Clause Model Solution Proposal – RDF Structure

Submitted by John McClure, Architect for the Data Consortium

Wednesday, July 09, 2003
Introduction

This proposal uses the W3C Resource Description Framework (RDF) as the basis for marking up the structure of LegalXML documents. The resulting markup is intended specifically to be processed by products compatible with the W3C Extensible Stylesheet Language (XSL) family of specifications – these are used to create a final, rendered legal contract thereafter signed digitally or cursively by parties to the contract.

The XSL specifications include (1) XSL Transformation (XSLT) which is used to transform an XML datastream, such as a LegalXML document, into normally a presentation XML datastream, such as XHTML, SVG, or XSL-FO; (2) XML Path Language (XPATH), an expression language used by XSLT to access or refer to parts of an XML document (XPath is also used by the XML Linking specification); and (3) XSL Formatting Objects (XSL-FO), an XML vocabulary for specifying formatting semantics.

Two objectives are key to LegalXML document markup, as far as its document structure is concerned: (a) provide to an XSL stylesheet the information necessary to “layout” the final document in the manner desired by its author; and (b) provide the mechanics so that XPATH expressions can easily hyperlink from citations as so very commonly found in legal documents to any content within another, or the same, document. This latter objective is related functionally to a capability widely expected of any standard for LegalXML documents: the inclusion of so-called boilerplate text within a legal document.

Why the Resource Description Framework? Beyond the obvious advantages that result from adopting W3C standards in general (chief of which is the coordination and interoperability W3C imposes on its specifications), there is at least one additional justification that is relevant to industry groups such as LegalXML. Because LegalXML is composed chiefly of attorneys – each one a “subject matter expert” in the law – there is little expertise to competently evaluate the pros and cons of competing technical proposals for standards concerned with the XML mark-up for legal documents that they author during the course of their practice. In other words, LegalXML as an organization best serves its own interests by adopting a framework for XML markup that has been developed by “subject matter experts” in the domain of XML markup. Because LegalXML has chartered itself as an organization that looks first towards W3C standards, and because the W3C has designated the Resource Description Framework (RDF) as the foundation for its own “architectural vision” for the web, then it is worthwhile that LegalXML consider RDF as an answer to its many questions about alternative markup schemes.

Significant computer science theory is embedded within the design of the Resource Description Framework. Essentially, RDF markup aims to provide a universal description language for and linking mechanism to every “resource” that is referenced across the web – surely this sounds like a common citation mechanism! In computer science terms, the RDF mandates that web resources have properties (eg, a Person’s name), and that resources are cross-related to other resources in an unambiguous manner (eg a Person isEmployedBy a Business). Should LegalXML adopt the RDF as its guide for the markup of legal documents, then LegalXML does not need to re-discover for itself many markup techniques already standardized by the RDF.

Legal RDF Documents

Every RDF document begins with an <rdf:RDF> element on which one normally places an xml namespace attribute which identifies the dictionary that could be referenced by software that processes the document.

<rdf:RDF xmlns=’http://www.legalxml.org/dictionary.rdf’>

<LegalDocument>

<rdf:type rdf:resource=’#PublicNotice’/>

<rdf:type rdf:resource=’#UnilateralContract’/>

<contains>

<Block>

<text>Reward Offered!</text>

</Block>

</contains>

</LegalDocument>

</rdf:RDF>

The English translation of this markup is: “this is an RDF datastream that contains a Legal Document. The legal document is not only a Public Notice, but it’s a Unilateral Contract! The document contains a single block of text, which is ‘Reward Offered!’.”

Several items – beyond its ease of reading – are worth noting.

(1) A definite pattern of elements: <UpperCaseElement>s alternate with <lowerCaseElement>s.

(2) The dictionary is named at the highest level, and it is a LegalXML dictionary.

(3) A “type” of a thing is indicated using a standard RDF element, <rdf:type>

Of course, there may be multiple “blocks” of text in the document. RDF provides a standard element for 3 types of lists: unordered lists (called a <Bag>), ordered lists (called a <Seq>), and lists of alternatives (called an <Alt>). As for HTML, items within a list are identified with .

<LegalDocument>

<contains>

<rdf:Seq>

<rdf:li>

<Block>

<text>Reward Offered!</text>

</Block>

</rdf:li>

<rdf:li>

<Block>

<text>Capture This Man and Receive $1000.00.</text>

</Block>

</rdf:li>

</rdf:Seq>

</contains>

</LegalDocument>

RDF provides the capability to specify a Universal Resource Identifier (URI) to any resource in a datastream, using the standard rdf:ID attribute. (All resources are easily identified because they follow the <UpperCaseElement> naming convention). In the following example, an identifier is provided for the document as a whole, and the entire text section of the Public Notice is included by reference.

