

OASIS LegalXML
eContracts Technical Committee

Structural markup – Basic clause model
Proposal and specification

Author: Peter Meyer, Elkera Pty Limited, pmeyer@elkera.com.au

Draft 1.0

11 November 2003

Draft 1.0 – 11/11/2003

Contents

1. Introduction... 1

1.1 Purpose of this document .. 1

1.2 Contributions to this proposal... 1

1.3 Related documents .. 1

1.4 Form of the document... 2

2. Strategic background ... 2

2.1 Business problems addressed by the model.. 2

2.2 Document types .. 3

2.3 The user community ... 3

2.4 Contracts and other legal and business documents... 4

2.5 XML related standards and applications .. 4

3. Structural markup.. 4

3.1 An ordered hierarchy .. 4

3.2 The purpose of structural markup ... 5

3.3 The use of structural markup in the standard.. 5

4. XML and the contract .. 6

5. Requirements for the “basic” clause model ... 7

6. Why develop a new schema? ... 7

6.1 Previous review .. 7

6.2 W3C proposal for XHTML 2.0 .. 7

6.3 Possible significance of XHTML 2.0 ... 8

6.4 Reasons for continuing with the clause model ... 8

6.5 Specific recommendation ... 9

7. Approach to design of the clause model ... 9

7.1 Serving the needs of two user groups ... 9

7.2 Ease of use for document authors ... 9

7.3 Ease of use for application developers ... 9

7.4 Resolving the tension.. 10

7.5 Selection of element names .. 10

 Clause model specification

Draft 1.0 – 11/11/2003 ii

7.6 Ongoing review of the clause model .. 10

8. Use of DTDs or Schema.. 11

8.1 Content models in this document ... 11

8.2 Schema language options ... 11

8.3 Reference schema language .. 11

8.4 XML Schema (XSD) .. 12
8.4.1 Advantages ... 12
8.4.2 Disadvantages ... 12

8.5 DTDs... 12
8.5.1 Advantages ... 12
8.5.2 Disadvantages ... 12

8.6 RELAX NG Schema... 12
8.6.1 Advantages ... 12
8.6.2 Disadvantages ... 12

8.7 Choice of reference schema .. 12

8.8 Support for multiple schema... 13

8.9 Specific recommendation ... 13

9. Overview of the proposed model... 13

9.1 Basic content model.. 13

9.2 Introduction to the elements ... 15

9.3 The clause model pattern.. 16
9.3.1 Two overlapping hierarchies .. 16
9.3.2 Document outline.. 16
9.3.3 Narrative content .. 16

9.4 The overlap between the two hierarchies ... 16
9.4.1 Nomenclature – clauses and lists .. 16
9.4.2 What is a clause? .. 18
9.4.3 What is a list?.. 19
9.4.4 The document outline and narrative content boundary 21

9.5 Why a recursive model? ... 22
9.5.1 Basis for the recursive model ... 22
9.5.2 Limitations with a recursive model .. 22

9.6 User customisations and data exchange ... 23

9.7 Key points about the model .. 23

10. Item element .. 23

 Clause model specification

Draft 1.0 – 11/11/2003 iii

10.1 Content model... 23

10.2 Purpose of the Item element ... 23

10.3 Name selection.. 24
10.3.1 Options considered ... 24
10.3.2 Specific recommendations .. 24

10.4 Content model options .. 24

10.5 Use of the loose and tight models ... 25
10.5.1 The problem.. 25
10.5.2 Is there a need for the loose model? ... 26
10.5.3 Specific recommendations .. 26

10.6 The use of Titles on Items in the document outline...................................... 26
10.6.1 The problem.. 26
10.6.2 Development issues .. 28
10.6.3 Desired functionality .. 28
10.6.4 Option 1 – Use metadata to determine the contents boundary..................... 28
10.6.5 Option 2 – Use an alternative element with a required Title 29
10.6.6 Option 3 – Apply a context based content model on Item 30
10.6.7 Specific recommendations .. 31

10.7 Should Item be used for lists in narrative content?....................................... 31
10.7.1 The problem.. 31
10.7.2 Option 1 – Redefine Item according to context using XML Schema 32
10.7.3 Option 2 – Ignore the content model problem.. 32
10.7.4 Option 3 – Create a new element.. 33
10.7.5 Specific recommendations .. 33

10.8 Outstanding issues .. 34

11. Block element .. 34

11.1 Content model... 34

11.2 Purpose of the Block element ... 34

11.3 Name selection.. 35
11.3.1 Options considered ... 35
11.3.2 Arguments relating to “Block” ... 35
11.3.3 Arguments relating to “Para”.. 36
11.3.4 Arguments relating to “Clause”.. 36
11.3.5 Specific recommendation ... 37

11.4 Content model options .. 37

11.5 Is a distinct list item element required? .. 37

11.6 Is a list container required? ... 37

 Clause model specification

Draft 1.0 – 11/11/2003 iv

11.6.1 The problem.. 37
11.6.2 Option 1 – Omit the List element ... 38
11.6.3 Option 2 – Create a List element .. 39
11.6.4 Specific recommendations .. 40

11.7 In line lists... 40
11.7.1 The problem.. 40
11.7.2 Specific recommendation ... 41

12. Text element .. 41

12.1 Content model... 41

12.2 Purpose of the Text element ... 41
12.2.1 Overview... 41
12.2.2 New line functionality .. 42
12.2.3 Hard cases ... 42

12.3 Name selection.. 43
12.3.1 Options considered ... 43
12.3.2 Specific recommendation ... 43

12.4 Content model options .. 43
12.4.1 The problem.. 43
12.4.2 Option 1 – Create a special element for the inline text................................. 44
12.4.3 Option 2 – Create an exception to the new line behaviour of Text 45
12.4.4 Specific recommendations .. 46

13. Title and Num elements.. 46

13.1 Title ... 46
13.1.1 Content model... 46
13.1.2 Purpose ... 46

13.2 Name selection.. 46
13.2.1 Options considered ... 46
13.2.2 Specific recommendation ... 47

13.3 Num .. 47
13.3.1 Content model... 47
13.3.2 Purpose ... 47

13.4 Name selection.. 47
13.4.1 Options considered ... 47
13.4.2 Specific recommendation ... 48

14. Intellectual property rights .. 48

15. Summary of fit to requirements .. 48

 Clause model specification

Draft 1.0 – 11/11/2003 v

16. Summary of issues & recommendations ... 50

Attachment 1 Clause model schema and XML markup example............................ 53

Draft 1.0 – 11/11/2003

Clause model proposal and specification

Submitted by: Peter Meyer, Elkera Pty Limited, (pmeyer@elkera.com.au)

Draft 1.0
11 November, 2003.

1. Introduction

1.1 Purpose of this document
This document is a proposal to the Technical Committee for a “basic” clause model as
the first part of its eContracts standards development.

It is provided as a comprehensive alternative to the report provided by Jason Harrop on
14 October 2003 and the alternative submitted by Peter Meyer on 15 October 2003.

The clause model requirements document set out a staged approach to development of a
structural markup component of the proposed standard, so that the issues to be
considered at each stage are limited. The stages are:

(a) Develop “basic” clause model (ie excluding objects identified in requirement
number 11, other than stub or placeholder elements).

(b) Once the basic clause model is agreed, develop requirements for issues set out in
requirement number 11.

(c) Develop “complete” clause model (ie covering the requirements developed for
the issues set out in requirement number 11)

(d) Develop requirements for markup of complete contract documents using the
clause model.

1.2 Contributions to this proposal
Some ideas and content, particularly related to the alternatives presented under
recommendations, were contributed by Jason Harrop of SpeedLegal Pty Limited,
jharrop@speedlegal.com. However, this document does not necessarily reflect Jason
Harrop’s views and is not endorsed by him.

The document also includes contributions from Andrew Squire and Daniel Noll of
Elkera Pty Limited.

1.3 Related documents
The following documents may be directly relevant to the interpretation of this
document:

• Clause model requirements located at http://lists.oasis-
open.org/archives/legalxml-econtracts/200305/msg00027.html

• TC member scenarios listed at http://www.oasis-
open.org/apps/org/workgroup/legalxml-econtracts/documents.php.

 Clause model specification

Draft 1.0 – 11/11/2003 2

1.4 Form of the document
The document is structured as a specification for the clause model with additional
components to reflect its evolutionary nature during development. It will contain
general explanatory content plus a description of each content model starting with the
highest level element.

The document is written with the expectation that it will be read by a wide range of
persons with varying levels of experience with XML applications. It assumes that the
reader at least knows that XML is a standard that provides a syntax for defining
document markup languages. In places it is necessary to understand DTD syntax and
design concepts.

The description of each content model section may include:

(a) an explanation of its purpose;

(b) examples of its possible use;

(c) particular design issues that have been identified;

(d) major alternative options considered;

(e) reasons for the choice between available options;

(f) policy or other questions that require a decision from the Technical Committee
or input from other sources;

(g) a record of Technical Committee decisions on questions raised.

During development, the updated versions of the specification will provide an ongoing
record of the state of the proposed model. As further stages of the clause model
requirements are addressed, it is proposed they should be included in this specification.
At the end of the process, the document should easily be converted into a final
specification for the model by removal of unwanted historical material.

2. Strategic background

2.1 Business problems addressed by the model
The business problems to be addressed were discussed in the clause model requirements
document. They are summarised as follows:

(a) It is necessary to provide for the XML markup of contract documents to support
the needs of users broadly described in the TC member scenarios. These needs
cover a vast spectrum of possible requirements for XML markup of contract
documents.

(b) The model should meet the needs of the widest range of users in a single
standard.

(c) The model should facilitate the development by system vendors of innovative,
low cost tools to service the identified needs. It is perceived that currently there
are major impediments to the adoption of XML markup for contract documents
by law firms and other enterprises. These include the high costs of development
around proprietary markup models and the change management issues involved
in moving from the format based approach to authoring of word processing
software to a structured authoring environment using XML.

 Clause model specification

Draft 1.0 – 11/11/2003 3

(d) The model should facilitate the adoption of the standards by user enterprises. In
particular, it is recognised that law firms and other user enterprises create many
kinds of documents in addition to contracts. Many of the needs identified in the
TC member scenarios are applicable to non contract documents as they are to
contract documents. Accordingly, the standard should not compel user
enterprises to adopt multiple, XML markup standards to cover their business
documentation needs where these overlap with their needs for contract
documents.

Unless the standard addresses these business problems it is highly likely that the
standard will either fail to gain any acceptance or, at best, it will be used in only a few
niche markets. The aim is to develop a standard that benefits the legal community as a
whole and those that depend on its services.

2.2 Document types
The clause model requirements address contracts and other legal and business
documents. These documents mainly contain hierarchically structured, narrative text
content and are prepared in virtually any legal and business context.

The clause model is not intended to be applicable to non narrative documents such as
spread sheets, financial and database reports, or highly graphically oriented documents
with complex page layout requirements.

2.3 The user community
A recurring issue during development of the clause model requirements is the extent to
which XML markup will or may be used for contract documents in various parts of the
legal and business community. This issue can be encapsulated in these questions:

(a) Is it envisaged that the XML markup will be used mainly by specia list content
authors who prepare contract documents as standard precedents or templates in
larger firms and by persons who maintain documents used for, say, online and
electronic transactions?

(b) Is it envisaged that, in addition to group (a), lawyers in everyday practice will
also use XML markup during the preparation of contract documents in place of
their existing word processor based authoring environments?

Scenarios submitted by TC members envisage that benefits from the use of XML
markup for contracts preparation could accrue to both groups.

Certainly the standard must address group (a). It is unclear whether and how quickly
XML markup for document creation will be used by group (b) document authors. The
capacity to create documents using XML markup is increasingly being built into
mainstream products such as Microsoft Word in Office 11 so there is room for
optimism.

There is no clear separation between groups (a) and (b). Rather, there is a continuum
between two extremes. It is expected that if the standard meets the needs of authors in
group (b) it will maximise its chance of gaining widespread developer support and use.

 Clause model specification

Draft 1.0 – 11/11/2003 4

2.4 Contracts and other legal and business documents
The clause model requirements explain that the preparation of contract documents
overlaps extensively with the preparation of many other kinds of legal and business
documents in law firms and other enterprises.

It is also shown that the basic structural pattern of clause and content of most other legal
and business documents is fundamentally the same as for contract documents.

It is proposed that the clause model must be designed for use with other legal and
business documents described in the clause model requirements. This will allow
enterprises and authors to use common tools across the widest range of documents and
support the business objectives set out in topic 2.1.

2.5 XML related standards and applications
If the standard is successful and the expected business objectives are achieved, a very
substantial infrastructure of supporting applications will be built around the standard.
User organisations will build up large collections of documents that conform to the
standard. Once a substantial user community is in place it will be extremely difficult to
alter the standard in a way that may invalidate existing data sets or force changes to
applications. It is likely that the standard will be displaced only by major technological
change that displaces XML for document markup.

