
DMLex: a proposal

This is my proposal for what I think should be in the LEXIDMA standard (DMLex). It is a development from what I

had proposed earlier, with one additional twist: I am introducing a new object type, Segment, which is an

abstraction over entries, senses, subsenses and other such things. My reasoning behind this part of the proposal is

outlined below in the chapter Entry structure. The rest of my proposal is in line with what has been discussed and

"consensused" in the LEXIDMA meetings before.

Some of the text here is text which could go into the actual specification document (DocBook and all), while other

bits of the text here are more like explanations of the reasoning behind the standard: those probably shouldn't be

part of the spec itself but could go into some other, complementary publication about the spec (and/or into

someone's PhD thesis, ha).

Michal Měchura, May 2012

0. Introduction

In lexicography, we work with things such as entries, headwords, senses, definitions, translations, example sentence

and so on. DMLex provides guidance on modelling these things computationally, for example in a relational

database or in an XML document. Implementations of DMLex in specific formalisms (XML, relational databases, ...)

can be used not only for data interchange but also as internal "native" data formats in dictionary writing systems or

in other software agents which process lexicographic data.

0.1. How abstract is DMLex?

As a data model, DMLex is specific enough to be implementable but abstract enough to be implementation-independent.

DMLex is implementation-independent. By this we mean that DMLex does not presuppose any particular

implementation, formalism or serialization. DMLex is not a directly usable schema such as LMF, TEI or Ontolex. To

use DMLex, you need to implement it in some underlying formalism first, for example as an XML Schema, as an OWL

ontology, or as a database schema in a relational database management system.

On the other hand, DMLex is implementable. By this we mean that DMLex is not a high-level metamodel or

reference model. DMLex is not a vague informal inventory of what "exists" in the lexicography universe. DMLex is a

formal and highly explicit schema which can be translated fairly straightforwardly into specific formalisms such as

XML Schemas, OWL ontolgies, or the schema of a relational database. In fact, a few suggested serializations are

provided at the end of this document.

0.2. DMLex solves the problem of incompatible schemas

We mentioned that DMLex is not a metamodel. The metamodel of lexicography is well known: there are entries, each

entry has a headword, entries are subdivided into senses, senses contain things such as definitions and translations,

and so on. Broadly speaking, there is consensus on these things in lexicography. The metamodel is not controversial.

There is, however, a lack of consensus on the details: How do we model variant headwords? Should part-of-speech

labels be allowed on senses? Should subsenses be allowed to exist? How do we model subentries? How do we model

cross-references? Individual dictionary projects tend to answer these questions differently and the result is that

each dictionary project uses its own, custom-designed schema which is incompatible with schemas used on other

1 of 13

projects. So, in lexicography, we currently have high-level consensus (there exist entries, senses etc.) contrasting with

low-level incompatibility (each dictionary has its own schema).

DMLex is an attempt to remove the low-level incompatibility. DMLex is a data model which can accommodate

practically all dictionaries, regardless of how they have chosen to answer the questions of detail. DMLex is

sufficiently generic so that the details can be treated as configuration settings (enforcable by business rules) while the

database schema (or XML schema, OWL ontology...) remains the same. With DMLex, it is possible to have only one

database schema for multiple dictionary projects, even if each dictionary gives different answers to the detailed

questions. For example, one dictionary can allow rich hierarchies of senses and subsenses while another can allow

only flat lists of senses. One dictionary can allow grouping senses into "sense groups" while another not. One

dictionary can be bilingual while another only monolingual. These details are treated as configuration settings in

DMLex, while the data model remains the same.

0.3. How is DMLex formulated?

The DMLex data model is formulated here in terms of objects, relations between objects, and attributes of objects

and relations. These three terms (object, relation, attribute) must be understood in an abstract, implementation-

independent way. How they translate into things in specific implementations, such as database tables or XML

elements, is a question the data model is agnostic about.

Each object, relation and attribute in this data model is of a certain type. The type of an object or relation

determines which attributes it may or must have, and which objects it may or must be related to. The types in this

data model have names such as Entry, Headword, Sense.

One very common relation between objects in lexicography is the parent-child relation. The organization of

lexicographic objects such as entries, headwords and senses into hierarchical trees of parents and children has been

a pervasive design pattern in lexicography since digitization began. Consequently, in this data model, the parent-

child relation is also very prominent. Many data types in this specification are defined in terms of the (types of)

parents and children their instances can have.