<LegalDocument rdf:ID=’http://www.dot.gov/Notice1234.rdf’>

<contains rdf:resource=’http://www.dot.gov/Notice1234Text.rdf’/>

</LegalDocument>

Whenever there is a reference to a resource internal to a file (sic), then the identifier includes just a fragment identifier which is introduced by a “#’.

<LegalDocument rdf:ID=’http://www.dot.gov/Notice1234.rdf’>

<contains rdf:resource=’http://www.dot.gov/Notices.rdf#Notice1234’/>

</LegalDocument>

<!-- the referenced file (http://www.dot.gov/Notices.rdf) may look like: -->

<rdf:RDF xmlns=’&dictionary;’>

<Block rdf:ID=’Notice1234’>

<text>Reward Offered!</text>

</Block>

</rdf:RDF>

Let’s give the Block a Caption now. A Block does not “contain” its Caption – to do so would introduce presentation semantics into the Block’s data structure. Instead, we place a Block’s Caption outside the <Block> to which it applies, using its for attribute to identify the captioned block, exactly as done by the HTML <label> element. Note that the value of the for attribute uses the fragment identifier (‘#’) to reference a resource that is defined elsewhere in the same file (sic). In the example below, the markup is shown radically shortened: RDF’s abbreviated syntax form is used which allows a <lowerCaseElement> to be stated as an attribute on the element for which it is a property.

<Caption for=’#Notice1234’ text=’Wanted Dead or Alive!’/>

<Block rdf:ID=’Notice1234’ text=’Reward Offered!’/>

Note also that a Block does not “contain” any sort of number – to do so introduces presentation semantics into its data structure. The number is instead generated at the time the LegalXML document is transformed into a final presentation document.

However, a block of content in a a document certainly could contain captions for sub-blocks of content within it. The convention for including captions within a Block is to place these within an <rdf:Bag> element, separed from the <rdf:Seq> element that is used to indicate the structure of a Block. (Note: this puposefully looks like a table of contents for the block.)

<Block>

<contains>

<rdf:Bag>

<rdf:li><Caption for=’#Notice1234’ text=’Wanted Dead or Alive!’/></rdf:li>

</rdf:Bag>

<rdf:Seq>

<rdf:li><Block rdf:ID=’Notice1234’ text=’Reward Offered!’/></rdf:li>

</rdf:Seq>

</contains>

</Block>

Now it can clearly be seen that a Block contains sequences of captions and sub-blocks of text. In order to communicate the formatting to be applied to a block, one easily uses the <rdf:type> element.

<Block rdf:ID=’Notice1234’ text=’Reward Offered!’>

<rdf:type rdf:resource=’&dictionary;#Paragraph’/>

<text>Here’s a document block that is to look like a paragraph.</text>

</Block>

It should not be difficult to develop a list of names for the various types of formatting semantics that are to be applied to Blocks within a LegalDocument. Candidates may include:

1. Paragraph – format as a paragraph. If a <Caption> exists for the Block, then format the caption’s text as introductory text for the paragraph, i.e., as a element. (make this the default?)

2. NumberedParagraph – format as a Paragraph, however number it with respect to other paragraphs within the parent Block element.

3. ShortNumberedParagraph – format as a NumberedParagraph, however do not fully qualify the number with that assigned to the first ancestor NumberedParagraph element.

4. TitledParagraph – format as a paragraph. If a <Caption> exists for the Block, then format the caption’s text on a header line to the block’s text.

5. IndentedParagraph – format as a paragraph, however indent the paragraph’s content.

6. IndentedFirstLine – format as a Paragraph, however indent the first line.

7. EmphasizedBlock – format the entire block in a legally-acceptable emphatic manner.

8. and so on.

These types can be easily combined to yield a particular result desired by the document author.

<Block rdf:ID=’Notice1234’ text=’Reward Offered!’>

<rdf:type rdf:resource=’&dictionary;#TitledParagraph’/>

<rdf:type rdf:resource=’&dictionary;#NumberedParagraph/>

<rdf:type rdf:resource=’&dictionary;#IndentedParagraph’/>

<text>Here’s a paragraph that is numbered, titled, and indented.</text>

</Block>

Lists are accommodated by native RDF elements <rdf:Seq>, <rdf:Bag>, and <rdf:Alt>. In order to exchange desired formatting information for a list, we can “type” it as described above for a Block within the document.