It is hoped and expected that the standard will endure for many years. A lifespan of at
least 10 years is realistic and it is conceivable that the lifetime of the standard could
extend to some multiples of that time. This really depends on how XML evolves and
whether completely new approaches might emerge to replace XML. A great deal of
change has occurred with XML related standards and the development of
complimentary processing applications over the past 5 years. During that period there
have been continuous releases of new and improved tools for processing XML data and
building XML related applications.

It is assumed that this evolution will continue over the life of the standard. Many of the
limitations of today’s XML processing tools are likely to disappear in a relatively short
period. The diversity of tools and the approaches they take to solving problems will
increase.

Care is required before the design is specifically adapted to work with particular current
XML processing technologies. If it does, there is a high risk that, in the future as XML
processing applications evolve and become more powerful, particular design feature
will be seen as inconvenient.

3. Structural markup

3.1 An ordered hierarchy
The content of contracts, along with most other narrative text documents, is based on
the arrangement of concepts into an ordered hierarchy. For example, a journal article or
report may contain an introduction and then multiple chapters or sections. Each chapter
may contain sub chapters, then paragraphs and then lists. Contracts may contain similar
hierarchical structures, although the common citation names given to some of those

 Clause model specification

Draft 1.0 – 11/11/2003 5

structures will vary between different user communities and jurisdictions with different
traditions.

The structural XML markup describes this ordered hierarchy of document components.
It defines the boundaries of each component, its hierarchical relationship to other
components and provides information sufficient for human authors and computer
systems to determine the generic (non legal) function of each component.

Structural markup seeks to avoid or minimise the capture of purely presentational
information. Part of the benefit of structural markup is to allow documents to be
displayed appropriately in different publishing environments and by different users. It
also enables enterprises to globally update house publishing styles without the need to
edit individual document instances.

3.2 The purpose of structural markup
Structural markup allows system designers to define a small, finite number of markup
elements so that processing applications can work with a manageable and stable data
set. For instance, if the base markup of a contract were to define its legal operation so
that the element markup for a payment clause is different to the markup of a warranty
clause, it would be impossible to write an application to process a document with more
than a few standard clauses.

Structural markup can reduce or avoid dependencies between the document content and
proprietary processing systems used to process and publish the documents. It minimises
the risks associated with the commercial and technological obsolescence of software
applications. Document owners may change applications as commercial and
technological conditions evolve without having to undertake expensive or impracticable
data conversion to new formats.

If structural markup is to be effective, it must capture the ordered hierarchy of document
components in sufficient detail that a processing application has sufficient information
to know how to process the component to meet the needs of the application users.

The benefits of structural markup are maximised if the schema is itself not a proprietary
language, controlled by one system vendor. An open standard schema is accessible to
anyone and does not require users to translate data to new schema languages when
changing software.

3.3 The use of structural markup in the standard
The clause model requirements, were approved by the Technical Committee on 18 June
2003. Those requirements propose development of a structural model for the XML
markup of contract documents. The clause model described in this document is the
foundation of the proposed structural markup model.

The purpose of the clause model structural markup is to provide a platform for the XML
markup of contract documents that will meet the widest range of needs of persons
preparing and using contract documents.

In the context of the proposed eContracts standard, structural markup will enable XML
processing systems to perform these sorts of operations:

 Clause model specification

Draft 1.0 – 11/11/2003 6

(a) automatically translate documents to other XML dialects or to completely
different markup languages;

(b) automatically translate documents into presentational formats such as RTF,
HTML/XHTML, PDF, SVG etc;

(c) programmatically locate and manipulate discrete chunks of content in document
automation systems for document assembly, content re-use and content sharing;

(d) identify document components that may be addressed in hypertext linking
systems.

The structural markup alone will not meet all the needs described in the scenarios
submitted by Technical Committee members as a precursor to requirements
development.

The function of the basic clause model is to provide a common, generic framework on
which additional information (metadata) may be attached. The metadata may, for
example, include legal semantic information or transactional information relevant to
contract documents and identifiable components. That additional information may assist
with some of the operations described above as well as support automated transactions
involving contracts.

This approach will allow additional information to be added to the structural markup at
the option of those who require particular functionality, without burdening those who do
not require it.

We can think of the structural clause model as the base of a pyramid. Users with the
most common needs are at the base and users with more specialised needs are at higher
levels. At the base level, users don’t need to add much, if any, extra information to the
markup to meet all their basic document production needs. As they move to functions at
higher levels of the pyramid, they may need to add more and more information to the
markup or associate information from other sources with the markup.

4. XML and the contract
An XML document is not a useful document for human readability. As an electronic
text file, it lacks normal presentational information that is essential to ease of
readability. The presence of XML markup with the linguistic content is highly
inconvenient to readers.

For use by humans, XML documents must be transformed into a presentation format or
directly rendered into a presentation display with the aid of a style sheet and conforming
software.

It is assumed that the parties to contracts would rarely, if ever, signify an XML
document alone as “the contract document”. However, it may be possible in some
electronic transactions that this could occur.

It is assumed that contract documents marked up using the clause model will be
translated or rendered into a presentation format chosen by the parties. In the normal
situation, that presentation document will be the document that is treated as the contract
document for evidentiary purposes.

The basic clause model makes no assumptions about the presentation format that may
be used by the parties or the tools that may be used for translation or display.

 Clause model specification

Draft 1.0 – 11/11/2003 7

Requirement 5 of the clause model requirements demands that the XML document must
be self contained so that if the parties do signify it as the document with evidentiary
status, it does not necessarily require software, apart from a text editor, to determine the
terms recorded in the XML document.

5. Requirements for the “basic” clause model
The basic clause model is intended to provide only the foundation for meeting the needs
described in topic 3.2. The specific requirements defined in the clause model
requirements document are set out in Attachment A. They are summarised as follows:

1. It must markup core structures similar to Attachment 1 to clause model
requirements.

2. It must represent the structured hierarchy.

3. It must be able to markup benchmark contracts.

4. It must define clause objects for computer manipulation.

5. The XML file for a contract document must not require software to interpret.

6. Element names must not include listed citation terminology so that the clause
model can be used for most kinds of legal or business document.

7. XML markup must not be legally significant to the contract unless the parties
specifically agree otherwise.

8. It must be as simple as possible and it must avoid semantic distinctions between
objects except where clear benefits are shown.

9. Content must be re-usable at different levels of the hierarchy.

10. The model must allow incorporation of content by reference.

11. Other specific requirements to be determined.

The basic clause model is intended to deal with requirements 1 – 10 inclusive. However,
this proposal does not demonstrate compliance with requirement 3 (markup benchmark
contracts) because none have been defined. Nor does it deal fully with requirement 10.
It is proposed to deal with it at a later time because it raises substantially beyond the
basic structural model. However, anticipated needs of requirement 10 are considered in
the model.

6. Why develop a new schema?

6.1 Previous review
As discussed in the recommendation submitted by Jason Harrop on 14 October 2003,
there are no existing, generally available schema that provide the desired combination
of structural markup capability and ease of use for document authors.

6.2 W3C proposal for XHTML 2.0
It is worth making some observations about the proposed XHTML 2.0 draft prepared by
the W3C (See http://www.w3.org/TR/2003/WD-xhtml2-20030506/). The proposed

 Clause model specification

Draft 1.0 – 11/11/2003 8

XHTML 2.0 will include a recursive hierarchical model that is similar in some respects
to this proposal. It provides for a section element than can be used recursively to
perform a similar function to the proposed Item element when it is used to create the
document outline, as discussed in topic 9.3.2.

However, the current draft (draft 6) of proposed XHTML 2.0 retains the current
XHTML presentational model for paragraph content (narrative content, as discussed in
topic 9.3.3. In this respect the proposed XHTML 2.0 is unsuitable to satisfy the clause
model requirements.

6.3 Possible significance of XHTML 2.0
The proposed clause model could be described generically as a “structural HTML”. If
future drafts of the proposal were to provide a true structural model for narrative
content, XHTML 2.0 could well provide a similar function to the proposed clause
model. Notwithstanding its current limitations, it is possible that XHTML 2.0 will find
more widespread use as a general purpose structural markup format than its
predecessors.

The potential widespread adoption of a more structurally oriented XHTML 2.0 may
make it that much more difficult for developers to be satisfied that it is worth supporting
an alternative model to service a smaller market segment that requires the extra
functionality. There is a risk that the work undertaken on a dedicated structural clause
model could be overtaken by other developments.

6.4 Reasons for continuing with the clause model
The Technical Committee has already discussed the possibility of supporting multiple
schema for the markup of electronic contract documents. There appears to be a
consensus in favour of separating the contracts specific markup from the generic
structural markup. If so, the contracts specific markup can be designed for use with a
range of schema. This will provide the widest possible market for the specific contracts
schema work developed by the Technical Committee and avoid the risks that the market
for structural markup schema moves in an alternative direction to that represented by
the structural clause model.

Despite the risks identified earlier, it is proposed that the Technical Committee should
develop a structural clause model and comprehensive contracts document schema:

(a) Proposed XHTML 2.0 is still not a satisfactory structural model for the
widespread markup of contract documents. A complete, simple structural model
is still required.

(b) Developments of XHTML 2.0 take it in a direction that would make it
comparatively easy to translate from the clause model to XHTML 2.0.

(c) Proposed XHTML 2.0 is only a draft and it is not clear what direction it will
take. The Technical Committee needs a schema for contract documents that will
provide a stable platform for development of semantic markup layers and as a
means to provide potential users with a comprehensive framework for the
markup of contract documents.

(d) Ignoring its limitations, the proposed XHTML 2.0 provides little extra
functionality than the basic clause model for contracts markup. Much of the

 Clause model specification

Draft 1.0 – 11/11/2003 9

work is already done. If the basic clause model is adopted by the Technical
Committee, it is still necessary to undertake extensive schema development. It
will be easier to develop this on a platform under the Technical Committee’s
control, particularly in the first instance.

6.5 Specific recommendation
1. It is recommended that the Technical Committee proceed with development of a

structural clause model proposed in this document.

7. Approach to design of the clause model

7.1 Serving the needs of two user groups
Two user groups directly interact with XML schema for documents:

• document authors (see topic 2.3); and

• application developers.

The perceptions and needs of these two groups are quite different. Where the different
interests may affect the design, the competing interests will have to be resolved.

7.2 Ease of use for document authors
The clause model must be as simple as practicable for users (Requirement 8).

As stated in topic 2.3, it is assumed that lawyers may use an XML editor to draft
contract documents. It may take quite a long time before this happens on a large scale
because of the substantial change it will involve to conventional document authoring
processes. As applications improve and use of the standard increases, more and more
lawyers will adopt XML editing tools.

Much can be done in the design and customisation of many XML editing applications to
enable authors to create content without having to be particularly aware of the markup.
However, when an author wishes to undertake less common operations or they wish to
modify a draft document by rearranging content into a different sequence or to different
levels of the hierarchy, it is more difficult to shield the author from the markup.

The clause model design assumes that authors of contract documents who use an XML
editor will be aware of the XML markup of their documents and that they will need to
acquire a basic understanding of the DTD or Schema, particularly its clause model. A
core aim of the design is to make the clause model simple for authors.

7.3 Ease of use for application developers
The clause model must be as simple as practicable for developers (Requirement 8).

As far as practicable, the design will not attempt to suit particular XML processing
models. Developers should be free to adopt the tools that suit their needs. For the
reasons explored in topic 2.5, it would be a mistake to align the model with any
particular standard that may deprive the standard of the flexibility needed for its

 Clause model specification

Draft 1.0 – 11/11/2003 10

possible lifespan. The model has to be accessible to current processing tools so
processing issues associated with particular common tools are not to be ignored.

7.4 Resolving the tension
To meet the requirement for ease of use for application developers and to balance those
requirements with the needs of users, these principles are applied during design:

(a) Ease of use for authors will be favoured over ease of use for application
developers.

(b) The design aims to provide only the minimum markup that will permit desired
structural information to be logically inferred from the markup for processing
purposes. Put another way, the clause model will contain only the minimum
markup necessary for authors and developers to do their work. New elements
must have a clearly demonstrated function. This approach aims to minimise the
prospect that the resulting schema will grow into a complex and unwieldy model
that will frustrate attainment of its objectives.

7.5 Selection of element names
The need for ease of use for authors takes precedence over ease of use for application
developers. Consequently, elements are named for author perspective and convenience.

Element names must be consistent with requirement 6 which precludes the use of
terminology that does not easily cross document types or jurisdictional boundaries.

It is proposed that the following principles will enhance author convenience:

(a) Names should consist of a single, short word. The objective is to make names
distinctive, easy to read and to not take up more space on screen than necessary.

(b) Names should be chosen for their likely appeal to authors rather than to
application developers. Persons introducing the schema to new users should not
have to apologise for technical terminology.

(c) It is desirable that element and attribute names conform to a consistent
orthography. As far as practicable, names should not consist of a mixture of
abbreviated and unabbreviated words or mixtures of technical and non technical
words.