On the other hand, parent-child relations are not the only type of relation that appears in this data model. Parent-

child hierarchies are only used here to model the basic entry-headword-sense skeleton of a dictionary. Other

phenomena, such as cross-references between entries, or the inclusion of enties inside other entries as subentries,

are modelled here with other types of relations. These other relations can be said to "break out" of the traditional

tree-like hierarchy of a dictionary, and to "annotate" the basic parent-child skeleton with additional information.

0.4. The structure of this document

The DMLex data model is presented in this document in three chapters. The following chapter, Entry structure,

explains how a lexicographical resource is to be structured into entries, senses, subsenes, subentries and so on. The

next chapter after that, Entry content, gives you a rich inventory of objects for populating entries and senses with

definitions, grammatical labels, example sentenses, translations and other informational objects. The final chapter,

Configuration, explains how the DMLex data model can be configured for a specific dictionary.

1. Entry structure

In a typical dictionary schema, the structure of the dictionary is defined as a tree-like hierarchy of entries, senses,

subsenses, subentries and so on. The schema typically defines which kinds of these objects are allowed to exist, how

2 of 13

they are allowed to stack inside each other (for example: a sense is allowed to contain zero or more subsenses), and

what data they may or must contain (for example: a sense must contain exactly one definition, a subsense may but

must not contain translations). This tree-like hierarchical definition of the dictionary's structure is usually hard-

coded in some way, for example as a DTD.

DMLex is radically different from this approach. DMLex does not force its users to adopt any particular pattern of

hierarchical structure. DMLex is more abstract, it is able to accommodate an arbitrary tree-like dictionary structure.

The motivation and principles of the DMLex approach are explained in the next subchapter, How DMLex models

entry structure. After that, the rest of this chapter specifies the object types Expression and Segment and the

relations types Inclusion and Link which are used in DMLex to model the structure of entries.

1.1. How DMLex models entry structure

A dictionary is basically a catalog of linguistic expressions (typically: words) in some human language to which it

assigns some informational properties (part-of-speech labels, pronunciation transcriptions, definitions, translations

and others).

When describing an expression, a dictionary divides the description into units such as entries and senses. Typically

(but not always), an expression is represented in a dictionary by one entry subdivided into one or more senses.

Some of the expression's informational properties are assigned to the entire entry (they have entry-wide scope)

while others are assigned only to a specific sense (they have sense-specific scope).

There is a tendency in lexicography for morphosyntactic and phonetic properties to be treated as entry-wide

properties, and for semantic and pragmatic properties to be treated as sense-specific properties. So, for example, a

part-of-speech label or a pronunciationn transcription would typically be assigned to the entire entry, while a

definition, a usage label or a translation would be a assigned to an individual sense. This is motivated by the

lexicographer's desire to distinguish form from function, and to establish a one-to-many mapping between form and

function. The form of an expression is defined by its morphosyntax and phonetics (as well as its orthography) and

the function of an expressions by its semantics and pragmatics.

However, this is only a tendency and a theoretical ideal, and many deviations occur in practice. There are dictionary

schemas which allow the assignment of grammatical labels to individual senses, because there exist (for example)

nouns which have different plurals or genders for different senses. Similarly, it is not unusual to see usage labels

(such as vulgar or neologism) applied at entry-wide scope because these are seen as properties of the entire entry,

affecting all its senses. And then there are informational properties which apply to a non-singleton proper subset of

the senses in an entry (that is, they apply to more than one sense but not to all the senses): dictionaries often use

something like sense groups for this. Finally, there are informational properties which further specify or refine those

assigned already: dictionaries often subdivide senses into subsenses for this purpose.

The result is that every dictionary comes with its own schema for dividing entries into senses, sense groups,

subsenses, subentries and so on. The general principle is always the same: first we subdivide an expression into

segments (entries, senses, subsenses...), then we assign informational properties to those segmens. What differs from

dictionary to dictionary is the kinds of segments that are allowed to exist, and how they are allowed to stack inside

each other.

DMLex does not force you to accept any particular "world-view" on these questions. DMLex does not force you to

accept any particular inventory of segment kinds or how they stack inside each other. DMLex is more abstract than

that. In DMLex, all segments (regardless of whether they are entries, senses or something else) are modelled as

instances of the Segment object type. Each Segment object has a @role attribute which specifies what kind of

segment it is: permitted values for this attribute are "entry", "sense", "senseGroup" and others. Then, individually

for each dictionary, DMLex allows you to set up a configuration through which you can constrain the kinds of

3 of 13

segments that are allowed to exist in the dictionary, how they are allowed to stack inside each other, and what kinds

of informational properties can be assigned to them.

