies (5-10), some of which are deprecated
Requires developer to setup and optimize servlet container separately

Sun ONE Secure Trading Agent 1.0 -
http://wwws.sun.com/software/products/integration_srvr_sta/
Sun is one of the principal forces behind ebXML. Secure Trading Agent is Sun’s
implementation of the MSH protocol and operates as part of the Sun ONE Integration
Server. STA installs and configures its own instance of Tomcat server.

Sun ONE Secure Trading Agent 1.0

Strengths
Easy to setup

Weakness
Not free (commercial release)
Only runs on Solaris and Windows

What product did we choose and why?
We chose to implement our prototype using CECID’s Hermes MSH v.9.3.1. The
following issues informed our decision:

1.) The software is licensed for free.

2.) It is open source. We needed to do a lot of API level work, and for a relatively
emergent product, to be able to look inside when things didn’t work as advertised
was a benefit.

3.) Hermes is written in JAVA, and comes with all of the benefits contained therein,
most importantly platform independence and ease of coding.

14

http://www.sybase.com/developer/opensource
http://wwws.sun.com/software/products/integration_srvr_sta/

4.) Hermes has been recently implemented on similar projects.

Overall, Hermes has proven a good choice for us. Despite being a non-commercial
product, online support through members of the development team and the user
community is strong. Installation is easy enough (we now routinely install the software
from scratch in under 15 minutes) and reliability has been within our tolerance. The
product underwent a point upgrade while we were using it that corrected the few bugs we
were experiencing.

Prototype Architecture

CF1.1 specified “EFM”
Our prototype is based on the architecture specified by CF1.1. Under that specification,
three software components work together to complete filings. A user who wants to
submit a file utilizes an Electronic Filing Provider (EFP). This is essentially a “client.”
The EFP sends the file to an Electronic Filing Manger (EFM), the server software that
receives the file. The EFP in turn hands the successfully delivered filing to a Case
Management System (CMS). Within the scope of our prototype, we only focused on the
interaction of the EFP and the EFM. Our MSH, Hermes, provides a usable graphically
driven client application for sending files to any ebMS MSH that we utilize as an EFP.
Our only requirement therefore was to write software for the EFM.

The specific jobs of an EFM are to properly handle the secure receipt of filings and to
acknowledge/confirm receipt back to the sender, either manually or automatically.
ebXML as the messaging service provides secure and reliable messaging. Additionally,
the e-filing content must be validated before the EFM can “accept” or “reject” them. The
EFM prototype validates the XML against the custom CF1.1 schema. In a real world
implementation, we would also perform virus scanning before accepting the filing.
While we did not code automatic virus scanning capabilities into our prototype, we did
perform virus scanning performance tests of the complaint filings.

EFP (client) EFM (server) CMS (out of scope)

Internet/
intranet

Intranet/
file

system

• Wrap documents
in envelope

• Send files

• Show status or
errors http/

https

• Validate filing
payloads

• Unwrap filing
envelopes

• Virus check
payloads

• Respond with
filing status

• Manage
documents

Diagram – Components of our prototype architecture.

15

What EFP/EFM components we did not build
Hermes provides a graphical client for sending ebXML payloads using any MSH with
any number of ebMS functions enabled. This includes reliable messaging, digital
signatures, and duplicate message elimination. Because ebMS is a peer-to-peer system,
the sending client also has receiving functions. When our EFM returns “received”,
“accepted”, or “declined” messages, the Hermes client can display those XML response
messages along with any related documents that may be attached.

What the Hermes client does not provide is a means of constructing the custom CF1.1
compliant XML and content. Instead of creating software to perform this “wrapping”,
we created our filings manually, before submitting them as attachments to ebXML
messages. Additionally, ebXML MSH supports digital signature for the “payloads”
(BLOBS) which we did not prototype for this project.

ebXML Envelope

 ebXML Headers (sender/recipient/acknowledgment
information, digital signatures)

ebXML Payload 1

(holds one distinct case filing and all of its supporting
documents)

 Custom CF1.1 legalEnvelope

 Custom CF1.1 Filing Information
 (e.g. complaint metadata)

 MIME payload 1
 (supporting PDF, Word, XML, etc.)