7.6 Ongoing review of the clause model
During development a wide range of additional requirements, will be defined. Many of
these are listed in requirement 11. From time to time it may be necessary to review
aspects of the basic clause model in the light of those further requirements.

The basic clause model cannot be regarded as settled unt il the entire clause model is
substantially complete.

 Clause model specification

Draft 1.0 – 11/11/2003 11

8. Use of DTDs or Schema

8.1 Content models in this document
Content models in this specification use DTD syntax because this is more concise and
easier to read than a XML schema.

8.2 Schema language options
It is necessary to determine the reference schema language for the standard and the level
of support provided for other schema languages.

The options are:

• DTDs

• W3C Schema (XML Schema)

• RELAX NG Schema

• Schematron Schema.

The following table lists the support for each by major XML authoring applications.

Application DTD XML Schema RELAX NG Schematron

Microsoft Office 2003 No Yes No No

Altova Authentic 2004 Yes Yes No No

Corel XMetaL 4 Yes Yes No No

Arbortext Epic Yes Yes No No

Adobe FrameMaker 7 Yes No No No

Corel WordPerfect 11 Yes No No No

XOpus No Yes No No

Topologi (not really an
authoring tool)

Yes Yes Yes Yes

Oxygen (not really an
authoring tool)

Yes Yes Limited No

8.3 Reference schema language
It will be necessary to determine:

(a) What is the reference schema?

(b) What other schema languages does the standard intend to support?

(c) Is it necessary to constrain the application so its capable of complete, consistent
expression in multiple schema languages and, if so, which ones?

 Clause model specification

Draft 1.0 – 11/11/2003 12

8.4 XML Schema (XSD)

8.4.1 Advantages

XML Schema are a W3C standard.

XML Schema are already widely supported by applications. This support appears to be
growing. MS Word in Office 2003 supports only XML Schema.

The significant technical merits of XML Schema include:

• data typing;

• re-define element content models according to context;

• more easily mixed with namespaces.

8.4.2 Disadvantages

XML Schema are very difficult for humans to read.

Not all applications support XInclude which is commonly used by Schema developers.

8.5 DTDs

8.5.1 Advantages

DTDs are concise and comparatively easy for humans to read.

8.5.2 Disadvantages

DTDs lack some of the technical advances of Schema.

Support in new XML applications is not guaranteed (eg. MS Word).

8.6 RELAX NG Schema

8.6.1 Advantages

It is an OASIS standard.

It allows greater control and stricter conditions than XML Schema. See, for example
Option 3 in topic 10.6.6.

It is easier to read than XML Schema.

8.6.2 Disadvantages

There is a lack of vendor support at this stage. However, it is noteworthy that the W3C
is developing proposed XHTML 2.0 using RELAX NG Schema.

8.7 Choice of reference schema
The TC will likely need to select a reference schema in which to publish its standard
and to define the limits of the functionality it offers.

The principal candidates today are DTDs and XML Schema. However, even RELAX
NG Schema should not be ruled out.

 Clause model specification

Draft 1.0 – 11/11/2003 13

There is the fundamental problem with DTD use that Microsoft Word and the XOpus
editor do not support DTDs.

It is also highly likely that the standard will require Name Space support and that this is
more conveniently implemented using XML Schema than DTDs.

While there are arguments in favour of proposing XML Schema as the reference
schema for the standard, strictly, it is premature to make this recommendation until the
Technical Committee’s requirements are fully developed and the overall application
architecture is defined.

8.8 Support for multiple schema
It seems inevitable that XML Schema will gain increased acceptance and that may
applications will adopt and likely extend the standard using XML Schema, regardless of
any decision to promote the standard using DTDs.

RELAX NG Schema may also gain support. There does not seem to be any reason why
the Technical Committee would wish to preclude use of a particular schema. In a fluid
technical and commercial environment there is no reason to attempt to pick winners.

Consequently, the Technical Committee should adopt a flexible approach to schema
support.

A question has been raised as to whether it is necessary for the application can be fully
implemented in some or all alternative schema in addition to the reference schema.

Again, until the Technical Committees requirements and a technical architecture are
developed it is not necessary to make a final determination of this issue. It is noted that
as the specific features of XML or RELAX NG Schema are incorporated into the
standard, it will become increasingly difficult to ensure that document prepared under
those Schema will validate to a DTD.

8.9 Specific recommendation
2. It is recommended that the Technical Committee defer a decision on the

selection of a reference schema language until its application requirements are
fully developed.

9. Overview of the proposed model

9.1 Basic content model
For the purpose of introducing the basic pattern of a clause and the elements required to
represent it, the proposed clause model is:

<!ELEMENT Item (Num?, Title?, (Block* | Item*))>
<!ELEMENT Block (Text | Item)+>
<!ELEMENT Text (#PCDATA)>
<!ELEMENT Num (#PCDATA)>
<!ELEMENT Title (#PCDATA)>

This is not the complete model tha t is required in practice. It is a simplification of the
basic clause model proposal. By design, it also lacks elements for objects such as

 Clause model specification

Draft 1.0 – 11/11/2003 14

graphics, tables, annotations etc and inline objects that are essential to fully describe
clause like content . These will be dealt with under requirement 11 and following once a
basic clause model is accepted.

Simple examples of use of the proposed model to mark up clause structures are shown
in these examples.

Example 1 Three clauses

1. Very simple clause

 Text of very simple example clause.

2. Nested objects without titles

2.1 Text of first nested clause or subclause.

2.2 Text of second nested clause or subclause.

3. Nested objects with titles

3.1 First nested object

 Text of first nested object with a title.

3.2 Second nested object with a list

 Text of second nested object with a list of the three main clause model elements:

(i) Item;

(ii) Block; and

(iii) Text.

These clauses would be marked up as follows:

<Item>
<Num>1.</Num><Title>Very simple clause</Title>
<Block><Text> Text of very simple example clause.</Text></ Block >
</Item>

<Item>
<Num>2.</Num><Title> Nested clauses or subclauses without titles </Title>
<Item>
<Num>2.1</Num>< Block ><Text> Text of first nested clause or
subclause.</Text></Block >
</Item>

<Item>
<Num>2.2</Num>< Block ><Text> Text of second nested clause or
subclause.</Text></Block >
</Item>

<Item>
<Num>3.</Num><Title> Nested clauses with titles </Title>

 Clause model specification

Draft 1.0 – 11/11/2003 15

<Item>
<Num>3.1</Num><Title> First nested clause or subclause </Title>
< Block ><Text> Text of first nested object with a title.</Text></Block>
</Item>

<Item>
<Num>3.2</Num><Title> Second nested object with a list </Title>
< Block ><Text> Text of second nested object with a list of the three main clause model
elements:</Text>

<Item>
<Num>(i)</Num>< Block ><Text> Item;</Text></Block>
</Item>

<Item>
<Num>(ii)</Num>< Block ><Text> Block; and</Text></Block>
</Item>

<Item>
<Num>(iii)</Num>< Block ><Text> Text.</Text></Block>
</Item>

</Block>
</Item>

9.2 Introduction to the elements
The proposed clause model is built around Item, Block and Text elements. These
terms are chosen because they are considered to be document neutral and
jurisdictionally neutral. They can fit in a contract, a letter, a pleading, an advice or
virtually any other legal or business document in any English language jurisdiction.

A brief overview of the elements is as follows:

(a) An Item is the main structural element in the model. It occurs in two contexts.
It is used recursively to create the basic document outline. In so doing it acts as
the main structural division in documents (eg, chapters, parts etc) and as the
container for the major text objects (eg, clauses, sections, articles, etc). Secondly,
the Item occurs within the Block element. In this context it is used to create
list structures. These distinctions are explained in detail in topic 9.3.

(b) A Block is the nearest equivalent to a grammatical paragraph. It may exist as a
free standing object, such as a paragraph in a letter or as the main content holder
anywhere within the document hierarchy.

(c) The Text element is the PCDATA element for text data content. Generally, it
can exist only inside a Block.

(d) The Num element holds the numbers assigned to document components. It is
shown only as a placeholder at this time. Component numbering is to be dealt
with in a later stage of the development.

(e) The Title element is the heading, title or caption of an object.

These terms are further described in more detail in later sections.

 Clause model specification

Draft 1.0 – 11/11/2003 16

9.3 The clause model pattern

9.3.1 Two overlapping hierarchies

The proposed model identifies two distinct, but overlapping hierarchies in structured
narrative documents contracts and other legal and business documents.

9.3.2 Document outline

The first hierarchy consists of information objects (Item elements) that are arranged in
a directly recursive hierarchy to form the document outline. These Items usually have
titles and may be numbered. The document outline is usually revealed by the contents
listing for the document, although this is not always so. In some cases, particularly those
with many levels in the hierarchy, the contents listing shows only a part of the document
outline.

At any level in the document outline, the author can decide to add narrative content (by
inserting Block elements) or add another outline level (by inserting Item elements).
In this way, the author organises the narrative content in a hierarchical structure. Titles
or headings at each level assist readers to follow the author’s structure.

Clauses 2 and 3 in Example 1 show a two level document outline. In a large document
there could easily be several levels of structure above those Items.

9.3.3 Narrative content

Once the author enters narrative content (the Block element), the document outline
terminates in that branch of the hierarchy. This is shown by clauses 2.1 and 3.1 in
Example 1.

The narrative content can have its own hierarchy. Clause 3.2 in Example 1 shows a list
within the content of that clause. Items in that list could contain further list levels.

Objects that are hierarchically inside the narrative content would not be expected to
appear in a contents listing. If, for example, the numbered items in the list in clause 3.2
in Example 1 were to have titles, those titles would not appear in the contents listing for
the document. Such content is not part of the document outline. In this document it is
treated as part of the narrative content.

9.4 The overlap between the two hierarchies

9.4.1 Nomenclature – clauses and lists

In topic 9.2 it is explained that element names are to use terminology that can fit into a
wide range of document types in many different jurisdictions.

This document defines a “clause model”. Throughout the document it is necessary to
refer to “lists” as part of the discussion. To avoid confusion and to set a firm foundation
for the selection and use of elements in the model, it is necessary to explain these
concepts and establish a context for their use when discussing the clause model. To do
so, a series of examples of simple structures will be used. These are set out in Example
2.

 Clause model specification

Draft 1.0 – 11/11/2003 17

Example 2 Simple cases

Case 1

1. Very simple clause

 Text of very simple clause.

2. Very simple clause

 Text of another very simple clause.

3. Very simple clause

 Text of a third very simple clause.

Case 2

4. More complex clause

(1) Text of first nested object.

(2) Text of second nested object.

(3) Text of third nested object.

Case 3

4. Complex clause

(1) Title of first object

Text of first nested object.

(2) Title of second object

Text of second nested object.

(3) Title of third object

Text of third nested object.

Case 4

(1) Very simple clause

 Text of very simple example clause.

(2) Very simple clause

 Text of another very simple example clause.

(3) Very simple clause

 Text of a third very simple example clause.

Case 5

(a) Text of a simple object.

(b) Text of another simple object.

(c) Text of a third simple object.

Case 6

• Text of a simple object.

 Clause model specification

Draft 1.0 – 11/11/2003 18

• Text of another simple object.

• Text of a third simple object.

Case 7

This paragraph contains the following items:

(a) text of a simple object;

(b) text of another simple object; and

(c) text of a third simple object.

Case 8

This paragraph contains the following items :

(a) Title to the first object

Text of a more complex object;

(b) Title to the second object

Text of another object; and

(c) Title to the third object

Text of a third simple object.

9.4.2 What is a clause?

Most would agree that Case 1 contains 3 clauses. Which of the other cases is or contains
a clause? Most would probably agree that Case 2 is a clause and that Case 4 also
contains 3 clauses because it conforms to the same pattern as Case 1. Only the
numbering style is different.

In Case 3, is the object numbered 4 a clause? Whatever it is called, does it contain 3
clauses or are they subclauses?

Presumably Case 2 is a clause but does it contain 3 clauses or 3 subclauses? Are these
objects different to those in Case 3 only because they lack titles?

Finally, what are the numbered or bulleted objects in Cases 5 and 6? Are they the
same? Are they clauses or something else?

At the simplest level, we can probably say that a free standing text object that is
numbered and has a title is a clause. Beyond this simple case, the categorization of
objects as clauses or as something else becomes murky. What happens when the number
is removed, is it still a clause? Is it necessary to have a title for it to be a clause? If so,
why are the objects in Case 8 not clauses? Is it just that they are part of a single
narrative?

The conclusion from this is that the true definition of a clause is illusory. Fortunately,
this is of no importance. For the purpose of this document, the term “clause” is used in a
general sense that could refer to any of the objects in Cases 1 to 6 in Example 2. The
term “clause” is not used in a sense that requires it to have a precise meaning.

In the proposed clause model, clauses are created by allowing Item elements to occur
recursively to any depth. It is up to applications and users to determine the form of
citation they wish to apply to that structure.