So, for example, you can use DMLex to define a dictionary which consists of entries, sense groups, senses and

subsenses, such that: each entry is required to contain at least one sense; senses can optionally be grouped into

sense groups; each sense may contain zero or more subsenses; senses and subsenses may contain definitions and

translations (but sense groups can't); entries and sense groups can contain part-of-speech labels (but senses and

subsensesn can't); and so on. All of these properties of a dictionary, which until now have typically been hard-coded

in dictionary schemas, are treated as merely configuration settings in DMlex and are not hard-coded.

1.2. Objects and relations involved in modelling entry structure

In DMLex, the following two object types are available to model the structure of entries:

These two types are sufficient to model the parent-child hierarchy of entries, senses, subsenses and so on. In

addition to that, the following two relation types are available in DMLex to model phenomena which "break out" of

the tree-structured hierarchy:

1.3. The Expression object type

An Expression represents an expression being described in the dictionary. Typically, an Expression is a headword,

but an Expression can also be a multi-word expression which heads a phraseological subentry, a collocation which

heads the description of a collocation block inside the sense of some entry, and so on.

Attributes

The @text attribute

Note that an Expression is defined just by its orthography. Any further characteristics, such as its part of speech or

its homonym number, will be supplied by Segments (typically, by a Segment with @role="entry"). An Expression

represents a short string of text which a dictionary user might search for by typing it into the search box of a

dictionary website, or which might form part of the URL of a web page on a dictionary website.

Expression, where each Expression object represents one headword (or some other lingustic expression

described in the dictionary).

–

Segment, where each Segment is said to describe or be about or belong to an Expresion. Each Segment has a

@role (such as "entry" or "sense") and can be a hierarchical child of another Segment belonging to the same

Expression.

–

Inclusion, where each Inclusion models the fact that one Segment is to be included under another Segment as

a subentry, even though the two Segments belong to different Expressions.

–

Link, where each Link connects two or more Segments into a group of mutual cross-reference or linkage. Links

are used in DMLex to model sense-to-sense cross-references such as synonyms and antonyms. Links are also

used in DMLex to model headword-to-headword links, such as links between variants. The @role attribute of a

Link determines the kind of link in question: "antonyms", "synonyms", "variants" etc.

–

@id (required, can be computable or implicit from @text).–

@text (required): the text of the Expression, in the dictionary's object language.–

@role (optional): the role this Expression plays in the dictionary. Allowed values are "headword",

"variantHeadword", "multiwordUnit", "pattern", "collocation", "idiom".

–

4 of 13

The @role attribute

The @role attribute can be used as a hint to software agents on what to do with the Expression. For example, when

an Expression has @role="heaword", the software agent can display it among other headwords in an alphabetical

list, or display it in large bold font when showing an entry to the human user.

The role attribute can also be used to constrain the dictionary's structure. It is possible to declare in DMLex (using

the configuration formalism described later in this document) that, for example, each Expression with

@role="headword" must be attached to at least one Segment with @role="entry", and that each Segment with

@role="entry" must have a part-of-speech label, may have a pronunciation transcription, and so on.

Implementing the Expression object type

When implementing the Expression type in a specific environment, such as a relational database or an XML

Schema, it is possible to do it in two ways:

Both approaches are valid implementations of DMLex. The difference is in the level of abstraction, and consequently

in the amount of flexibility. In the abstract approach, the advantage is that you can accommodate different

dictionaries in the same schema, but the disadvantage is that any constraints on the entry structure must be

formulated as business rules and must be enforced at the application level (= outside the schema). In the concrete

approach, the disadvantage is that your schema can accommodate only one hard-coded entry structure, but the

advantage is that any constraints on the entry structure are part of the schema and therefore enforced directly at the

data level (no business rules needed).

1.4. The Segment object type

A Segment represent an entry, a sense, a subsense, a subentry, a sense group, or some other object of this kind. A

Segment is a container for informational objects which describe an Expression.

Attributes

The @role attribute

The @role attribute can be used as a hint to software agents on what to do with the Segment. For example, when a

Segment has @role="entry", the agent should format it as a dictionary entry, starting with the Expression it

The abstract approach: create just one "type" (i.e. just one database table, or just one XML element name) for all

Expressions, and then distinguish between the different roles ("headword", "multiwordUnit", ...) by means of a

column in the table or by means of an XML attribute.