 MIME payload 2
 (another supporting document)

.
.
.

 EbXML Payload 2 (separate, distinct case filing)

.

.

.

Diagram: how the ebXML envelope “wraps” around custom CF1.1 envelope and
payload docsuments.

16

What EFP/EFM components we did build
Our EFM utilizes Herme’s open API. Using it, we created software for receiving ebMS
messages, retrieving the custom CF1.1 filing within the ebXML messages, validating the
filing against the custom CF1.1 schema, and then automatically routing the filing into
either a “rejected” or “received” directory based the success or failure of the XML filing
schema validation. The two directories are accessible to end-users by simply browsing
through the file system. For the purpose of prototype auditing and testing, end-users can
review the “received” and “rejected” filings manually and then drag and drop the files
into a “received” directory, a “rejected” directory, or an “accepted” directory. The
appearance of any new files in the “accepted”, “rejected”, or “received” directories
triggers a file monitor program and causes a message to be automatically sent back to the
sender with a unique message ID to correlate the response to the original filing, and a
notice of the updated status of the filing. The “accepted” status is reserved for the second
stage of filing where a clerk may review the filing, or a CMS may automate the filing and
then a return status of “accepted”, “rejected” etc. would come from the CMS back to the
EFM and optionally back to the original filer depending on Court policy and agreements
between filers and the EFM.

EFP (workstation) EFM (Server)

Graphical
Interface EFM processor

WAN
or

LAN

ebXML messages

Hermes MSH

Hermes MSH

 https

Diagram: EFP and EFM

17

Prototype Design Details

Schema caching
Our initial concern regarding the JXDD is the length of time required to validate JXDD
compliant XML files. Knowing that we would have to validate every incoming message
we received, we adopted an efficient means for validation. Our prototype uses the Xerces
SAX parser. Xerces caches XML grammars as they load; resulting in decreased
validation times for some of our performance tests by as much as 75%.

Response generation
Court Filing 1.1 specifies domain specific message responses as well transmission
reliability responses, while ebXML only contains the latter. All CF1.1 messages contain
a messageIdentification element and a creation element, which together define a specific
message in a related series of messages. Recipient machines use these elements to
provide error notification as well as workflow status messages. Status messages such as
transmissionFailed, received, rejected, accepted, and deferred are all defined within the
CF1.1.

We rely on ebXML and its internal messageIDs for reliable messaging transmission
responses. Our review concluded that the message delivery responses of ebXML
provided a robust process for ensuring reliable message delivery (replacing
cf11:transmissionFailed,received) and we implemented a second layer of response
messages based on the CF1.1 messageIdentification and response codes to provide status
updates that need to be addressed by filers, EFMs and Court personnel
(cf11:rejected,accepted,deferred). A good example of the logical separation of delivery
statuses from filing content statuses would be using express mail to deliver a number of
court documents. The express mail envelope would likely have a tracking number for
locating the documents while in transit, but each document would contain a court specific
identifier for tracking it within the court system. Any response to a court document
would reference the court identification number, not the express mail identifier, as the
two processes are primarily independent. See appendix A for a sample response message.

Implications of design
Because our system is only a prototype, we did not produce it to be end-user oriented, nor
bulletproof in its handling of unexpected document types. Our simple goals were to
quickly produce a system that would enable a number of critical tests regarding the
usability of ebXML as a messaging protocol for our filing documents. While no work
was invested in providing a robust user interface or exceptional error handling of rare
error scenarios, this system does implement ebXML to the current specifications of its
security and reliable messaging capabilities. We can reasonably assume that our test
results would not be strongly affected by having a sophisticated user interface, and that in
a real-world scenario, a true EFP would act as a gatekeeper on the types of documents
that would be successfully transmitted to an EFM.