<rdf:Seq>

<rdf:type rdf:resource=’&dictionary;#NumberedList’/>

<rdf:li>item 1

<rdf:li>item 2

</rdf:Seq>

We can also provide a reference to a dingbat that is to be used for BulletLists.

<rdf:Seq>

<rdf:type rdf:resource=’&dictionary;#BulletList’/>

<using rdf:resource=’http://www.dot.com/MySpecialDagger.jpg’/>

<rdf:li>item 1

<rdf:li>item 2

</rdf:Seq>

A list of ‘standard’ types of lists – defined within the LegalXML dictionary – might include:

1. InlineList – format as an inline list. The default formatting is a block list.

2. NumberedList – precede each list item with its sequence number.

3. LetteredList – precede each list item with an alphabetic character for its number.

4. BulletList – precede each list item with a bullet. The “using” child element (or attribute) identifies the image to use.

5. RomanNumeralList – format list numbers using the Roman Numeral system.

6. LowerCasedSequenceList – format list item letters in lower-case.

7. ParenthesizedSequenceList – format list item letters or numbers with surrounding parentheses. The “inserting” child element (or attribute) identifies the characters to use.

8. CommaSeparatedList – format each but the last listitem with a trailing comma

9. SemicolonSeparatedList – format each but the last listitem with a trailing semicolon

10. AndFinallyList – append an “and” to the penultimate listitem

11. and so on.

Interestingly, the list immediately above – having in effect titled each list item, do not seem amenable to the RDF structures presented so far. Paired listitems are used to accomplish this task.

<rdf:Seq>

<rdf:type rdf:resource=’&dictionary;#NumberedList’/>

<rdf:type rdf:resource=’&dictionary;#PairsList’/>

<inserting><Character><text>—</text></Character></inserting>

<rdf:li> AndFinallyList

<rdf:li> append an “and” to the penultimate listitem

</rdf:Seq>

One other variation of a list must be considered: the HTML <dl> element. Because those lists contain items that are normally to be hyperlinked to from elsewhere in the document, <rdf:li> elements (which are not resources, and hence cannot have an rdf:ID) are inadequate. Therefore:

<Block>

<rdf:type rdf:resource=’&dictionary;#Glossary’>

<contains>

<rdf:Bag>

<rdf:li><Caption rdf:ID=’Gloss123’ for=’#Defn123’ text=’Occupant’/></rdf:li>

</rdf:Bag>

<rdf:Seq>

<rdf:li><Block rdf:ID=’Defn123’ text=’An occupant is…’/></rdf:li>

</rdf:Bag>

</contains>

</Block>

Lastly, the relationship between document structure and the table of contents entries is addressed. These points are first made: (1) each item that is indexable is to be so identified (2) the depth of a table of contents is generally independent of the nesting depth of blocks within the document (3) the numbering of captions in the table of contents conceivably may vary from that generated for the captioned blocks within the document.

<Block>

<rdf:type rdf:resource=’&dictionary;#TableOfContents’>

<contains>

<rdf:Seq>

<rdf:li><Block contains=’#Caption1234/></rdf:li>

</rdf:Bag>

</contains>

</Block>

. . .

<Caption rdf:ID=’#Caption1234’ for=’#Block1234’ text=’Warranties’/>

. . .

<Block rdf:ID=’Block1234’>

<rdf:type rdf:resource=’&dictionary;#IndexableBlock>

<text>The Seller warrants that all goods …</text>

</Block>

Fit to Requirements

	Summary of Requirement
	Fit

	1. markup the core structures found in documents like Attachment 1.
	Meets – see appendix

	2. represent the structured hierarchy of the content
	Meets – see appendix

	3. represent the benchmark contracts
	Meets*

* The TC’s collection of benchmark contracts needs to be completed and cleaned up.

	4. define clause objects .. as self contained objects
	Meets

	5. self contained markup of content so that [you can display the] text file to determine the terms of the contract
	Meets – see DTD/XML Verbose Version.