 Clause model specification

Draft 1.0 – 11/11/2003 19

9.4.3 What is a list?

Considering the Cases in Example 2. How many contain lists?

Most people would say that Cases 5 and 6 each contain a list but if Case 5 is a list, why
are the objects (1) to (3) in Case 2 not a list?

The listed objects in Cases 5 and 6 are not preceded by introductory text. Contrast this
with Cases 7 and 8. These two pairs reveal not only issues about what is a list but also
how it is unclear whether lists can exist in the document outline as well as in the
narrative content.

Cases 5 and 6 could be marked up in one of two ways under the proposed clause model.
In Example 3, Case 5 is marked up one way and Case 6 the other.

Example 3 Markup of Cases 5 and 6

Case 5 markup
<Item>
<Num>(a)</Num><Block><Text>Text of a simple
object.</Text></Block>
</Item>
<Item>
<Num>(b)</Num><Block><Text>Text of another simple
object.</Text></Block>
</Item>
<Item>
<Num>(c)</Num><Block><Text>Text of a third simple
object.</Text></Block>
</Item>

Case 6 alternative markup
<Block>
<Item>
<Num>•</Num><Block><Text>Text of a simple
object.</Text></Block>
</Item>
<Item>
<Num>•</Num><Block><Text>Text of another simple
object.</Text></Block>
</Item>
<Item>
<Num>•</Num><Block><Text>Text of a third simple
object.</Text></Block>
</Item>
</Block>

The difference between the two cases is that the Items in Case 6 are contained by a
Block element, while those in Case 5 are not. In other words, the Items in Case 5 are
treated as part of the document outline, even though the author may conceive of them as
a list. On the other hand, the Items in Case 6 are treated as part of the narrative content.

Which is correct and why would an author choose one over the other? There is no
correct approach. In practice, it is expected that the author’s choice will depend upon
the way in which document numbering is applied by the author’s applications and the

 Clause model specification

Draft 1.0 – 11/11/2003 20

degree of control given to the author to specify numbering patterns at particular parts of
the document.

Example 4 shows how an author may need to markup the Items in both Cases 5 and 6
inside a Block element if the application adopts decimal numbering for the document
outline, as in this document.

Example 4 The significance of numbering

Assume that the document outline numbering is as follows:

1. Item at first level in document outline

1.1 Item at second level in document outline

1.1.1 Item at third level in document outline

1.1.1.1 Item at fourth level in document outline

If the author is at the second level and wishes to create a sequence of items with the
numbering scheme in Cases 4 or 5, the author may need to enclose those Items with a
Block to achieve the desired result. Otherwise, the Items would be numbered as 1.1.1,
1.1.2 and 1.1.3.

If the document outline is not numbered, only items in the narrative content would be
numbered.

The conclusion to be drawn from these examples is that, ignoring markup, any series of
numbered or bulleted items may be a regarded as a list. However, when we try to
represent this in a universal way using markup, the position is not so clear.

There appears to be a continuum of structures that range from clauses to lists. At one
end (Case 1), we are fairly certain that there is a clause. At the other end, (Case 7), we
are certain we have a list. In between, there are shades of grey.

The previous topic demonstrates how Item elements are used in the document outline
and also when contained by the Block element as part of the narrative content.

More commonly, lists of that kind will be preceded by introductory text, as in Example
5 (using simplified markup).

Example 5 Hierarchically correct list

<Block><Text>This is a list of primary colours:</Text>
<Item>(a) red</Item>
<Item>(b) blue</Item>
<Item>(c) yellow</Item>
</Block>

In this example, the introductory text and the listed items are contained by one Block
element.

The content model of Item shown in topic 9.1 could be modified as follows:
<!ELEMENT Item (Num?, Title?, Block*, Item*)>

This is described as the “loose model” in topic 10.4.

Under the loose model, Item elements can follow Block elements at the same leve l of

 Clause model specification

Draft 1.0 – 11/11/2003 21

the hierarchy, as shown in Example 6 (using simplified markup).

Example 6 Another approach to lists

<Block><Text>This is a list of primary
colours:</Text></Block>
<Item>(a) red</Item>
<Item>(b) blue</Item>
<Item>(c) yellow</Item>

In this example, the listed items are outside the introductory Block element.
Particularly if numbered as shown in the example, many people would still regard this
as a list.

The Item elements in Example 6 are structurally part of the document outline. Whether
the automatic numbering to be applied in this context would match that shown in the
Example will depend on the approach taken by the application developer to automatic
numbering.

9.4.4 The document outline and narrative content boundary

Cases 5 to 8 in Example 2, Example 5 and Example 6 show that structures can exist in
the document outline or in the narrative content and be regarded as lists by many
authors.

In the majority of situations, authors will not need to consider how to create the “right”
structure. The document outline will be made up of those Item elements that precede
the narrative content. Once narrative content is created, further lists will be contained by
the Block element because that is the only way to create a list from that context
provided that the issues discussed in topic 11.5 are resolved.

In marginal cases, the examples show that authors may need to deliberately markup a
list as either within the document hierarchy or within the narrative content to achieve a
particular automatic numbering outcome where the application treats numbering
differently in the document outline to numbering in the narrative content.

The approach taken by the clause model is that authors should not have to care as to
whether something is correctly characterised as a clause or a list. This is achievable
when there are only 2 ways in which the hierarchy can be represented. An Item is either
part of the document outline (Items occur within a parent Item element) or it is part of
the narrative content (Items occur within a parent Block element).

Based on this distinction, applications can satisfy users’ complete numbering and
presentation requirements.

The use of a single structure ensures that:

(a) authors can reorganise content during drafting just by moving objects into
different contexts with minimal or no element transformation;

(b) regardless of who created a content object and their conception of its hierarchical
context, it can be re-used easily (in a markup sense) by different authors in
different documents; and

(c) applications and authors can employ their own conceptions of citation and
structural naming without limiting those benefits.

 Clause model specification

Draft 1.0 – 11/11/2003 22

9.5 Why a recursive model?

9.5.1 Basis for the recursive model

It was decided to adopt a recursive model under which the Item element can occur
inside itself and inside element Block.

This decision is based on three key factors:

(a) The clause model is to be used for a wide range of legal and business documents
in addition to contracts. There is no common, named hierarchical structure (e.g.
Chapter, Division, clause, subclause) that will suit such a range of document
types within even a single jurisdiction. It is cons idered that only a generic,
recursive model or a generic, named hierarchy model could satisfy the standard’s
objectives in this respect.

(b) A recursive model provides all necessary information about the generic clause
structure to human users and processing applications with the fewest number of
elements. A generic, named hierarchy model might use terms such as “Level1”,
“Level2” or “Item1” and “Item2”. These add no information to the markup that
cannot be inferred from the hierarchical relationship of the Item elements. They
frustrate re-usability and are inconsistent with requirements 8 and 9.

(c) Objects in a generic, recursive model can be relocated anywhere in the document
hierarchy without re-tagging. This provides convenience to authors and
facilitates element re-usability to satisfy requirements 8 and 9.

9.5.2 Limitations with a recursive model

When authors of draft documents wish to re-order or relocate Item objects within the
document, they may need to work directly in a tags on view of the document, depending
on the functionality of the XML editing application they are using. Particularly if the
target location is between the end tags of a series of nested Item elements, it can be a
little confusing for authors to work out where to insert the moved Item.

A recursive model does add some complexity to document processing applications.
However, XML processing tools are improving rapidly. This problem will become less
significant over time.

Another limitation with recursive and generic, named hierarchy models is that
applications may lack explicit information necessary to determine which levels of Items
from the document outline are to be included in contents listings for print and online
publications. This is not normally a problem with those named hierarchical models that
are specific to particular document types.

The first issue is considered to be minor compared to the problems of imposing on
authors and applications the need to constantly re-tag objects as they are re- located in
different parts of the hierarchy.

The second issue is unavoidable with a recursive model that uses only a single element
to construct the document outline. Resolution of this issue is discussed in topic 10.6.

 Clause model specification

Draft 1.0 – 11/11/2003 23

9.6 User customisations and data exchange
In practice, it is anticipated that many enterprise users of the standard will need to
modify the schema in various ways, including by adding their own elements. This is
common with almost all schema and there is no reason to expect it will not occur with
the eContracts standard.

If users do customise the schema for their own use, the standard must address how users
will exchange data with others who may use the standard schema or a different set of
modifications. Issues that may need to be considered include:

(a) Is there one exchange model or will there be different models for different types
of users who need different levels of information in the markup?

(b) How do parties include information about non standard extensions that may have
been used in the source data and which may be of interest to the recipient?

It is not the purpose of the basic clause model proposal to resolve these issues.

9.7 Key points about the model
The proposed model provides a very simple way to markup any narrative text structure
found in contracts and other legal and business documents.

The proposed model provides very limited options for authors to represent the same
hierarchical structure in multiple ways. This strictness is intended to simplify
application development, simplify training for authors and facilitate content re-usability.

The model provides a strict hierarchical representation of all content objects to that they
can be conveniently and accurately referenced and processed by applications.

The proposed model is capable of representing all generic structural relationships that
are needed for accurate document publishing and processing.

10. Item element

10.1 Content model
The simplified content model for purposes of the basic clause model is as follows:

<!ELEMENT Item (Num?, Title?, (Block* | Item*))>

Element Block is described in topic 11.

Element Title is described in topic 13.1.

Element Num is described in topic 13.2.

10.2 Purpose of the Item element
The Item element performs a range of functions:

(a) As a recursive element it is used to create the basic document outline, as
explained in topic 9.3.

(b) It models the basic clause structure, i.e. narrative content that, in a contract is
likely to be numbered and to have a title or caption.

 Clause model specification

Draft 1.0 – 11/11/2003 24

(c) Within the narrative content, it serves as the list item.

These uses are all shown in Example 1 in topic 9.1.

Used recursively with a small number of other elements, the Item is able to perform
these functions and provide a concise description of the generic document structure and
maximise author convenience and content re-usability.

The Item element does not have required content. This allows authors to create an
outline structure of Item elements. Until a Block is inserted in the leaf nodes for
narrative content, it is likely to have only a Title.

10.3 Name selection

10.3.1 Options considered

Requirement 6 lists common names that are excluded from consideration.

Two candidate names were considered:

• Topic

• Item.

The Topic element is used in the proposed clause model submitted by Elkera Pty
Limited (Peter Meyer), in the IBM DITA DTD. In each case it has a required Title
element and is not also used in list item contexts. For these reasons, Topic was excluded
as the name of an element that can exist at any level of the hierarchy. The topic element
also occurs in the Topic Maps DTD.

In topic 10.7 the discussion considers whether it is desirable to create a distinct element
for use as list items in narrative content. If the conclusion from that discussion is that a
new element is required, the main constraint on the use of “Topic” in the document
outline would disappear.

The term “Item” denotes a separate, identifiable piece of information. This reflects its
intended use in the clause model.

10.3.2 Specific recommendations

3. The name “Item” is adopted as the primary clause equivalent element if that
element name is allowed to exist at all levels of the hierarchy. [Resolve after
consideration of Recommendations 11 and 12]

4. The name “Topic” should be adopted if a distinct element is created for list
items in narrative content. [Resolve after consideration of Recommendations 11
and 12]

10.4 Content model options
The content model for Item set out in topic 9.1 represents the simplest pattern for the
proposed clause model.

From the discussions in topic 9 several issues were identified that may affect the content
model for the Item element:

(a) Should the content model for Item in the document outline be:

 Clause model specification

Draft 1.0 – 11/11/2003 25

<!ELEMENT Item (Num?, Title?, (Block* | Item*))> (tight
model)

or
<!ELEMENT Item (Num?, Title?, Block*, Item*)> (loose model)

(b) Is it necessary to provide a facility to require the use of Titles on Items in the
document outline and, if so, how should this be achieved (See topic 10.6)?

(c) How do we prevent authors from re-starting the document outline from within
narrative content, i.e. creating lists by using Block > Item > Item rather than
the desired Block > Item > Block > Item.

Each of these issues is considered in the following topics. In each case a
recommendation is made or issues are identified for decision by the Technical
Committee.

10.5 Use of the loose and tight models

10.5.1 The problem

In Example 6 it was shown how the loose content model for Item would allow
Block and Item elements to exist at the same level to form an irregular document
outline. The same, irregular hierarchy can occur when Items have Titles, as in Example
7.

Example 7 Mixed Paras and Items

1. A complex clause

 Here is a Block before some Items. ç Block before Items

1.1 Title of Item

 Text of second nested clause or subclause.

1.2 Title of second Item

 Text of third nested clause or subclause.

When this occurs in the document outline, the following problems can arise:

(a) The content of a Block element that precedes the Items, as in the above
example does not directly appear in a contents listing. Contents listings become
misleading.

(b) It may be confusing to authors as to how they should markup lists in the
narrative content.

(c) Large documents cannot be easily chunked into discrete pages for web
publications. Applications must deal with content that sits between the
hierarchical levels.