18

The Prototype in Action

Lessons Learned

Ease of installation
Hermes is installed as a set of JAVA servlets launched within any Sun servlet container.
For our installation, we chose to use the Apache Group’s Tomcat12 (v.4.1.27) servlet
container, which is Sun’s reference implementation of the servlet specification. The
Hermes installation provides a pre-built WAR archive that is simply copied into
Tomcat’s deployment directory, causing it to install itself and all third party libraries that
Hermes depends on.

After this, the installation became more difficult. Hermes depends on a number of setup
files that are very sensitive to network configuration. This is especially the case when
certificate security is used for SSL connections between senders and receivers. Hermes
validates the machines involved in exchanges by storing the fully qualified domain name
of each machine in its certificate. As a result, changing the name of a machine will
invalidate its certificate for use as a Hermes MSH. This also means that certificates
cannot be moved easily from one machine to another unless the target machine takes the
network place of the original machine. Despite these issues, once configured the setup
was consistently reliable.

Operation
We wrote a testing harness that composed and sent ebMS messages from one MSH to
another with any number of attachments and a user definable rate of repetition. The
harness was written using Hermes API. We can run the testing harness from any MSH to
any other MSH on our network. Moreover, we can run the testing harness concurrently
on multiple machines on our network to simulate real-world network loads.

Network Architecture
We have three machines networked for testing purposes. One HP-UX machine and two
Windows 2000 machines are placed on the WAN. The two W2K machines on the WAN
are within the same domain, while the HP-UX machine is located on a separate domain.
The diagram below shows the network.

12 http://jakarta.apache.org/tomcat

19

http://jakarta.apache.org/tomcat

HP/UX

Intranet

W2K Server

W2K Server

Diagram: Test machines network

Machine Specifications
Each of the W2K machines is a 300 MHz Pentium 2 workstation with ample memory on
the workstation performing the EFM role so that no page swapping occurs during the
testing (310 MB). The highest memory load observed during the testing was less than
200MB. The HP/UX machine is a server class machine with dual L2000 PA RISC
Processors, and ample memory so that no page swapping occurs during the testing.

Performance Testing the Prototype

Goals
Our stress testing including the following goals:

a.) Perform multiple concurrent filings with one payload file per filing over both the
Internet and the intranet, using HP/UX to windows and vice versa. Perform the
same test with 50 payload files per filing.

b.) LA County District Attorneys’ Office files 70,000 felonies and 400,000
misdemeanors per year. Therefore, we assessed our minimal performance
benchmark at 5 filings/minute (1 filing/20 seconds), assuming 265 workdays, at 6
hours a day and the aforementioned volume. We assumed a 300% peak time to
assess an upper target of 15 filings/minute (1 filing/4 seconds).

c.) Assume all files will need to be virus checked and validated against our custom
Court Filing schema

Procedure
For each test, we ran 25 sequential identical messages, with no pause between each send.
We measured:

• The average time it took to send each message

• The average time it took to unwrap the ebXML messages

20

• The average time it took to validate and unwrap the CF messages

• The average overall time it took to send/receive/unwrap/validate all messages

For each batch of test sends, a different complaint filing was attached as an ebMS MIME
attachment. Three batches were run consisting of:

1.) Our CF1.1 based filing envelope with a base 64 encoded copy of a PDF filing as
its payload

2.) Our CF1.1 based filing envelope with base 64 encoded copies of a PDF filing and
5 documents comprising a JXDD incident report13 as its payload.

3.) Our CF1.1 based filing envelope with base 64 encoded copies of a PDF filing and
50 documents comprising 10 JXDD incident reports as its payload.

Between batches, files were removed from the inbox of the receiving machine, its
database cleared, and Tomcat restarted.

The following tables enumerate our performance results.

