WS-ServiceData

Describing ServiceData in Web Services

(Authors Alphabetically)
{ Steve Graham, Martin Nally, Frank Leymann, Ellen Stokes, Tony Storey, Sanjiva
Weerawarana} * { Karl Czajkowski}? { Steve Tuecke}
'1BM
2usciisl
% Argonne National Labs

121/ /2002

1 ServiceData

The approach to stateful Web services introduced in the Grid services specification

[http://www.ggf.org/ogsi-wg/drafts/draft-ggf-ogsi-gridservice-05_2002-11-04.pdf]
identified the need for a common mechanism to expose a service instance' s state datato
service requestors for query and change notification. The term used is “serviceData’.

Since this concept is applicable to any Web service including those used outside the
context of Grid applications, we propose a common approach to exposing Web service
state data called serviceData.

The structure of this document is as follows: in the next section we discuss the motivation
for serviceData, following that, we give details on how to describe serviceData within a
portType, including a brief example of its use from the Grid services specification, and a
discussion additional aspects of serviceData.

~Insert Frey’ s treatise on serviceData, and upon said insertion, include Frey’s name on
author list.

2 Motivation

The serviceData concept was introduced to provide aflexible, properties-style approach
to access state data of a Web service. We developed this approach based on scenarios
from systems management and the grid. These domains exhibit entities that have a
potentially large number of properties. If we wish to model these entities using Web
services, we need an approach that models this complex state effectively.

An alternative approach, of providing "get operation per property” was considered, but
not adopted for several reasons:

1. If weusea"get" operation per property, then the set of messages to get multiple
propertiesis chatty, does not allow atomicity to be addressed, and does not allow
gueries across multiple properties. Example: A Web service modeling an
operatingSystem object contains (among other properties) the following four
properties: totalVirtualMemorySize, freeVirtualMemory, freePhysicalMemory,

WS-ServiceData

totalVisibleMemorySize. Two of the properties, totalVirtualMemorySize and
total VisibleMemory, are constant and set at boot time. The other two properties,
freeVirtualMemory and freePhysicalMemory, change over time as memory is
allocated and de-allocated to a process. Consider the case wherein a management
application is monitoring (and displaying) memory usage,

total VirtualMemorySize and total VisibleMemorySize can be read individually
since both are constant in arunning system. Since freeVirtualMemory and
freePhysicalMemory do change and change with respect to each other, these two
properties need to be obtained together atomically in a single get operation;
otherwise, the usage displayed of physical and virtual memory for agiven point in
time isincorrect. We could just define an operation that does a get on both
freeVirtualMemory and freePhysicalMemory, but this approach does not scale
with the number of properties (see point 2.).

2. If wethen compel portType designersto define additional operationsto get al the
combinations of the serviceData, the number of operationsis voluminous.
Although the above example issimple, in redlity there are many other properties
in the operatingSystem object, many of which have exactly the same behavior
described in the example in 1. and depending on exactly what you monitor from
the compl ete operatingSystem object would require all combinations of
dynamically changing properties, e.g. 10 properties (from OperatingSystem)
would yield 10! operations.

By supporting a serviceData approach, we provide the mechanism for requestors(e.g.
example management applications) to build query expressions (eg XPath and XQuery) to
express queries involving combinations of service data elements. Example: The
operatingSystem resource contains (among other properties) the following three
properties. total SwapSpaceSize, sizeStoredl nPagingFiles, and freeSpacel nPagingFiles.
The filesystem resource contains (among other properties) the following two properties:
fileSystemSize and avail ableSpace. These two resources are related since filesystem is
contained in or booted from operating system. The properties fileSystemSize and

total SwapSpaceSize are typically constant, even between system boots. The other
properties in this example change over time and with respect to each other, e.g. as
sizeStoredI nPagingFiles increases, freeSpacel nPagingFiles and avail ableSpace decreases.
To monitor filesystem usage and display that usage, the query spans instances of both
objects (operatingSystem and filesystem) and multiple properties within those instances.
Single 'get’ operations does not solve the problem of retrieving data across multiple object
instances atomically.

There is also arequirement to support dynamic addition of "properties” at runtime. The
notion is that the interface (portType) defines the majority of the serviceData elements
(properties), however it is possible that at runtime, perhaps associated with a particul ar
lifecycle state, to add serviceData elements to the Web service instance. Example: A
Web service containsits lifecycle state in a serviceData el ement where the possible
lifecycle values are 'exists, 'running’, 'maintenance’, and 'failed'. Thereis additional and
different serviceData associated with each of these lifecycle states. In thefailed lifecycle

WS-ServiceData

state, there is an additional serviceData element that contains the 'debug stack'. In the
maintenance lifecycle state, the additional serviceData element isthe list of datato help
process the maintenance state. The 'exists and 'running' lifecycle states have no
additional serviceData elements. In Web services, when serviceData elements exist in a
portType, they are expected to be valid. In this example where the information
associated with alifecycle state is variable, use of dynamic serviceData for access to that
additional information is a good solution because the right needed information is returned
based on lifecycle state. A counter argument would be to define an operation
'getLifecycleState’ to accomplish the same, but it is not the state itself that that operation
would get, but rather the five (or however many) new serviceData elements associated
with that new state; you wouldn't want to model the aggregation of those five properties
into a getLifecycleState given the variability of serviceData information associated with
each lifecycle state.