	6. must not use the following terms in element markup
	Meets

	7. permit the markup of contract terms without inclusion of any legal semantic markup or annotation
	Meets

	8. as simple as practicable to facilitate user training, support and application development
	User training/support: Meets

	9.
	Application development: Meets

	10. re-use content in different levels of the hierarchy, without having to change the names of the elements
	Meets

	11. allow clauses or other content to be incorporated into a document by reference
	Meets

	12. Once specific requirements for these features are determined....
	[Deferred until requirements fully developed]

DTD and XML

<?xml version='1.0' encoding='UTF-8'?>

<!--===-->

<!--History: -->

<!-- JMC 2003-07-09: Revised File - replaced

 enumerations with typed rdf:Seq -->

<!-- ==-->

<!DOCTYPE rdf:RDF [

 <!ENTITY dictionary

 "http://www.legalxml.org/dictionary.rdf'>

 <!ELEMENT rdf:RDF (Block | Caption |

 rdf:Seq | rdf:Bag | rdf:Alt)*>

 <!ATTLIST rdf:RDF

 xmlns CDATA #IMPLIED

 xmlns:rdf

 "http://www.w3.org/1999/02/22-rdf-syntax-ns"

 >

 <!ELEMENT rdf:type EMPTY>

 <!ATTLIST rdf:type

 rdf:resource CDATA #IMPLIED

 >

 <!ELEMENT rdf:Bag (rdf:li+)>

 <!ATTLIST rdf:Bag

 rdf:ID CDATA #IMPLIED

 rdf:type CDATA #IMPLIED

 >

 <!ELEMENT rdf:Seq (rdf:li+)>

 <!ATTLIST rdf:Seq

 rdf:ID CDATA #IMPLIED

 rdf:type CDATA #IMPLIED

 using CDATA #IMPLIED

 >

 <!ELEMENT rdf:Alt (rdf:li+)>

 <!ATTLIST rdf:Alt

 rdf:ID CDATA #IMPLIED

 rdf:type CDATA #IMPLIED

 using CDATA #IMPLIED

 >

 <!ELEMENT rdf:li (Block | Caption | #PCDATA)?>

 <!ATTLIST rdf:li

 rdf:resource CDATA #IMPLIED

 >

 <!ELEMENT Block (contains?,text?)>

 <!ATTLIST Block

 rdf:ID CDATA #REQUIRED

 rdf:type CDATA #IMPLIED

 contains CDATA #IMPLIED

 text CDATA #IMPLIED

 >

 <!ELEMENT Caption (text)>

 <!ATTLIST Caption

 rdf:ID CDATA #REQUIRED

 for CDATA #REQUIRED

 text CDATA #IMPLIED

 >

 <!ELEMENT contains (rdf:Alt| rdf:Bag|rdf:Seq|

 Block|Caption)>

 <!ATTLIST contains

 rdf:resource CDATA #IMPLIED

 >

 <!ELEMENT using (rdf:Alt?)>

 <!ATTLIST using

 rdf:resource CDATA #IMPLIED

 >

 <!ELEMENT text (#PCDATA)>

]>

<rdf:RDF xmlns='&dictionary;'>

<Block rdf:ID='DCSubmission'>

 <contains>

 <!-- ******************** -->

 <!-- block's unsorted toc -->

 <!-- ******************** -->

 <rdf:Bag>

 <rdf:li>

 <Caption for='#Block1'/>

 <text>Provisions about the specification of colours in contracts</text>

 </Caption >

 </rdf:li>

 <rdf:li>

 <Caption for='#Block2'>

 <text>Colour profiles</text>

 </Caption>

 </rdf:li>

 </rdf:Bag>

 <!-- ********************** -->

 <!-- block's sorted content -->

 <!-- ********************** -->

 <rdf:Seq>

 <rdf:li>

 <Block rdf:ID='Block1'>

 <rdf:type rdf:resource='&dictionary;#NumberedParagraph'/>

 <contains>

 <!-- ******************** -->

 <!-- block's unsorted toc -->

 <!-- ******************** -->

 <rdf:Bag>

 <rdf:li>

 <Caption for='#Block11'>

 <text>Spectrum colours</text>

 </Caption>

 </rdf:li>

 <rdf:li>

 <Caption for='#Block12'>

 <text>CMYK colours</text>

 </Caption>

 </rdf:li>

 <rdf:li>

 <Caption for='#Block13'>

 <text>RGB colours</text>

 </Caption>

 </rdf:li>

 <rdf:li>

 <Caption for='#Block14'>

 <text>Using black and white</text>

 </Caption>

 </rdf:li>

 </rdf:Bag>

 <!-- ********************** -->

 <!-- block's sorted content -->

 <!-- ********************** -->

 <rdf:Seq>

 <rdf:li>

 <Block rdf:ID='Block11'>

 <contains>