Overall, these problems result in the data not reliably reflecting a structure that is
needed for convenient processing and publishing. The extent of these problems may
vary according to the size and number of documents and the publishing needs of the
user enterprise.

 Clause model specification

Draft 1.0 – 11/11/2003 26

10.5.2 Is there a need for the loose model?

The structure shown in Example 7 is rather uncommon in contract documents,
particularly where clauses are numbered. However, this structure does occur from time
to time in other documents. There are two key reasons for this:

(a) Authors omit the title before the first Block because it is usually some form of
introduction. Use of a heading “Introduction” may seem redundant.

(b) Many authors simply do not share the view that such structures are anomalous.

Due to the flexibility of the proposed clause model, it is only necessary to use the loose
model in the exact situation described in Example 7, i.e. where the Items in the
document outline are numbered and it is desired to insert a paragraph of text before the
first numbered Item. This is the most uncommon scenario.

In cases where the Items in the document outline are not numbered, the author can use
Item elements everywhere in the sequence and omit the Title from the first or any
other Item, if desired.

The conclusion is that almost all users should be able to work with the tight model. That
model should not be constraining to authors in all but the most unusual circumstances.

It is expected that most organisations should implement the tight model for the creation
of new documents such as contracts and other regularly structured documents.

In practice, the loose model may be required to markup legacy data that contains an
irregular document outline. It may also be required by authors who wish to create an
irregular document outline, as explained earlier.

It is proposed in topic 9.6 that the clause model should be capable of allowing users to
exchange eContracts data while allowing them to maintain their own customisations. As
the model capable of representing the widest range of documents, the loose model may
provide a platform for that purpose.

For these reasons use of the loose model cannot be excluded. Provided that the issues
are explained, it will be up to users to determine the model that best suits their needs.

10.5.3 Specific recommendations

5. The standard should allow use of both the loose and tight models.

6. The loose model should be designated as the standard for exchange of
eContracts data between user enterprises.

7. The tight model should be recommended for general use.

8. The exchange of data using the tight model should be permitted by agreement
between the parties. [The standard cannot prevent this.]

10.6 The use of Titles on Items in the document outline

10.6.1 The problem

Based on the content model for Item in topic 9.1, Item elements in the document
outline may have a Title. A Title is not required and cannot be required on an
element that serves the range of functions proposed for the Item element.

 Clause model specification

Draft 1.0 – 11/11/2003 27

An important characteristic of the document outline to human readers of documents and
to publishing and processing applications is whether objects in the outline have titles.

Example 8 shows how an author might create a document outline using the proposed
clause model.

Example 8 Inconsistent use of titles

1. Title of first item
1.1 Title of first nested item

 Text content of first nested item.

1.2 Text content of second nested item ç No Title

1.3 Title of third nested item

 Text content of third nested item.

2. Text content of second item ç No Title

3. Title of third item
Text content of third item.

In Example 8, the objects numbered 1.2 and 2. do not have Titles, unlike all other
objects at the same levels in the hierarchy. The author is able to add or omit titles at
will, resulting in inconsistent usage.

The inconsistent use of Title elements may cause significant problems for applications
that build contents listings for documents that are published in print or online. In
particular:

(a) Omission of titles causes contents listings to be inaccurate in print documents.

(b) Omission of titles causes content to be almost completely invisible in web
publications. There may be no hypertext link to the relevant content or else it
will lack any descriptive information.

(c) If headings can be added or omitted at the will of the author, how does an
application know how many levels of the hierarchy at particular nodes should be
included in the contents listing?

(d) An application may specify that, say, the first 3 levels of items with titles will be
included in the contents listing. What does the application do if none or only
some Items at that level have titles? Does it have to attempt to analyse the data
and take action based on rules provided by the application developer? If such
processing is required, this will add considerable complexity to applications.

The extent of these problems may vary with different document types. Authors of
contracts may be expected to use titles fairly consistently. Authors of other documents
such as advices, reports and manuals may be more likely to be less strict in the use of
Titles.

A classic problem occurs at the cross over point in the document hierarchy where
authors cease to use titles on the structural objects. This is shown in Case 2 in Example
2. Using clause based terminology, this is where the author switches from clause to
subclause. Unfortunately, the recursive model does not allow us to distinguish these
cases. Applications would need to query the data to determine where the author has

 Clause model specification

Draft 1.0 – 11/11/2003 28

stopped using Titles. This is unsatisfactory at the best of times but produces
unpredictable results when titles are used inconsistently at particular levels.

In very many cases there will be a boundary in the document outline at which Items are
included in the contents listing and below which they are not. The problem is to easily
and reliably determine that boundary.

10.6.2 Development issues

It is not possible to adopt a content model for Item that requires a Title. The author
must be able to choose whether titles are required at any particular level of the
hierarchy.

These problems encapsulate two important issues in development of the schema:

(a) Is it desirable to include a mechanism in the schema to allow applications to
know which levels of the document outline can be included reliably in print and
online contents listings?

(b) Should authors be able to signify their intentions about the items they want
included in the contents listing? If so, how should this be done?

10.6.3 Desired functionality

The conclusion reached is that it would be highly desirable if the design could:

(a) require authors to consistently create Titles for Items at levels of the hierarchy
that are expected to be included in contents listings;

(b) allow authors to easily signify the particular nodes that are to be included in or
excluded from contents listings; and

(c) allow applications to process documents reliably without having to analyse the
content to determine whether the use of Titles is sufficiently consistent to justify
inclusion in the contents listing.

10.6.4 Option 1 – Use metadata to determine the contents boundary

Proposed solution

It is considered highly desirable that authors should not have to add metadata to each
Item element as it is inserted. This would become extremely burdensome. It is also
highly desirable that metadata should not be added to every Item element. This would
cause authors to have to frequently change values as content is relocated in draft
documents. This places unwanted burdens on authors and creates situations where they
may not realise that particular settings are in place.

Under this option, the Item element would have, say, an optional attribute with a single
value:

<!ATTLIST Item StopContentsBelow (Yes) #IMPLIED>

This markup would be applied under the following processing principles:

(a) Particular document types that do not require contents listings would be
processed on that basis without any need to set this attribute value.

 Clause model specification

Draft 1.0 – 11/11/2003 29

(b) Document types that require a contents listing would assume that all Items in the
document outline are included in the contents listing unless a stop value is
encountered.

(c) Once a stop value is encountered, all Items below that level would be excluded
from the contents listing.

Advantages

(a) It provides a convenient mechanism for authors to signify their view of the
content.

(b) It provides certainty to processing applications, subject to the problem that
expected Titles may not be present.

(c) It avoids the need to translate element markup as content is re-used in different
contexts.

(d) It provides a means for authoring applications to provide a markup checking
utility to warn authors of any Items that are within the scope of contents
generation but lack the expected Title.

(e) It does not prevent applications from applying other rules to the data if they are
desired for particular document types or for particular publications.

(f) Users and developers can elect to support or ignore this feature without affecting
data exchange.

Disadvantages

(a) It does not enforce the use of Titles where they are expected for contents
generation.

(b) It may be burdensome for some processing applications to exclude Items from
contents generation based on the value of an attribute on a parent or ancestor
element. However, XSLT manages this quite easily.

10.6.5 Option 2 – Use an alternative element with a required Title

Proposed solution

The clause model could include another container element called Topic. This element
would by recursive and operate in a similar way to the Item element except that it
would require a Title element and it could not exist inside a Block. The content
model for the Topic element would be as follows:

<!ELEMENT Topic (Num?, Title, (Topic* | Item* | Block*))>

Under this content model, there would need to be a general principle understood that
applications should use only Topic elements to build contents listings. Authors would
insert Item elements when they no longer wished to create cons istent Titles or they
wanted the Items excluded from possible contents listings.

This approach could be an optional extension to the standard for use by those
enterprises and developers who find it useful.

 Clause model specification

Draft 1.0 – 11/11/2003 30

Advantages

(a) The selective use of the Topic and Item elements in template documents
provides user enterprises with the ability to guide authors down the desired path
and to gain substantially higher quality, consistent markup that will support
reliable, automated processing.

(b) It simultaneously solves both problems: certainty about the presence of Titles
when they are expected and definition of the boundary for contents generation.

(c) Application developers have complete certainty about the content that is
available for inclusion in contents listings and for possible page chunking in web
publications.

(d) Authors have a convenient mechanism to decide how to structure their data,
subject to the possible need to translate markup as content is moved from one
context to the other.

(e) Users and application developers do not have to adopt this option if they do not
require it.

Disadvantages

(a) All applications must provide for two elements that perform similar functions in
the document outline. This increases application complexity.

(b) Authoring and some processing applications would have to provide facilities to
translate between Topic and Item element markup as content is moved to the
other context during document drafting and document assembly type operations.

10.6.6 Option 3 – Apply a context based content model on Item

Proposed solution

This option cannot be implemented under current XML Schema standards but is likely
to be possible under a future version of the standard (see the Requirements for proposed
version 1.1 of the XML Schema standard at http://www.w3.org/TR/xmlschema-11-
req/#N400120.

This option requires the use of attribute values to determine the context for an element
declaration. This option could be implemented under RELAX NG Schema. However,
the most widely used XML document authoring applications do not support RELAX
NG Schema at this time.

The model is very similar to Option 1, except that the use of Titles would then be
controlled by the Schema. If the initial assumption is that they are required, they would
remain required until the author applies a not required value.

Advantages

(a) This option has all the advantages of Option 1, plus it enforces the use of Titles
where they are expected. It would effectively provide the functionality of Option
2.

(b) It is consistent with Option 1. If Option 1 is implemented, it is likely to be simple
to implement the Schema based solution.

 Clause model specification

Draft 1.0 – 11/11/2003 31

Disadvantages

(a) It cannot be implemented at this time.

(b) Authors or applications moving from a non required Title context to a
required Title context would have to ensure that a Title is added, if it is not
already present.

10.6.7 Specific recommendations

9. It is recommended that the TC adopt Option 1 as the preferred option, in
principle, at this time. It should not be formally included in the model but should
be coordinated and implemented with other metadata requirements in a later
phase of the development.

10. It is recommended that the discussion on Options 2 and 3 should be left in the
draft specification and that feedback should be sought from interested parties
during a review of a draft standard. A final decision should be made at that time
to either exclude the options or recognise them as optional extensions for non
exchange purposes. [Note: Option 2 can be added at any time by anyone who
wants to use and support that option, without impact on the rest of the clause
model. Option 3 can be implemented at any time by anyone using RELAX NG
Schema and supporting applications.]

10.7 Should Item be used for lists in narrative content?

10.7.1 The problem

The loose and tight models allow an Item to contain another Item. This is desired
behaviour in the document outline but it is not desired in the narrative content. As
discussed in topic 9.4, list structures in the narrative content are created by containing
items inside the Block element. If an author can also insert an Item inside an Item in
that context, authors will be apparently able to revert to the document outline from in
the narrative hierarchy. This will not add any flexibility to the markup but create
difficulties for authors and developers.

There is also the problem described in Example 6. This allows authors who use the
loose clause model to create lists in the narrative content which contain a sequence of
Block and Item elements, thus breaking the strict hierarchical relationship and
providing another way to represent lists in the narrative content. This problem arises
only under the loose clause model.

In topic 9.4.3 it is shown that lists in the narrative content should be created only within
a containing Block element. Items that contain content conforming only to the loose
clause model do not satisfy this requirements and ought not be inserted into a list
context in the narrative content. It is not clear how much of a problem this will present
in practice. Normally, an author would expect to re- locate a single item node from the
document outline into a list context in the narrative content. It is difficult to see why an
author would expect to be able to move an Item with contains Items into a list in the
narrative content.

 Clause model specification

Draft 1.0 – 11/11/2003 32

10.7.2 Option 1 – Redefine Item according to context using XML Schema

The proposal

In topic 9.4.3 it is shown that it may be necessary to characterise a list as either part of
the document outline or as part of the narrative content to achieve particular numbering
preferences. If the Item element is available in all contexts, authors can easily switch
from one to the other by moving Items in or outside a containing Block element.

It also occurs that, while drafting, authors wish to re-draft and convert lists in the
narrative content into Items in the document outline. The reverse may also occur.

To facilitate these changes and to allow complete flexibility for content re-use, it is
desirable that content can be moved between the document outline and the narrative
content without element transformation.

To achieve this objective, the content model for Item in the narrative content should
be:

<!ELEMENT Item (Num?, Title?, Block+)>

Using DTDs it is not possible to modify the content model of Item according to
context. It is possible to do so using XML Schema and Relax NG Schema.

This proposal should be adopted if XML Schema are adopted as the reference schema
language for the standard.

If the reference schema language is DTDs, it is still open to users to use this model by
implementing XML Schema or RELAX NG Schema for their applications. All data
created under this model will be valid under a DTD based standard.

Advantages

(a) It avoids creation of a new element and the disadvantages of Option 3.