13 The sample incident report, sponsored and developed by the Los Angeles County Sheriff’s Dept is
available here: http://it.ojp.gov/jsr/public/viewDetail.jsp?sub_id=189

21

http://it.ojp.gov/jsr/public/viewDetail.jsp?sub_id=189

Table 1: W2K to HP/UX across intranet- avg. ping: 11 ms
Payload Message

Size14
Send
(W2K)

Unwrap
(HP/UX)

Validate
(HP/UX)

Overall15

Felony Complaint PDF
 115 KB 4.23 sec .03 sec 2.87 sec 5.25 sec

Felony Complaint PDF
plus Incident Report16 297 KB 9.20 sec .08 sec 2.84 sec 9.08 sec

Felony Complaint PDF
plus 10 Incident Reports 1,943 KB 59.18 sec .74 sec 3.60 sec 52.20 sec

Table 2: HP/UX to W2K across intranet- avg. ping: 13 ms
Payload Message

Size
Send
(HP/UX)

Unwrap
(W2K)

Validate
(W2K)

Overall

Felony Complaint PDF
 115 KB 3.55 sec .06 sec 7.07 sec 9.54 sec

Felony Complaint PDF
plus Incident Report 297 KB 8.83 sec .16 sec 7.08 sec 12.46 sec

Felony Complaint PDF
plus 10 Incident Reports 1,943 KB 55.71 sec 1.73 sec 7.81 sec 48.77 sec

Table 3: 2 W2K machines to HP/UX across intranet- avg. ping: 10ms
Payload Payload

Size
Send17
(W2K)

Unwrap
(HP/UX)

Validate
(HP/UX)

Overall

Felony Complaint PDF
 115 KB 4.19 sec .05 sec 2.41 sec 4.91 sec

Felony Complaint PDF
plus Incident Report 297 KB 9.9 sec .08 sec 2.50 sec 8.85 sec

Felony Complaint PDF
plus 10 Incident Reports 1,943 KB 60.73 sec .60 sec 2.83 sec 41.06 sec

14 “Payload Size” is the disk space required to store a CF1.1 based envelope with each payload embedded
within it as a separate base 64 encoded MIME attachment.

15 “Overall” is derived by taking a period of time from when the first file begins receipt to the time the last
file is validated and dividing that period by the total number of files sent.

16 Incident Report includes 5 individual files including the .xml file along with two sets of supporting .xsl,
and .xsd files

17 “Send” represents average time it took each W2K machine to send the complaint averaged together.

22

Virus scan performance
We placed 100 of our Felony Complaint XML documents into a single directory and ran
McAffee’s VirusScan on the directory. The contents of our test directory included 50
copies of our 115 KB filing with 1 PDF attachment, and 50 copies of our 297 KB filing
with 1 PDF attachment and 5 XML attachments comprising an incident report. We
configured VirusScan to scan all files as well as all compressed files. The results of this
scan showed an average scan time of .07 seconds per file.

Results
Examining the data, two factors appear as the strongest performance limiters- the rate at
which filings can be sent by the EFP, and the rate at which the EFM can validate them as
file size increases. As expected, validation appears to be dependent on hardware
capabilities, as the HP/UX server was able to validate faster than the W2K workstations.
We monitored memory and CPU consumption during the testing process, and memory
remained well under the machines available RAM at any given time while the CPU was
generally pegged at 100% on the W2K workstations.

Overall, we neared our upper target benchmark of processing 15 filings/minute with a
rate of 12 filings/minute when multiple senders filed to the HP/UX server (Table 3), the
most “real-world” resembling configuration. The EFM processes the 115KB filing nearly
twice as fast when two machines are simultaneously filing, so it is not clear that the
EFM’s processor is fully taxed nor that it could not process faster. Even using the
slowest configuration (Table 2), we achieved our minimum benchmark of 5
filings/minute.

23

Final Notes

Summary
Our goal was to build and examine a prototype system for the electronic filing of criminal
complaint documents using emerging technologies. To that end, we found that with
some modification, a system can be created that is capable of processing an
approximately real-world throughput of e-filings using ebXML and a filing schema based
on the Court Filing 1.1 specification and the JXDD 3.0.

While this prototype does show feasibility, it also details a number of points that we
would recommend be addressed in the CF1.1 and JXDD specifications.

Given the performance and stability of ebXML messaging, it seems that ebMS can be a
good foundation for any future complaint filing system as the specifications for
describing and encapsulating the filing information itself mature.