–

The concrete approach: create separate "types" for the different roles of Expressions in your dictionary, for

example one database table for headwords, another database table for multi-word units, and so on.

–

@id (required, can be computable).–

@expression (required): a reference to the Expression which this Segment describes, to which this Segment

belongs.

–

@role (required): the role this Segment has in describing the expression. Allowed values are "entry", "sense",

"subsense", "senseGroup", "subentry".

–

@parent (optional): a reference to another Segment (belonging to the same Expression) which is the hierarchical

parent of this Segment.

–

@listingOrder (required, can be implicit): a sortkey which determines the position of this Segment among its

siblings when showing an entry to the human user.

–

5 of 13

belongs to. When a Segment has @role="sense" then the agent should format it like a conventional dictionary

sense, with a bullet point or an (automatically generated) sense number, but without the Expression.

More importantly, the role attribute can be used to constrain the dictionary's structure: to constrain which kinds of

Segments can form parent-child relationships (by means of the @parent attribute). It is possible to declare in DMLex

(using the configuration formalism described later in this document) that, for example, a Segment with

@role="entry" must have at least one child Segment with @role="sense", and that a Segment with @role="sense"

may have zero or more child Segments with @role="subsense". It is also posssible to declare in DMLex (using the

same configuration mechanism) which informational properties each kind of Segment may or must contain: for

example that each Segment with @role="sense" must have a definition but a Segment with @role="senseGroup"

may not, and so on.

Implementing the Segment object type

When implementing the Segment type in a specific environment, such as a relational database or an XML Schema,

there are once again two possible approaches to doing that, the abstract approach and the concerete approach.

Both approaches are valid implementations of DMLex. The difference is in the level of abstraction, and consequently

in the amount of flexibility. In the abstract approach, the advantage is that you can accommodate different

dictionaries in the same schema, but the disadvantage is that any constraints on the entry structure must be

formulated as business rules and must be enforced at the application level (= outside the schema). In the concrete

approach, the disadvantage is that your schema can accommodate only one hard-coded entry structure, but the

advantage is that any constraints on the entry structure are part of the schema and therefore enforced directly at the

data level (no business rules needed).

Implementing the @expression attribute

Each Segment, regardles of its role, "belongs" to an Expression, and the Segment's @expression attribute tells you

which Expression that is. But the @xpression attribute does not always need to be specified explicitly: for Segments

which are children of other Segments, the Expression can be worked out by following the chain of child-to-parent

links up to the top. Only the top-level Segment (which would typically have @role="entry" and which has no parent

Segment) needs to have its Expression specified explicitly.

When implementing DMLex, you are free to implement the @expression attribute in any way you want. If you are

going with the concrete approach, you can make @expression explicit for some kinds of Segments (typicaly: entries)

and leave it implicit for others. If you are going with the abstract approach, you may or may not need to make

@expression explicit for all Segments, depending on the environment you are in (for example, a relational

database). If @expression is explicit for all Segments in your implementation, then you may also need some

business rules for enforcing that parent Segments and child Segments belong to the same Expression.

1.5. The Inclusion relation type

An Inclusion represents the fact that one Segment (called the included segment) should be shown to human users

as a child of another Segment (called the includer segment), even though the two Segments belong to different

The abstract approach: create just one "type" (i.e. just one database table, or just one XML element name) for all

Segments, and then distinguish between the different roles ("entry", "sense", ...) by means of a column in the

table or by means of an XML attribute.

–

The concrete approach: create separate "types" for the different roles of Segments in your dictionary, for

example one database table for entries, another database table for senses, and so on.

–

6 of 13

Expressions.

The Inclusion relation is useful for modelling situations when, for example, a multiword subentry is to be included

somewhere inside the entry for a single-word headword. In DMLex, the headword would be represented by an

Expression, and the phraseological multiword unit would be represented by another Expression. Each of these

Expressions would have at least one Segment. Then, using the Inclusion relation, one of the multiword

Expression's Segments would be included under one of the headword Expression's Segments.

The consequence is that the multiword subentry exists in the dictionary as an independent Expression, with one or

more Segments describing it. Users can search for, it can be findable, and a software agent can show it to human

users. But, at the same time and without any duplication of data, the same multiword unit is shown inside the entry

for the headword.

Attributes

The @listingOrder attribute

When a software agent is showing a Segment to a human user, one of the things the agent needs to do is to obtain a

list of the Segment's children, and show them in some order.