(b) It maintains complete content re-usability when the “tight clause model” is used,
as recommended in topic 10.5.3. Item elements can always be moved from the
narrative content to the document outline. Item elements that do not themselves
contain direct Item elements can be moved from the document outline to the
narrative content.

Disadvantages

(a) Users who rely only on DTDs will have to deal with the possible disadvantages
of there being two ways to insert Items in lists in the narrative content.

(b) DTD users may create data that will not validate under a Schema.

10.7.3 Option 2 – Ignore the content model problem

The proposal

The problem caused by allowing recursive Item elements in the narrative content is not
particularly serious. In most XML authoring applications the problem will be avoided
because Item elements inserted within the Block context should also include the
contained Block element, thus preventing the author from making the mistake.

It is also highly unlikely that authors will allow the mistake to stand since automatic list

 Clause model specification

Draft 1.0 – 11/11/2003 33

numbering is unlikely to produce the expected results, assuming that numbering is
displayed by the authoring application.

Advantages

(a) It preserves complete element re-usability.

(b) Most users should be able to adopt XML Schema and avoid the problem.

(c) On the assumption that XML Schema are likely to become the de facto standard
in the future, if not the de jure standard, it avoids creation of an element that will
become redundant at that time.

Disadvantages

(a) The content model problem is unresolved. Some authors may create lists in the
narrative content in unintended ways.

10.7.4 Option 3 – Create a new element

The proposal

It is proposed that a new element should be created to replace Item in the narrative
content (i.e. inside the Block element). Currently, the element is called “ListItem”.

In support of this option, it is argued that a ListItem element will overcome issues with
the content model for all schema users, albeit at the expense of limiting re-usability of
content in some cases. It is argued that movement of list items between the narrative
content and the document hierarchy is not common and the benefits of content model
certainty outweigh the benefits of content reusability.

It is proposed that if this option is adopted, element names should be reviewed, as
discussed in topic 10.3.

Advantages

(a) It allows only one way to create lists in the narrative content, thus avoiding
possible, undesirable markup.

(b) DTD users have the same content model as Schema users.

Disadvantages

(a) It prevents direct re-usability of content between the document outline and the
narrative content. List examples in Cases 5 and 6 must use different element
markup. If authors wish to swap from one context to the other, it would be
necessary to convert element markup. This would create the only context in
which re-usability is inhibited in this way. It violates requirement 9.

(b) It creates a redundant markup distinction between elements that are otherwise
adequately differentiated by their context as either within or outside a Block
element.

10.7.5 Specific recommendations

11. It is recommended that the TC make a provisional choice between Options 1, 2
and 3 so that a working clause model is established for further development.

 Clause model specification

Draft 1.0 – 11/11/2003 34

12. It is recommended that the TC review Options 1 to 3 once a decision is made on
the questions set out in topic 8.3 and the requirements for inline lists (discussed
in topic 11.7) are known.

10.8 Outstanding issues
This initial proposal does not seek to address any issues other than those necessary to
the basic structural model. Outstanding issues include:

(a) in line lists;

(b) element identifiers and linking;

(c) metadata;

(d) higher level structural components of contract and other documents.

11. Block element

11.1 Content model
The simplified content model, for purposes of the basic clause model is:

<!ELEMENT Block (Text | Item)+>

Element Text is described in topic 11.7.

Element Item is described in topic 10.

Note: In a complete implementation, this content model will include other equivalent
objects such as tables, block graphics, block quotations etc.

11.2 Purpose of the Block element
In simple cases the Block element broadly corresponds to a grammatical paragraph.
However, because it is a container for a wide range of objects and because of its use at
all levels of narrative content, the correlation does not extend beyond the simplest
paragraphs.

The Block and Text elements are the basic content elements of the proposed model.
Both of these must be included to create text content for a document. For example:

<Block><Text>The quick brown fox jumps over the lazy
dog.</Text></Block>

The Block element separates narrative content from the document outline, as
described in topic 9.3.

The Block element cannot be directly numbered. If a numbered structure is desired it
must be enclosed by an Item element.

The Block element may never directly contain text data. The Block element must
contain at least a Text element which contains the text data. The Block element will
also contain tables, block graphics and other similar components. These other
components are not included in the basic clause model proposal but will be considered
in a later phase of the development. The Block element provides a container for all
grammatically nested components so they may be manipulated as a group.

 Clause model specification

Draft 1.0 – 11/11/2003 35

The following example shows how the Block element contains all components of a
complex grammatical paragraph. This ensures that inside a clause structure (Item
element), grammatical paragraphs can be distinguished from components such as the
continuation of the paragraph after a list.

Example 9 Operation of the Block container

<Item>
<Num>1.</Num><Title>Foxes and lazy animals</Title>
<Block>
<Text>The quick brown fox jumps over the lazy:</Text>
<Item><Num>(a)</Num><Block><Text>dog;</Text></Block></Item>
<Item><Num>(b)</Num><Block><Text>cat;</Text></Block></Item>
<Item><Num>(c)</Num><Block><Text>rabbit,</Text></Block>
</Item>
<Text>and any other animal that may be sleeping.</Text>
</Block>
<Block>
<Text>More alert animals won’t be caught so easily.</Text>
</Block>
</Item>

The operation of the Text element is considered in a later topic.

Lists in the narrative content are represented by Item elements contained by the
Block element, as discussed in topic 10.2. It is proposed that a single element can be
used for all lists and that is not necessary to define ordered lists and unordered lists, as
exists in HTML and some other DTDs such as DocBook. The distinction between these
is based solely on the author’s selection of numbering options. Frequently, authors wish
to switch from one option to the other. This is very common as content is re-used by
different authors and in different documents. The use of distinct elements for each
numbering type would unnecessarily burden authors and frustrate content re-use.

11.3 Name selection

11.3.1 Options considered

The following options were considered:

• Block

• Para

• Clause.

11.3.2 Arguments relating to “Block”

The proposed element does not have any real equivalent in a word processing model. A
word such as “Para” implies a correspondence with word processing paragraphs that
does not exist. Word processing documents do not explicitly recognise hierarchically
based containers.

 Clause model specification

Draft 1.0 – 11/11/2003 36

The term “Para” is likely to create confusion when contract drafters refer to a
“paragraph”. This will normally signify a list item but could easily be confused with the
Block element.

 “Para” is an abbreviation of “paragraph”. This is in conflict with the names expressly
excluded by requirement 6. Abbreviations are generally avoided in the model and are
discouraged, as proposed in topic 7.5. The word is aesthetically inconsistent with other
terms used in the clause model.

It is argued that a more neutral term is required and that “Block” serves this need. This
term avoids association with word processing concepts or with particular document
types.

In proposing “Block” it is argued that any technical associations for developers are
irrelevant. They do not need to rely on the element name to tell them its rendering
function. They will determine from the element structure how it should be processed. In
any event, the element names should be chosen for convenience of authors over
developers.

11.3.3 Arguments relating to “Para”

It is argued that “Block” is a technical term for developers who will assume that it is to
be rendered as a block (new line) element in a CSS sense when in fact it is the Text
element that would normally be treated as the new line element. It is argued that
developers will be confused.

It is then argued that the term “Para” recognises that in many cases the element is
representing a grammatical paragraph. On this basis, “Para” is a better candidate than
“Block”.

11.3.4 Arguments relating to “Clause”

The clause model is a recursive model, as discussed in topic 9.5. It seeks to apply to a
wide range of legal and business documents in many jurisdictions. The term “clause” is
inappropriate for the basic recursive container object in the clause model for these
reasons:

(a) It is contrary to common terminology to call all the hierarchical levels before the
“real clause” (the one that starts the narrative content) clauses.

(b) When people think of clause, they then think of subclause. Use of a subclause
element conflicts with the use of a recursive model.

(c) The model is applicable to documents with numbered and unnumbered
components. The use of the term “clause” is uncommon for unnumbered objects
such as a chapter in an article or book.

(d) The term “clause” may be in common use for contracts by some users in some
jurisdictions but this is not universal. The term will be out of place for many
users who will have already associate a particular meaning to the term.

(e) The term “clause” does not even suit numbered objects in some legal and
business documents. In many jurisdictions the term is not commonly used in
litigation pleadings, fo r example. Most people, particularly outside the legal
industry, would not use it at all for non contract documents.

 Clause model specification

Draft 1.0 – 11/11/2003 37

The net result is that the term “clause” is a poor choice for a recursive element in the
proposed clause model. The clause model aims to avoid this by creating a new, neutral
language that does not denote particular citation patterns that suit some users but not
others or some documents but not others.

11.3.5 Specific recommendation

13. The Technical Committee is invited to choose between “Block” or “Para” or
propose an alternative name that satisfies the objectives set out in topic 7.5.

11.4 Content model options
Two variations on the proposed content model have been considered:

(a) Create a distinct element for list items within the narrative content;

(b) Create a list container element for lists within the narrative content.

Each of these proposals is discussed in the following topics.

11.5 Is a distinct list item element required?
This issue is fully considered at topic 10.7.

11.6 Is a list container required?

11.6.1 The problem

It has been proposed that a list element is required for the markup of lists in the
narrative content. This would produce the following content models, ignoring the
possibility of a list item element:

<!ELEMENT Block (Text | List)+>
<!ELEMENT List (Item)+>

There is nothing per se in the basic clause model that requires use of a list element to
determine the generic structure of the narrative content. Authors and applications can
determine that an Item is functioning as a list item in the narrative content simply
because it is contained by a Block element. No further structural markup is required.

It is necessary to deal with this issue as part of the basic clause model development.
Inclusion of a Lis t element will affect other aspects of the proposed clause model.

Four arguments have been offered in support of the List element.

Firstly, it is proposed that the List element will be required to hold attribute values to
control numbering options for list items in the narrative content. Most commonly, an
author may wish to specify that a list is to be bulleted, rather than numbered using a
standard numbering sequence such as (a), (b) etc. How is this choice to be stored for
ongoing use by the applications?

Secondly, it is also argued that the problem in Example 10 cannot be dealt with except
by creation of a List element.

 Clause model specification

Draft 1.0 – 11/11/2003 38

Example 10 Two lists in a Block

Simplified markup example:

<Block>
<Text>Here is a list of the primary colours:</Text>

(a) red

(b) blue

(c) yellow,
<Text>followed by the rest of the spectrum colours: </Text>
(c) orange
(d) green
(e) indigo
(f) violet.
</Block>

If the author wished to make the second list bulleted, how would this be signified? It is
proposed that a List container could hold an attribute value to reflect this choice.

Thirdly, it is argued that the List container is required for possible use by processing
applications involving document assembly processes. In particular, applications that
assemble lists from precedent Items, may need to determine the penultimate list item so
that the correct wording can be inserted, depending on whether the list is disjunctive or
conjunctive. It is argued that the List container would make this process easier in some
processing applications.

Fourthly, it is argued that lists structures are commonly understood by authors and that
the use of a list element provides explicit recognition of that understanding.

11.6.2 Option 1 – Omit the List element

The proposal

It is argued that the List element is unnecessary and should not be created.

The first argument in support of the List container does not justify its use. Attribute
values to control automatic or manual numbering options can be added to the containing
Block element. There is no logical reason why that element is less suitable than a List
element for this purpose.

It is acknowledged that the functionality proposed for the second list (second argument)
could not be sensibly achieved if numbering options are set on the containing Block.

The second argument in support of the List element is not based on practical
requirements. The suggested problem can be managed in these ways:

(a) Multiple lists in a Block, as shown in Example 10 are very rare.

(b) An application can and should define a standard numbering sequence for such
structures, if they are likely to occur.

 Clause model specification

Draft 1.0 – 11/11/2003 39

(c) If the author wishes to apply a custom numbering sequence to the second list,
they could set the whole list sequence to manual numbering and handle the list
numbering manually to achieve a desired result.

(d) More likely, if the author considers that the standard numbering scheme is
inadequate and an alternative numbering scheme should be applied to the second
list, the author can re-write the structure and separate it into two Paras.

The third argument is rather speculative. All the processing problems can be solved
without the List element. Even if it is more convenient for some processing applications
to have the List element, this is insufficient to justify creation of a new element.
Processing applications are constantly evolving and improving, as discussed in topic
2.5.

The fourth argument is in direct conflict with the analysis in topic 9.4. From that
analysis it is clear that authors would have a broader conception of what is a list than a
series of numbered objects contained by a Block element.

It is also clear that there are many circumstances in which authors will need to move list
structures between the document outline and the narrative content. Why have a list
container in one but not the other?

In summary, it is proposed that the basic model will provide fully adequate facilities for
authors without creating a new element that will be pervasive in the markup.

Advantages

(a) The clause model is simpler, yet no less effective in describing the generic
structure of narrative content. A redundant element is avoided.

(b) All practicable functionality that is offered to justify the List element can be
provided without that element.

(c) Explicit recognition of a “list” structure is avoided, as promoted in the clause
model requirements and in topic 9.4 and following.

Disadvantages

(a) Very occasionally, an author might feel they need to re-write a double list
structure.

(b) Some application developers might find it less convenient to undertake document
assembly or similar functions.