 <rdf:Seq>

 <rdf:li>

 <Block>

 <text>Here is a contrived, complex list structure using

 the spectrum colours and one or two others:</text>

 </Block>

 </rdf:li>

 <rdf:li>

 <rdf:Seq>

 <rdf:type rdf:resource='&dictionary;#ParenthesizedNumberedList'/>

 <rdf:type rdf:resource='&dictionary;#LowerCaseNumberedList'/>

 <rdf:li>red,</rdf:li>

 <rdf:li>orange,</rdf:li>

 <rdf:li>yellow,</rdf:li>

 <rdf:li>green,</rdf:li>

 <rdf:li>

 <Block>

 <contains>

 <rdf:Seq>

 <rdf:li>blue, including:</rdf:li>

 <rdf:li>

 <rdf:Seq>

 <rdf:type rdf:resource='&dictionary;#ParenthesizedNumberedList'/>

 <rdf:type rdf:resource='&dictionary;#RomanNumberedList'/>

 <rdf:li>pale blue,</rdf:li>

 <rdf:li>dark blue,<rdf:li>

 </rdf:Seq>

 </rdf:li>

 <rdf:li>but excluding violet,</rdf:li>

 </rdf:Seq>

 </contains>

 </Block>

 </rdf:li>

 <rdf:li>indigo, and</rdf:li>

 <rdf:li>violet</rdf:li>

 </rdf:Seq>

 </rdf:li>

 <rdf:li>

 <Block>

 <text>from which all colours can be derived.</text>

 </Block>

 </rdf:li>

 </rdf:Seq>

 </contains>

 </Block>

 </rdf:li>

 <rdf:li>

 <Block rdf:ID='Block12'>

 <text>CMYK colours (cyan, magenta, yellow and black) are normally

 specified for inputs to colour printing processes.</text>

 </rdf:li>

 <rdf:li>

 <Block rdf:ID='Block13'>

 <contains>

 <rdf:Seq>

 <rdf:li>

 <Block>

 <text>RGB colour (red, green, brown) specifications are used for

 computer screen displays.</text>

 </Block>

 </rdf:li>

 <rdf:li>

 <Block rdf:ID='Block133'>

 <contains>

 <rdf:Seq>

 <rdf:li>The number of colours you can specify depends on the colour

 depth available. For example:</rdf:li>

 <rdf:li>

 <rdf:Seq>

 <rdf:type rdf:resource='&dictionary;#ParenthesizedNumberedList'/>

 <rdf:type rdf:resource='&dictionary;#LowerCaseNumberedList'/>

 <rdf:li>8 bit colour can render 256 colours</rdf:li>

 <rdf:li>16 bit colour can render 65,536 colours.</rdf:li>

 </rdf:Seq>

 </rdf:li>

 </rdf:Seq>

 </contains>

 </Block>

 </rdf:li>

 </rdf:Seq>

 </contains>

 </Block>

 </rdf:li>

 <rdf:li>

 <Block rdf:ID='Block14'>

 <contains>

 <rdf:Bag>

 <rdf:li>

 <Caption for='#Block141'>

 <text>Greyscale</text>

 </rdf:li>

 <rdf:li>rdf:resource='#Caption142'/>

 <Caption for='#Block142'>

 <text>Black and white</text>

 </Caption>

 </rdf:li>

 </rdf:Bag>

 <rdf:Seq>

 <rdf:li>CMYK colours (cyan, magenta, yellow and black) are normally

 specified for inputs to colour printing processes.

 </rdf:li>

 <rdf:li>

 <Block rdf:ID='Block141'>

 <text>The number of greys depends on the available colour depth,

 as for other colours.</text>

 </Block>

 </rdf:li>

 <rdf:li>

 <Block rdf:ID='Block142'>

 <contains>

 <rdf:Seq>

 <rdf:li>

 <rdf:Seq using='http://www.legalxml.org/Bullet.bmp'>

 <rdf:type rdf:resource='&dictionary;#BulletList'/>

 <rdf:li>black, or</rdf:li>

 <rdf:li>white.</rdf:li>

 </rdf:Seq>

 </rdf:li>

 <rdf:li>This is really called monochrome. You can specify either:</rdf:li>

 </rdf:Seq>

 </contains>

 </Block>

 </rdf:li>

 </rdf:Seq>

 </contains>

 </Block>

 </rdf:li>

 </rdf:Seq>

 </contains>

 </Block>

 </rdf:li>

 <rdf:li>

 <Block rdf:ID='Block2'>

 <rdf:type rdf:resource='&dictionary;#NumberedParagraph'/>

 <text>One thing to remember is that when working with colours,

 always use a colour profile that is available for your

 display or output device. This will ensure you achieve

 the most consistent results.

 </text>

</Block>

 </rdf:li>

 </rdf:Seq>

 </contains>

</Block>

</rdf:RDF>