To obtain a list of a Segment's children, the agent needs to combine its internal children (= Segments who belong to

the same Expression and who are children through the @parent attribute) with its external children (= Segments

who belong to other Expressions and who are children through the Inclusion relation). Together, the internal

children and the external children are the display-time children of the parent Segment.

To put the display-time children in an order, the @listingOrder attribute is to be used. But which @listingOrder?

For internal children, the @listingOrder of the Segment is to be used. For external children, the @listingOrder of

the Inclusion relation is to be used.

1.6. The Link relation type

A Link represents the fact that two or more Segments are "linked": the actual meaning of the linkage is given in the

Link's @role attribute. When a software agent is showing a Segment to a human user, and when that Segment is

involved in a Link relation with one or more other Segments, the agent should provide a clickable hyperlink to go to

the other Segments.

Attributes

Implementing the @members attribute

The @members attribute is an abstractly defined attribute which can take multiple values: two or more references to

Segments. To implement this in a specific environment you may need to create more than one "entity". For example,

in a relational database, you would need two tables: one which records information about each Link (its @role plus

@includerSegment (required): a reference to the Segment inside of which the other Segment is to be included.–

@includedSegment (required): a reference to the Segment which is to be included inside the other Segment.–

@listingOrder (required, can be implicit): a sortkey which determines the position of the included Segment

among the children of the includer Segment.

–

@role (required): the nature of the link. Allowed values are "synonyms", "antonyms", "nearSynonyms",

"opposites", "seeAlso", "variants".

–

@members (required): references to two or more Segments which are to be conneced through this Link.–

7 of 13

probably some database-internal ID) and one which lists each Link's member Segments.

Uses of the Link relation

The Link relation is to be used in DMLex to model cross-references from one sense of one entry to another sense of

another entry, such as synonymy. Two or more Segments -- typically those with @role="sense" -- can be connected

through a Link with @role="synonyms".

Also, the Link relation is to be used in DMLex to model entry-level relations, such as variance between headwords.

The "main" headword and the variant headword would exist in the dictionary as separate Expressions. Each would

have a Segment (with @role="entry") while the variant's Segment would probaly be very sparce, containing

perhaps only its part of speech and having no child Segments (no senses). Finally, the Segments would be connected

through a Link with @role="variants".

1.7. Example

To conclude the chapter on entry structure, let's have a look at an example of how the structure of a (non-trivial)

dictionary entry could be expressed in DMLex. This entry for sicher comes from a digitised version of Wörterbuch

der deutschen Gegenwartssprache. Some of the larger entries in this dictionary have a very "branchy" hierarchy of

senses, subsenses and subentries, and 'sicher' is one of them. Only the first few senses from 'sicher' are shown here.

- entry

 headword: sicher

 pos: adj

 - sense

 definition: nicht von Gefahr bedroht, ungefährdet

 example: ein sicherer Weg

 - subsense

 pattern: vor etw/jmdm sicher sein

 example: hier seid ihr vor der Entdeckung sicher

 - subentry

 idiom: sicher ist sicher!

 definition: lieber vorsichtig sein, lieber nichts riskieren!

 example: ich nehme den Regenschirm mit, sicher ist sicher!

 - subentry

 expression: Nummer Sicher

 definition: Gefängnis

 example: in Nummer Sicher sitzen

 - sense

 definition: zuverlässig, verlässlich

 ...

The following diagram shows how the structure of this entry would be expressed in DMLex by means of

Expressions, Segments and Inclusions (there is no need for Links in this example).

8 of 13

The diagram is close to how DMLex could be implemented in a relational database. For comparison, the following

code shows how the same content could be expressed in an XML implementation of DMLex. Notice that some

attributes, such as @listingOrder and @parentSegment, are not present in the XML because they can be inferred

from the XML itself (@listingOrder from the position of elements, @parentSegment by traversing the document

hierarchy upwards).