11.6.3 Option 2 – Create a List element

The proposal

It would be necessary to create new content models as set out in topic 11.6.1 or as
follows:

<!ELEMENT Block (Text | List)+>
<!ELEMENT List (ListItem)+>
<!ELEMENT ListItem (Num? Title?, Block+)>

 Clause model specification

Draft 1.0 – 11/11/2003 40

Advantages

(a) It provides a container element that can hold the attributes proposed and it might
assist some processing.

Disadvantages

(a) The element is structurally redundant.

(b) The element adds unnecessary complexity to the process of changing lists from
the document outline to the narrative content.

11.6.4 Specific recommendations

14. The arguments in favour of the List element mainly revo lve around specification
of numbering options. It is also possible that the issue will be affected by the
requirements for inline list, discussed in topic 11.7. It is recommended that:

(i) the TC defer a final decision on the List element issue until the requirements
for managing component numbering and inline lists are determined; and

(ii) pending a resolution of those requirements, the List element should be
provisionally excluded from the clause model.

11.7 In line lists

11.7.1 The problem

In some United States jurisdictions and possibly elsewhere, list structures are rendered
in line so that each numbered item does not start a new line when rendered in print or
online.

At this point, the clause model does not address this need. Before adapting the clause
model it is necessary to determine the requirements for support of in line list structures.
The following questions are proposed:

(a) Are inline lists common in modern documents or are they more a legacy
structure?

(b) Would authors sometimes want to swap in either direction between inline and
new line rendering of lists?

(c) If markup is provided for inline lists, would authors reliably mark them up or
would they sometimes just type in the text and forget about the markup?

(d) Is it necessary to create multiple levels of lists inline (list > sublist)?

(e) Would an author ever include both an inline list and a new line list in the same
paragraph (Block element)?

(f) Is the use of inline lists better treated as a matter of house style or author
preference? For example, is it necessary that an author can mix both layouts in
one document?

(g) Apart from inline or new line rendering, are there any other material differences
between in line lists and conventional list?

Until these issues are resolved it is not possible to assess how possible support for inline
lists might affect the basic clause model proposal.

 Clause model specification

Draft 1.0 – 11/11/2003 41

11.7.2 Specific recommendation

15. It is recommended that the TC provide guidance on the 7 questions regarding
the requirements for support of inline lists.

12. Text element

12.1 Content model
The simplified content model is:

<!ELEMENT Text (#PCDATA)>

Note: In a complete implementation, this content model will include elements for inline
markup of objects such as defined terms, references and citations etc.

12.2 Purpose of the Text element

12.2.1 Overview

The Text element is intended to hold all character data content inside the Block
element and, possibly other similar contexts. It functions as a new line element, not as a
new grammatical paragraph. It is not the word processor equivalent of pressing the
Enter key. Rather it is the equivalent of Shift + Enter in Microsoft Word.

A Block may contain multiple Text elements interspersed with Items or other
objects.

The Text element could be dispensed with as redundant in most situations. The clause
in Example 9 could be marked up as follows:

Example 11 Alternative clause markup without the Text element

<Item>
<Num>1.</Num><Title>Foxes and lazy animals</Title>
<Block>The quick brown fox jumps over the lazy:
<Item><Num>(a)</Num><Block>dog;</Block></Item>
<Item><Num>(b)</Num><Block>cat;</Block></Item>
<Item><Num>(c)</Num><Block>rabbit,</Block></Item>
and any other animal that may be sleeping.</Block>
<Block>More alert animals won’t be caught so easily.</Block>
</Item>

The Text element is added to meet a range of author and processing needs, including:

(a) It provides “new line” functionality to add greater flexibility for authors, as
discussed in topic 12.2.2.

(b) It makes content creation more consistent for authors because the Text element
provides a placeholder and slot for data entry.

(c) It assists some processing by consistently separating new line content from inline
content.

 Clause model specification

Draft 1.0 – 11/11/2003 42

(d) Subject to the outcome from recommendations in topic 12.4, it provides a
mechanism to control content that is normally rendered on a new line but
sometimes rendered inline, as discussed in that topic.

The principal issue to overcome with the Text element is that to meet these needs, the
Text element becomes pervasive. Every Block must contain a Text element. In
practice this does not present any problems for authors. They will readily understand its
benefits as a new line control feature and, depending on the functionality provided by
their editing application, should rarely have to directly insert the element during content
authoring. It is expected that applications will insert the Text element by default each
time a Block element is inserted. Authors can remove it on those occasions when it is
not desired.

It is considered that the balance of convenience is strongly in favour of use of the Text
element and the flexibility it provides.

12.2.2 New line functionality

New line functionality is useful in the markup of content in tables. Table markup is
strongly presentation oriented. From time to time an author needs to control where a
break will fall for arbitrary heading like content in tables or for other content.

New line functionality is also useful in narrative content as an alternative to list markup
from time to time. The Text element may be repeated inside a Block to create the
equivalent of a new line. This may be used to create lists of objects that are not
numbered where the author wants them to align to the left margin for the containing
Block.

12.2.3 Hard cases

In some cases, the absence of an explicit element makes it impossible to determine
whether to render the chunk of text inline or on a new line. For example, a formula may
be followed by the word “where:” to introduce the definitions of formula components.
Use of the Text element may allow the data to specify whether this continues in line or
starts a new line.

A further issues occurs with quotations. Occasionally, the quotation may be followed by
data that is sometimes rendered on a new line and at other times rendered in line. This is
shown in Example 12.

Example 12 Continuing text after quotations

Consider the following two quotation examples (using simplified markup):

Case 1 – Text after quotation is desired on a new line.
<Block>
<Text>In Doe v Bloggs, it was stated:</Text>
 <Quote>
 "some great point of law, blahh, blahh.
 Blahh, blahh."</Quote>
<Text>See Denning LJ at p 400.</Text></Block>

 Clause model specification

Draft 1.0 – 11/11/2003 43

Case 2 – Text after quotation is desired in line.
<Block>
<Text>In Doe v Bloggs, it was stated: </Text>
 <Quote>
 "some great point of law, blahh, blahh.
 Blahh, blahh."</Quote><Text>, per Denning LJ at p 400.
</Text></Block>

See also http://www.judiciary.state.nj.us/style.htm (at point 3A) for another example
similar to Case 1.

An application would not be able to render the following Text in Case 2 inline unless it
can be distinguished from the Text in Case 1. Some form of element markup is required
to deal with this issue.

This particular problem is not common in contracts but it does arise in other legal
documents. Sometimes it is just a question of adding the period after the quotation.
Authors should not be forced to include it inside the quotation markup.

In the case of more complex content, it is not an option to include it inside the
quotation.

It is necessary to provide authors with a convenient facility to deal with these situations.
The options for this are considered in topic 12.4.

12.3 Name selection

12.3.1 Options considered

The following options were considered:

• Text

• TextBlock

“Text” is a simple, short word that conveys the desired meaning to authors.

“TextBlock” incorporates the word “Block” to signify to developers that the element is
a new line or block element. This is redundant and contrary to the principles discussed
in topic 7.5.

12.3.2 Specific recommendation

16. It is recommended that the TC adopt the name “Text” for this element.

12.4 Content model options

12.4.1 The problem

In Example 12 two quotation examples show the need for a mechanism to control
whether content within the same grammatical paragraph that follows a block object
should continue in line or start on a new line.

The Text element has been introduced as the new line element. It would be used to
markup the concluding text in Case 1 in Example 12. How should Case 2 be marked
up?

 Clause model specification

Draft 1.0 – 11/11/2003 44

The clause model requirements treat the issue of quotations and the markup of similar
objects as part of requirement 11 which is to be dealt with at a later stage. However, the
operation of the basic clause model, particularly the role of the Text element, may be
affected by the way in which those issues are handled. It is not the purpose of this
discussion to settle a way to handle quotations but to clarify the role of the Text
element as part of the structural model.

12.4.2 Option 1 – Create a special element for the inline text.

The proposal

It is proposed that a content model similar to the following may be needed for the
markup of quotations:

<!ELEMENT Block (Text | Item | BlockQuotation)+>
<!ELEMENT BlockQuotation (Block+, TrailingText?)>
<!ELEMENT TrailingText (#PCDATA)>

The TrailingText element could be used to mark up a period (full stop) or text such as
that shown in Case 1 in Example 12.

This proposal is promoted on the basis that it ensures that the Text element can never
be treated as an inline element and that this certainty is necessary for document
processing. It is argued that the proposed override behaviour on the Text element
(Option 2) creates particular difficulty for XSLT processing.

It is argued that it is inherently undesirable and bad design to have an element that can
behave as either an inline or new line element, regardless of how that behaviour is
specified.

Advantages

(a) It may facilitate easier programming.

(b) There are no exceptions to the new line behaviour of the Text element.

Disadvantages

(a) The model is confusing about the content of the quotation. The TrailingText is
not part of the BlockQuotation but is included inside that element. This is
semantically incorrect. To solve this problem, it would be necessary to add a
further container around the BlockQuotation element, adding even more
redundancy to the markup.

(b) It introduces a new element to markup narrative text. Everywhere else, narrative
text is contained in a Text element. This exception is confusing to authors and
application developers.

(c) It adds unnecessary complexity to style sheets by creating another element that
duplicates much of the functionality of another element.

(d) It adds markup that is driven by perceived processing convenience today, not
user convenience for all time.

(e) It is more difficult for authors to switch from one layout to another.

 Clause model specification

Draft 1.0 – 11/11/2003 45

12.4.3 Option 2 – Create an exception to the new line behaviour of Text

The proposal

It is proposed that a content model similar to the following may be needed for the
markup of quotations:

<!ELEMENT Block (Text | Item | Quotation)+>
<!ELEMENT Quotation (Block+)>
<!ELEMENT Text (#PCDATA)>
<!ATTLIST Text text.flow (runon) #IMPLIED)>
OR
<!ATTLIST Quotation text.flow.after (runon) #IMPLIED)>

Note: The use of the Quotation element is illustrative only. It is not proposed that an
element called Quotation should be created. Rather, an element should be created to
meet a general need for inclusion of content that is not part of the main narrative flow.
This is to be addressed under requirement 11.

The effect of this proposal is that the author can override the normal new line behaviour
of the Text element by setting an attribute on it. This would cause processing systems
to render it in line with the preceding element.

Alternatively, it would be possible to add the override value to the Quotation element.
Either solution would be acceptable under this proposal. The net effect is similar: there
would be an exception to the principle that Text element is always a new line element.

However, setting the attribute on the Quotation element would ensure that the
processing application only has to act on the first Text element after the Quotation. If
the attribute is set on the Text element, it may be necessary to evaluate multiple
successive Text elements to determine their behaviour.

It is argued that any processing inconvenience is minor. Processing can be handled and
we should not make decisions such as this based on particular processing issues. One of
the aims of the proposed standard structural model is to make it worthwhile for
developers to do the work necessary to fully implement an XML markup model. Once
the programming is done, the problem is gone. Redundant element markup is with us
forever.

It is argued that there are no inherent principles that prevent a general new line element
from having exceptional behaviour to allow it to become a new line element, provided
the reasons for so doing are clear.

Advantages

(a) It literally and accurately models the data in the simplest way.

(b) It avoids creation of a special purpose element with extremely limited use that is
included only to deal with a perceived processing difficulty with some of today’s
tools.

(c) It allows authors to switch easily from one layout to the other.

 Clause model specification

Draft 1.0 – 11/11/2003 46

Disadvantages

(a) Use of the attribute on the Text element may make XSLT processing more
inconvenient. This limitation may be mitigated by moving the attribute to the
Quotation element so it relates to the Text after the quotation.

12.4.4 Specific recommendations

17. It is recommended that the TC determine whether it prefers simplicity of the
element markup or a rigorous separation of new line and in line elements and
XSLT processing convenience as the primary design consideration. If it prefers
simplicity of markup, it is recommended that it adopt Option 2. Otherwise it
may adopt Option 1.

13. Title and Num elements

13.1 Title

13.1.1 Content model
<!ELEMENT Title (#PCDATA)>

Note: This is a simplified content model. Other content may be required. It is possible
even that the Text element could be added to allow new line functionality within Titles.
This can be considered at any time during development.

13.1.2 Purpose

The Title element provides a descriptive label to the content within the container to
which it is attached.

The Title element is used by authors to assist readers to follow the structure of the
narrative.

In the document outline, the Title element is used to populate the contents listing
and to form the basis for hypertext linking in online publications.

13.2 Name selection

13.2.1 Options considered

The following options were considered:

• Title

• Heading

• Caption

The choice of name from this list is largely driven by personal familiarity.

“Title” is currently favoured but any of the other options would be acceptable.

 Clause model specification

Draft 1.0 – 11/11/2003 47

13.2.2 Specific recommendation

18. It is recommended that the TC adopt the name “Title” for this element, unless
there is a general desire to adopt another name.