24

Credits

ISAB
Founded in 1982, the Los Angeles County Information Systems Advisory Body (ISAB)
is a chartered organization dedicated to the development of Criminal Justice Enterprise
technology standards and solutions in collaboration with the member agencies. The
parent organization, Countywide Criminal Justice Coordinating Committee (CCJCC),
provides executive sponsorship for ISAB technology initiatives. ISAB membership
includes the Sheriff, District Attorney, Chief Probation Officer, City Attorney, Coroner,
Board of Supervisors, Public Defender, Alternate Public Defender, Clerk of the Superior
Court and related criminal justice partners from the State and Federal level. Initiatives
include videoconferencing, justice integration middleware acquisition and support, justice
enterprise Electronic Document Management System suite (EDMS) and initiation of
numerous multi-agency integration projects.

LA County District Attorney Office
The District Attorney Office files approximately 70,000 felonies and 400,000
misdemeanors per year. This caseload includes providing numerous contract cities in LA
County with Prosecution services. The District Attorney Office has long been a
champion of technology initiatives to promote inter-agency exchange of criminal data.
The DA office fully supports e-filing initiatives and has provided technical and business
analysis support staff for development of the Justice XML criminal complaint.

Sierra Systems
Sierra Systems is a leading professional services firm specializing in providing
high-quality, cost-effective business information systems solutions. Since its
establishment in 1966, the Company has been delivering the benefits of information
technology to clients in both the private and public sectors. Sierra Systems has over 900
employees in locations throughout the United States and Canada:

• Calgary

• Dallas

• Edmonton

• Halifax

• Hartford

• Los Angeles

• Olympia

• Ottawa

• San Diego

• Seattle

• Toronto

• Vancouver

• Victoria

• Washington, DC

• Winnipeg

Sierra Systems’ mission is “to enhance the competitive position of our clients through the
implementation of information technology-based business solutions.”

25

Appendix A - Resources

GTRi – http://justicexml.gtri.gatech.edu

OASIS - http://www.oasis-open.org/home/index.php

EBXML - http://www.ebxml.org/

FreeBXML - http://www.freebxml.org/

LegalXML - http://www.legalxml.org/

26

http://justicexml.gtri.gatech.edu/
http://www.oasis-open.org/home/index.php
http://www.ebxml.org/
http://www.freebxml.org/
http://www.legalxml.org/

Appendix B - Sample XML Filing Response

<?xml version = "1.0" encoding = "UTF-8"?>

<!--
This is a sample response to the petition filing in Appendix C. It is an ACKNOWLEDGEMENT
of receipt accompanied with REJECTION of one of the received documents. It was generated
by hand, not by an Electronic Filing Manager.
-->

<legalEnvelope xmlns="http://www.legalXML.org/"
 xmlns:jdd="http://www.it.ojp.gov/jxdd/prerelease/3.0.0.1"
 xmlns:usps="http://www.it.ojp.gov/jxdd/prerelease/usps_states/1.0.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.legalXML.org/ courtfiling11_2002_07_22.xsd
 http://www.it.ojp.gov/jxdd/prerelease/3.0.0.1 jxdds_3.0.0.1.xsd
 http://www.it.ojp.gov/jxdd/prerelease/usps_states/1.0.0.0
 usps_states_1.0.0.0.xsd">

 <messageIdentification>TA001071-23288103</messageIdentification>
 <creation>
 <dateTime>
 <date>2003-09-09</date>
 <time>22:21:00Z</time>
 </dateTime>
 </creation>

 <legal>
 <courtFiling>
 <confirmation>
 <timeStamp>
 <dateTime>
 <date>2003-09-09</date>
 <time>22:21:00Z</time>
 </dateTime>
 </timeStamp>