<expression role="headword" id="EXP1">

 <text>sicher</text>

 <segment role="entry" id="SEG1">

 <label>adj</label>

 <segment role="sense" id="SEG2">

 <definition>nicht von Gefahr bedroht, ungefährdet</definition>

9 of 13

 <example>ein sicherer Weg</example>

 <includeHere segmentID="SEG4"/>

 <includeHere segmentID="SEG6"/>

 </segment>

 <segment role="sense" id="SEG3">

 <definition>zuverlässig, verlässlich</definition>

 </segment>

 </segment>

</expression>

<expression role="pattern" id="EXP2">

 <text>vor etw/jmdm sicher sein</text>

 <segment role="subentry" id="SEG4">

 <example>hier seid ihr vor der Entdeckung sicher</example>

 <includeHere segmentID="SEG5"/>

 </segment>

</expression>

<expression role="idiom" id="EXP3">

 <text>sicher ist sicher!</text>

 <segment role="subentry" id="SEG5">

 <definition>lieber vorsichtig sein, lieber nichts riskieren!</definition>

 <example>ich nehme den Regenschirm mit, sicher ist sicher!</example>

 </segment>

</expression>

<expression role="idiom" id="EXP4">

 <text>Nummer Sicher</text>

 <segment role="subentry" id="SEG6">

 <definition>Gefängnis</definition>

 <example>in Nummer Sicher sitzen</example>

 </segment>

</expression>

2. Entry content

The previous chapter explained how DMLex structures dictionaries into entries, senses and other such units, and

how the Segment object type serves as an abstract "superclass": entries and senses are understood as special cases of

Segments.

Each Segment is said to "belong" to some Expression, and the purpose of the Segment is to communicate to human

users some useful information about the Expression. To fulfill this purpuse, Segments contain informational

objects such as definitions, part-of-speech labels and translations. In this chapter we present an inventory of object

types which are available in DMLex to encode these informational properties.

The types for informational objects are defined here not only in terms of their attributes but also in terms the

parents and children they can have. Most object types introduced in this chapter are children of Segments. Some

10 of 13

object types, in particular Label, can also be children of other informational objects.

DMLex allows informational objects to be children of Segment, regardless of the kind of Segment (entry, sense, ...).

But, when implementing DMLex for a particular dictionary, you can constrain this further using DMLex's

configuration mechanism, which is decribed later in this document.

As a guide to what follows in this chapter, here is a tree-like sumamry of the informational objects types and how

they are allowed to stack inside each other.

- Segment

 - Indicator

 - Label

 - Definition

 - Pronunciation

 - Label

 - InflectedForm

 - Label

 - Pronunciation

 - Label

 - ExpressionTranslation

 - Label

 - Pronunciation

 - Label

 - InflectedForm

 - Label

 - Pronunciation

 - Label

 - Example

 - Label

 - ExampleTranslation

 - Label

2.1. The Definition object type

TBD...

2.2. The Indicator object type

TBD...

2.3. The Label object type

TBD...

2.4. The Pronunciation object type

TBD...

2.5. The InflectedForm object type

11 of 13

TBD...

2.6. The ExpressionTranslation object type

TBD...

2.7. The Example object type

TBD...

2.8. The ExampleTranslation object type

TBD...

2.9. Implementing the informational object types

Taking the object types introduced in this chapter and implementing them in a specific environment, such as in a

relational database or in an XML Schema, should be mostly straightfoward. The only possible complication are those

types which camn have different types of parents. An example is the Label type, instances of which can be children

of Segments, Pronunciations, InflectedForms and many others.

To implement these types on your application you have, once again, two options: the abstract approach or the

concrete approach.

Both approaches (abstract and concrete) are valid implementations of DMLex. The difference is in the level of

abstraction, and consequently in the amount of flexibility. In the abstract approach, the advantage is that you can

accommodate different dictionaries in the same schema, but the disadvantage is that any constraints on the entry

content must be formulated as business rules and must be enforced at the application level (= outside the schema).

In the concrete approach, the disadvantage is that your schema can accommodate only one hard-coded content

model, but the advantage is that any constraints on the entry content are part of the schema and therefore enforced

directly at the data level (no business rules needed).

3. Configuration

TBD...

4. A recommended implementation as a relational database

The abstract approach: create just one "type" (i.e. just one database table, or just one XML element name) for all

Labels, and then distinguish between the parent types by means of a column in the table, or --if in XML -- leave it

for the application to figure out by traversing the document hierarchy upwards.

–

The concrete approach: create separate "types" for the different subtypes of Label in your dictionary, for

example one for Labels when they are children of (certain kinds of) Segments, another for Labels when they

are children of Definition, and so on. A good naming convention is to prefix (some of) the parenthood path to

type's name, creating names such as SenseLabel, SegmentDefinitionLabel, and so on.

–

12 of 13

Using the abstract approach throughout. TBD...

5. A recommended serialization into XML

Using the abstract approach throughout. TBD...

6. A recommended serialization into RDF

Using the abstract approach throughout. TBD...

13 of 13