13.3 Num

13.3.1 Content model
<!ELEMENT Num (#PCDATA)>

Note: This element is a placeholder only. The clause model requirements propose that
component numbers should be explicitly added in the markup to facilitate
transportability of documents and to support cross references within the document. The
overall requirements for numbering markup are yet to be defined.

13.3.2 Purpose

The Num element contains citation numbers for Item elements. Usually, these numbers
will be generated automatically but manually numbered content can be created. This is
often needed to correctly represent quoted material or where the parties wish to freeze
numbering of a particular document version.

It is also proposed that citation numbers are explicitly included in the markup to
facilitate cross referencing within the document and transportability of documents to
other applications. At present, CSS technology does not allow an application to create
cross references to a number generated by CSS. It is likely this will not be available
until CSS 3.0 is published. Even it if is available, there is no reason to expect that CSS
will be the only rendering application used. If numbers are not written into the markup,
every other application that processes the data has to correctly interpret the automatic
numbering scheme applied to the document. This imposes unnecessary costs and the
potential for inconsistency.

The proposed basic clause model makes no assumptions about the numbering schemes
to be used or how they will be implemented. This is to be provided by the user’s
supporting applications. Clearly additional attributes would be required on the Item
element to provide numbering scheme control and to allow use of automatic or fixed
numbering.

A common area where authors will require numbering control is to specify the
numbering scheme for lists in the narrative content.

The way in which numbering is handled will greatly affect the exchange of XML
documents between users.

Numbering requirements are to be dealt with in a subsequent stage of the development.

13.4 Name selection

13.4.1 Options considered

The following options were considered:

• Number

• Num

 Clause model specification

Draft 1.0 – 11/11/2003 48

• No

The current selection of “Num” is chosen because “Number” is inconveniently long for
screen display in a tags on view. It is not consistent with the principles set out in topic
7.5. Abbreviations are avoided elsewhere. It is possible another name should be chosen.

13.4.2 Specific recommendation

19. It is recommended that the TC invite suggestions from committee members for
an alternative name once the requirements for specification of numbering are
finalised and it is finally determined that numbers should be retained in element
markup. Pending that decision, the element “Num” should be provisionally
retained.

14. Intellectual property rights
Elkera Pty Limited, ACN 092 447 428, an Australian corporation, claims to be the
owner of intellectual property rights, including copyright, in a work known as the
“Elkera Topic DTD”. Parts of that work are included in this proposal, viz:

<!ELEMENT Topic (Num?, Title, (Topic* | Item* | Block*))>
<!ELEMENT Item (Num?, Title?, (Block* | Item*))>
<!ELEMENT Block (Text | Item)+>
<!ELEMENT Text (#PCDATA)>
<!ELEMENT Num (#PCDATA)>
<!ELEMENT Title (#PCDATA)>

Peter Meyer, as managing director on behalf of Elkera Pty Limited acknowledges the
terms of the OASIS Policy on Intellectual Property Rights, OASIS.IPR.3.1 and the
licence thereby granted to OASIS. Subject to that licence, Elkera retains its intellectual
property rights in the “Elkera Topic DTD”.

Upon request by the Technical Committee, Elkera Pty Limited will consider release of
its intellectual property rights in relevant parts of the Elkera Topic DTD to the extent
considered necessary by the Technical Committee to facilitate development of its
schema.

15. Summary of fit to requirements

1. Markup the core structures found in documents like
Attachment 1 to the Requirements

This is satisfied, as shown in Attachment 1.

2. Represent the structured hierarchy of the content
This is satisfied, as shown in Attachment 1.

 Clause model specification

Draft 1.0 – 11/11/2003 49

3. Represent terms of benchmark contracts
To be demonstrated when the TC’s benchmark contracts are collated.

4. Define clause objects as self contained objects
This is satisfied, all clause like objects are self contained.

5. Self contained markup so that a text file could provide
complete contract terms

All terms of the contract recorded in the XML document can be read with a text editor,
if necessary. No part of those terms is implied by other software.

6. Must avoid listed terms for element names
This is satisfied.

7. Must permit markup of contract terms without inclusion of any
legal semantic markup or annotation

This is satisfied.

8. Must be as simple as practicable to facilitate user training,
support and application development

The proposed model provides extreme simplicity for authors. It does not require them to
know the difference between a clause, subclause or list item. They can re-organise draft
content with almost no re-tagging.

The proposed model is as simple as practicable for application developers. The minimal
model proposed favours simplicity for authors over simplicity for developers and resists
the creation of new elements that some developers may find convenient.

The final judgment on this balance does not have to be made now. That judgment can
be made after feedback is received from a wider community of potential users.

9. Must be able to re-use content in different levels of the
hierarchy, without having to change names of elements

This requirement is fully satisfied. Content everywhere is tagged in the same way.
Components can be readily moved to other locations in the hierarchy without the need
for transformation. This provides a very high level of flexibility for automated content
management and for authors.

10. Must allow clauses or other content to be incorporated into a
document by reference

This requirement is not specifically addressed in the basic clause model proposal. It is
likely to be facilitated by the use of only 3 elements (Item, Block and Text) for most
markup.

A number of possible techniques can be employed to provide for content incorporation
by reference. These can be implemented independently of the basic clause model.

 Clause model specification

Draft 1.0 – 11/11/2003 50

11. Other listed features to be determined
These are to be addressed in later stages of the development.

16. Summary of issues & recommendations

Summary of options PM recommendation

Recommendation 1 (topic 6.5)

1. Develop a structural clause model in terms of the
proposal

Yes

Recommendation 2 (topic 8.9)

2. Defer selection of reference schema until
requirements are developed

Yes

Recommendations 3 & 4(topic 10.3.2)

3. Adopt “Item” as the primary container name, subject
to recommendations 11 & 12

Yes

4. Adopt “Topic” as the primary container name if a
separate list item element is adopted under
recommendations 11 & 12

Yes

Recommendation 5, 6, 7 & 8 (topic 10.5.3)

5. Allow use of both the loose and tight models Yes

6. Designate the loose model as the exchange standard Yes

7. Recommend the tight model for general use Yes

8. Recognise exchange using the tight model by
agreement of the parties.

Yes

Recommendations 9 & 10 (topic 10.6.7)

9. Adopt Option 1 in principle (use metadata to
determine contents boundary)

Yes

10. Leave Options 2 & 3 in the draft specification for
comment by persons reviewing the model.

Yes

Recommendations 11 & 12 (topic 10.7.5)

11. Make a provisional choice between:

 Option 1 – redefine Item in narrative context Yes

 Clause model specification

Draft 1.0 – 11/11/2003 51

Summary of options PM recommendation

 Option 2 – ignore content model problem Acceptable

 Option 3 – create ListItem element No

12. Review the Options after decision on the reference
schema and related issues & inline list requirements
are known.

Yes

Recommendation 13 (topic 11.3.5)

13. Choose element name:

 “Block” Yes

 “Para” No

Recommendation 14 (topic 11.6.4)

Consider:

 Option 1 – Omit List element Yes

 Option 2 – Create List element No

14(i) Defer final decision until requirements for managing
component numbering are determined.

Yes

14(ii) Provisionally exclude List element pending a final
decision.

Yes

Recommendation 15 (topic 11.7.2)

15. TC to provide guidance on the 7 questions regarding
inline lists.

Recommendation 16 (topic 12.3.2)

16. Choose the element name from:

 “Text” Yes

 “TextBlock” No

Recommendation 17 (topic 12.4.4)

Consider:

Option 1 – Create a special element for trailing,
inline text after quotations etc.

No

Option 2 – Create an exception to new line
behaviour for element Text.

Yes

17. TC to select based on preference for perceived Option 2

 Clause model specification

Draft 1.0 – 11/11/2003 52

Summary of options PM recommendation
markup simplicity against rigorous separation of
newline from inline elements and possible XSLT
processing simplicity.

Recommendation 18 (topic 13.2.2)

18. Adopt the element name “Title” or suggest an
alternative.

Recommendation 19 (topic 13.4.2)

19. Provisionally retain “Num” and consider alternative
names for this element once numbering
requirements are known.

Yes

 Clause model specification

Draft 1.0 – 11/11/2003 53

Attachment 1 Clause model schema and XML
markup example
Using DTD syntax, the basic clause model is as follows:

<?xml version="1.0" encoding="us-ascii"?>
<!DOCTYPE Item [
<!ELEMENT Item (Num?, Title?, (Block* | Item *))>
<!ELEMENT Block (Text | Item)+ >
<!ELEMENT Text (#PCDATA) >
<!ELEMENT Num (#PCDATA) >
<!ELEMENT Title (#PCDATA) >
]>

Notes:

1. If the loose or exchange model is desired, Item is defined as:
 <!ELEMENT Item (Num?, Title?, Block*, Item*)>

2. Using DTD syntax, Item cannot be re-defined in the Block context, as is proposed in
the XML Schema version below.

The proposed XML Schema is set out below.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Proposed Schema for eContracts TC clause model
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="Num" type="xsd:string" />

 <xsd:element name="Title" type="xsd:string" />

 <xsd:element name="Item">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Num" minOccurs="0" maxOccurs="1" />
 <xsd:element ref="Title" minOccurs="0" maxOccurs="1" />
 <xsd:element ref="Block" minOccurs="0" maxOccurs="unbounded" />
 <xsd:element ref="Item" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Block">
 <xsd:complexType>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="Text" />
 <xsd:element name="Item">
 <xsd:complexType>

 Clause model specification

Draft 1.0 – 11/11/2003 54

 <xsd:sequence>
 <xsd:element ref="Num" minOccurs="0" maxOccurs="1" />
 <xsd:element ref="Title" minOccurs="0" maxOccurs="1" />
 <xsd:element ref="Block" minOccurs="1" maxOccurs=
"unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Text" type="xsd:string" />

</xsd:schema>

The markup example from the Clause Model Requirements is set out below.

<Item><Title>Markup example</Title>
<Item>
<Num>1.</Num><Title>Provisions about the specification of colours in
contracts</Title>

<Item>
<Num>1.1</Num><Title>Spectrum colours</Title>
<Block><Text>Here is a contrived, complex list structure using the
spectrum colours and one or two others:</Text>
 <Item>
 <Num>(a)</Num><Block><Text>red,</Text></Block></Item>
 <Item>
 <Num>(b)</Num><Block><Text>orange,</Text></Block></Item>
 <Item>
 <Num>(c)</Num><Block><Text>yellow,</Text></Block></Item>
 <Item>
 <Num>(d)</Num><Block><Text>green,</Text></Block></Item>
 <Item>
 <Num>(e)</Num><Block><Text>blue, including:</Text>
 <Item>
 <Num>(i)</Num><Block><Text>pale blue,</Text></Block></Item>
 <Item>
 <Num>(ii)</Num><Block><Text>dark blue,</Text></Block></Item>
 <Text>but excluding violet,</Text></Block></Item>
 <Item>
 <Num>(f)</Num><Block><Text>indigo, and</Text></Block></Item>
 <Item>
 <Num>(g)</Num><Block><Text>violet,</Text></Block></Item>
<Text>from which all colours can be derived.</Text></Block>
</Item>

<Item>
<Num>1.2</Num>
<Title>CMYK colours</Title>

 Clause model specification

Draft 1.0 – 11/11/2003 55

<Block><Text>CMYK colours (cyan, magenta, yellow and black) are
normally specified for inputs to colour printing processes.</Text>
</Block>
</Item>

<Item>
<Num>1.3</Num><Title>RGB colours</Title>
<Item>
<Num>1.3.1</Num><Block><Text>RGB colour (red, green, blue)
specifications are used for computer screen displays.</Text>
</Block></Item>
<Item>
<Num>1.3.2</Num><Block><Text>Using only these 3 colours, you can
specify any colour.</Text></Block></Item>
<Item>
<Num>1.3.3</Num><Block><Text>The Number of colours you can specify
depends on the colour depth available. For example:</Text>
 <Item>
 <Num>(a)</Num><Block><Text>8 bit colour can render 256
 colours;</Text></Block></Item>
 <Item>
 <Num>(b)</Num><Block><Text>16 bit colour can render 65, 536
 colours.</Text></Block></Item>
 </Block></Item></Item>

<Item>
<Num>1.4</Num><Title>Using black and white</Title>
<Item>
<Num>1.4.1</Num><Title>Greyscale</Title>
<Block><Text>The Number of greys depends on the available
colour depth, as for other colours.</Text></Block></Item>
<Item>
<Num>1.4.2</Num><Title>Black and white</Title>
<Block><Text>This is really called monochrome. You can
specify either:</Text>
 <Item>
 <Num>•</Num><Block><Text>black, or</Text></Block></Item>
 <Item>
 <Num>•</Num><Block><Text>white.</Text></Block></Item>
</Block>
</Item></Item>

<Item>
<Num>2.</Num><Title>Colour profiles</Title>
<Block><Text>One thing to remember is that when working with
colours, always use a colour profile that is available for
your display or output device. This will ensure you achieve
the most consistent results.</Text></Block></Item>
</Item>