 <confirmationInformation filingDisposition="acknowledged"
 refersTo="filing.1">

 <leadDocumentDisposition filingDisposition="rejected"
 refersTo="TA001071-23288103.pdf">
 <timeStamp>
 <dateTime>
 <date>2003-09-09</date>
 <time>22:21:00Z</time>
 </dateTime>
 </timeStamp>
 <courtDocumentReference>
 http://efm.domain.com/documentName
 </courtDocumentReference>
 </leadDocumentDisposition>
 </confirmationInformation>
 </confirmation>
 </courtFiling>
 </legal>
</legalEnvelope>

27

Appendix C - Sample XML Filing (Felony Complaint w/o
Attachments)

<?xml version = "1.0" encoding = "UTF-8"?>

<!--
Felony Complaint using hybrid CF1.1/JXDD schema
-->

<legalEnvelope xmlns="http://www.legalXML.org/"

xmlns:jdd="http://www.it.ojp.gov/jxdd/prerelease/3.0.0.1"
xmlns:usps="http://www.it.ojp.gov/jxdd/prerelease/usps_states/1.0.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.legalXML.org/ courtfiling11_2002_07_22.xsd
 http://www.it.ojp.gov/jxdd/prerelease/3.0.0.1 jxdds_3.0.0.1.xsd

http://www.it.ojp.gov/jxdd/prerelease/usps_states/1.0.0.0
usps_states_1.0.0.0.xsd">

 <messageIdentification>TA001071-23288103</messageIdentification>
 <creation>
 <dateTime>
 <!-- date this xml document was created -->
 <date>2003-09-09</date>
 <time>00:00:00Z</time>
 </dateTime>
 </creation>

 <legal>
 <courtFiling>
 <filing>
 <jdd:CaseParticipants>
 <!-- defendants, attorneys, etc. -->
 <jdd:CaseDefendantActor jdd:id="defendant.1">
 <jdd:Person>
 <jdd:PersonName>
 <jdd:PersonGivenName>
 Jose Diego
 </jdd:PersonGivenName>
 <jdd:PersonSurName>
 Garcia
 </jdd:PersonSurName>
 </jdd:PersonName>
 <jdd:PersonBirthDate>
 1969-11-13
 </jdd:PersonBirthDate>
 <!-- CII No. -->
 <jdd:PersonAssignedIDDetails>
 <jdd:PersonStateID>
 008565663
 </jdd:PersonStateID>
 <jdd:PersonOtherID jdd:IDTypeText="Defendant number">
 01
 </jdd:PersonOtherID>
 </jdd:PersonAssignedIDDetails>
 </jdd:Person>
 </jdd:CaseDefendantActor>

 <jdd:CaseInitiatingActor jdd:id="plaintiff.1">
 <jdd:Organization>
 <jdd:OrganizationName>
 The People of the State of California
 </jdd:OrganizationName>
 </jdd:Organization>
 </jdd:CaseInitiatingActor>

28

 <jdd:CaseOfficial jdd:id="da.1">
 <jdd:PersonName>
 <jdd:PersonGivenName>
 Steve
 </jdd:PersonGivenName>
 <jdd:PersonSurName>
 Cooley
 </jdd:PersonSurName>
 </jdd:PersonName>
 <jdd:CaseOfficialRoleText>
 District Attorney
 </jdd:CaseOfficialRoleText>
 </jdd:CaseOfficial>

 <jdd:CaseOfficial jdd:id="deputy.1">
 <jdd:PersonName>
 <jdd:PersonGivenName>
 Debbie
 </jdd:PersonGivenName>
 <jdd:PersonSurName>
 Barton
 </jdd:PersonSurName>
 </jdd:PersonName>
 <jdd:CaseOfficialRoleText>
 Deputy District Attorney
 </jdd:CaseOfficialRoleText>
 <jdd:CaseOfficialRoleText>
 Charge Filer
 </jdd:CaseOfficialRoleText>
 </jdd:CaseOfficial>

 </jdd:CaseParticipants>

 <filingInformation id="filing.1">
 <jdd:Case>
 <jdd:CaseTrackingID>
 TA001071
 </jdd:CaseTrackingID>
 <!-- da case number -->
 <jdd:CaseOtherID jdd:IDTypeText="DA case number">
 23288103
 </jdd:CaseOtherID>

 <jdd:CaseCourt jdd:id="court.1">
 <jdd:OrganizationAddress>
 <jdd:AddressCityName>
 Compton
 </jdd:AddressCityName>
 </jdd:OrganizationAddress>
 <jdd:CourtName>
 Superior Court of the State of California
 </jdd:CourtName>
 </jdd:CaseCourt>

 <!-- case events -->
 <jdd:CaseCourtEvent>
 <!-- Custody R'tn Date -->
 <jdd:CourtEventAppearance>
 <jdd:CourtAppearanceDate>
 2003-10-01
 </jdd:CourtAppearanceDate>
 </jdd:CourtEventAppearance>
 </jdd:CaseCourtEvent>

29

 <jdd:CaseParticipants>
 <jdd:CaseDefendantActor
 jdd:id="defendant.1.2"
 jdd:ref="defendant.1" />
 <jdd:CaseInitiatingActor
 jdd:id="plaintiff.1.1"
 jdd:ref="plaintiff.1" />
 <jdd:CaseOfficial
 jdd:id="da.1.2"
 jdd:ref="da.1" />
 <jdd:CaseOfficial
 jdd:id="deputy.1.1"
 jdd:ref="deputy.1" />
 </jdd:CaseParticipants>
 </jdd:Case>
 </filingInformation>
 <leadDocument id="TA001071-23288103">
 <documentInformation>
 <jdd:CaseParticipants>
 <!-- everyone involved, again -->
 <jdd:CaseDefendantActor
 jdd:id="defendant.1.3"
 jdd:ref="defendant.1" />
 <jdd:CaseInitiatingActor
 jdd:id="plaintiff.1.2"
 jdd:ref="plaintiff.1" />
 <jdd:CaseOfficial
 jdd:id="da.1.3"
 jdd:ref="da.1" />
 <jdd:CaseOfficial
 jdd:id="deputy.1.2"
 jdd:ref="deputy.1" />
 </jdd:CaseParticipants>
 <jdd:Submission>
 <!-- when the attached document was submitted -->
 <jdd:SubmissionSubmittedDate>
 2003-09-09
 </jdd:SubmissionSubmittedDate>
 </jdd:Submission>
 <jdd:Document>
 <jdd:DocumentDescriptiveMetadata>
 <jdd:DocumentTitleText>
 Felony Complaint
 </jdd:DocumentTitleText>
 <!-- Operator -->
 <jdd:DocumentCreator>
 <jdd:PersonTypeElement>
 <jdd:PersonName>
 <jdd:PersonNameInitialsText>
 GI
 </jdd:PersonNameInitialsText>
 </jdd:PersonName>
 </jdd:PersonTypeElement>
 </jdd:DocumentCreator>
 </jdd:DocumentDescriptiveMetadata>
 </jdd:Document>

30

 <criminal>
 <jdd:Actor
 jdd:id="defendant1.1"
 jdd:ref="defendant.1" />
 <jdd:Charge>
 <jdd:ChargeSequenceID>
 1
 </jdd:ChargeSequenceID>

 <jdd:ChargeDescriptionText>
 Willful, Deliberate, Premditated Murder
 </jdd:ChargeDescriptionText>

 <jdd:ChargeClassification>
 <jdd:ChargeSentenceRangeText>
 Life
 </jdd:ChargeSentenceRangeText>
 </jdd:ChargeClassification>

 <jdd:ChargeStatute>
 <jdd:StatuteCodeID>
 PC
 </jdd:StatuteCodeID>
 <jdd:StatuteCodeSectionID>
 187(a)
 </jdd:StatuteCodeSectionID>
 <jdd:StatuteLevelText>
 F
 </jdd:StatuteLevelText>
 </jdd:ChargeStatute>

 <jdd:ChargeSubject
 jdd:id="defendant1.4"
 jdd:ref="defendant.1" />
 </jdd:Charge>

 <jdd:Arrest>
 <jdd:ArrestOfficial>
 <jdd:PersonName>
 <jdd:PersonSurName>
 Hernandez
 </jdd:PersonSurName>
 <jdd:PersonNameInitialsText>
 J
 </jdd:PersonNameInitialsText>
 </jdd:PersonName>
 <jdd:EnforcementOfficialBadgeID>
 983234
 </jdd:EnforcementOfficialBadgeID>

 </jdd:ArrestOfficial>

31

 <jdd:ArrestAgency>
 <jdd:OrganizationName>
 Cal State Dominguez Hills
 </jdd:OrganizationName>
 </jdd:ArrestAgency>

 <jdd:ArrestBailRecommendationText>
 $500,000
 </jdd:ArrestBailRecommendationText>

 </jdd:Arrest>

 <jdd:Booking>
 <jdd:BookingAgencyRecordID>
 004816010
 </jdd:BookingAgencyRecordID>
 </jdd:Booking>

 <jdd:Offense>
 <jdd:ActivityDate>
 2003-07-07
 </jdd:ActivityDate>

 <jdd:IncidentVictim>
 <jdd:PersonName>
 <jdd:PersonGivenName>
 Devon
 </jdd:PersonGivenName>
 <jdd:PersonSurName>
 White
 </jdd:PersonSurName>
 </jdd:PersonName>
 </jdd:IncidentVictim>

 <jdd:IncidentLocation>
 <jdd:LocationName>
 County of Los Angeles
 </jdd:LocationName>
 </jdd:IncidentLocation>

 </jdd:Offense>
 </criminal>

 </documentInformation>
 <documentContent id="TA001071-23288103.pdf" mimeType="text/xml">
 ... base64 encoded attachment normally goes in here ...
 </documentContent>
 </leadDocument>
 </filing>
 </courtFiling>
 </legal>
</legalEnvelope>

32

Appendix D - LA County Sample Felony Complaint (BLOB)

33

	A Prototype for XML-based
	E-Filing of Criminal Complaints
	
	October, 2003

	Introduction
	Reference XML Standards for Project Development
	LegalXML Court Filing 1.1
	JXDD 3.0
	ebXML Messaging Service 2.0

	Our Approach to Mapping Criminal Complaints and Juvenile Petitions to XML
	Definitions
	What did we do (and why)?
	Cardinality and the JXDD
	Senders and Addressees
	Actors
	Dispositions

	Specific Modifications
	Problems Encountered and Recommendations
	Conclusions

	Prototype Implementation
	What were the functional requirements for the prototype?
	Security
	Reliability
	Cost
	Platform considerations
	Why we didn’t utilize ebXML registry services?

	What ebXML compliant products were considered?
	
	Options
	FreebXML - http://www.freebxml.org/msh.htm
	FreebXML
	Strengths
	Weakness

	Sybase Open Source ebXML Messaging - http://www.sybase.com/developer/opensource
	Sybase Open Source ebXML Messaging
	Strengths
	Weakness

	Sun ONE Secure Trading Agent 1.0 - http://wwws.sun.com/software/products/integration_srvr_sta/
	Sun ONE Secure Trading Agent 1.0
	Strengths
	Weakness

	What product did we choose and why?
	Prototype Architecture
	CF1.1 specified “EFM”
	Diagram – Components of our prototype architectur

	What EFP/EFM components we did not build
	Diagram: how the ebXML envelope “wraps” around cu

	What EFP/EFM components we did build
	Diagram: EFP and EFM

	Prototype Design Details
	Schema caching
	Response generation

	Implications of design

	The Prototype in Action
	Lessons Learned
	Ease of installation
	Operation
	Network Architecture
	Diagram: Test machines network

	Machine Specifications

	Performance Testing the Prototype
	Goals
	Procedure
	Virus scan performance

	Results

	Final Notes
	Summary
	Credits
	ISAB
	LA County District Attorney Office
	Sierra Systems

	Appendix A - Resources
	Appendix B - Sample XML Filing Response
	Appendix C - Sample XML Filing (Felony Complaint w/o Attachments)
	Appendix D - LA County Sample Felony Complaint (BLOB)