3 Extending PortType with WS-ServiceData

ServiceData defines a new child element of a portType named serviceData. This element
defines serviceData elements associated with that portType. Optionally, initial values for
those serviceData elements can be specified.

<wsdl : port Type nane="ncnane"> *
<wsdl : docunmentation /> ?
<wsdl : operati on nane="ncnane"> *

<wsdl : servi ceDat a nane="ncnane" .../> *
<wsdl : st ati cServi ceDat avVal ues>?

<sone el enent >*
</ wsdl : st ati cServi ceDat aVal ues>

</ wsdl : port Type>

For example, a portType declares a set of serviceData elements such as shown below:
<wsdl : definitions xm ns:tns="xxx" targetNamespace="xxx">
<wsdl : port Type nanme="exanpl eSDUse" > *
<wsdl : operati on name=..>

<wsdl : servi ceDat a nane="sdl" type="xsd: Stri ng”
mut abi lity="static”/>
<wsdl : servi ceDat a nane="sd2" type="tns: SoneConpl exType”/ >

<wsdl| : st ati cServi ceDat aVal ues>
<xxXx: sdl >i ni t Val ue</ xxx: sd1>
</wsdl : stati cServi ceDat aVal ues>

</ wsdl : port Type>

;}msdl:definitions>

Initial values for “static” serviceData elements can also be declared in the portType.

WS-ServiceData

Any service that implements the portType named “exampleSDUse” MUST have as part
of its state, serviceData elements with qualified names “tns.sd1” and “tns.sd2”. This
concept is similar to the notion of an instance variable in Object-Oriented programming
languages such as Java'™, Smalltalk and C++ and most closely associated with a Java
Bean property.

3.1 Structure of the ServiceData Element Declaration
The definition for serviceData element is:

<xs: conmpl exType name="Cl osedSer vi ceDat aEl ement Type” >
<xs: conpl exCont ent >
<xs:restriction base="xs:el ement”>

<xs:attribute name="type" type="xs: QNane" />
<xs:attributeG oup ref="xs:occurs" /> (m nCccurs, maxQccurs)
<xs:attribute name="nill abl e" type="xs: bool ean" use="optional "
defaul t="fal se" />
<xs:anyAttribute namespace="##ot her" processContents="I|ax" />
</xs:restiction>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: conpl exType name=" Servi ceDat aType” >
<xs: conpl exCont ent >
<xs: ext ensi on base="Cl osedSer vi ceDat aEl enent Type” >

<XS:sequence>

<xs:any namespace="##ot her" m nQccurs="0"

maxQOccur s="unbounded” />

</ xs: sequence>
<xs:attribute name="nutability" default="extend”>

<xs: si npl eType>

<xs:restriction base="xs:string">

<XsS:enuneration val ue="constant"/>
<xs:enuneration val ue="extend"/>
<xs:enuneration val ue="nut abl e"/ >
</ xs: si npl eType>
</ xs:attribute>
<xs:attribute nanme="nodifiabl e" type="xs: bool ean”
def aul t="f al se” >
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<el enent name="servi ceData” type="ServiceDataType”/>

<xs: conmpl exType name=" Servi ceDat aVal uesType” >
<xs: conmpl exCont ent >
<XS:sequence>
<xs:any nanmespace="##any" m nCccurs="0"
maxQOccur s="unbounded" />
</ xs: sequence>
<xs: conmpl exCont ent >
</ xs: conpl exType>

WS-ServiceData

<el enent nanme="servi ceDat aVal ues” type="Servi ceDat aVal uesType”/ >

In the above approach, a serviceData element is restricted to contain only these properties
from xsd:.element:

name

type

minOccurs

maxOccurs

nillable

open attribute content model
And the model is extended to allow open element content model, and to define the
mutability attribute (3.7) and the modifiable attribute.

We describe how the concept of serviceData can be exposed through operationsin
section 3.5. In arelated document “Grid Services Operations on ServiceData”, we
describe one convention on how the serviceData element values can be queried and set by
service requestors and how service requestors can be notified of a change in the
serviceData element’ s value.

3.2 Using ServiceData, an Example from Grid Services,

L ets examine how ServiceData can be used by reviewing an example currently
documented in the Grid Services Specification. The Grid Service Specification defines a
portType, named “GridService” (in a namespace that is commonly associated with the
prefix gsdl) that acts as the base for all other Grid service portTypes (similar to “ Object”
classin Javaor Smaltalk). The serviceData elements declared for the Grid Service
portType are shown below:

<wsdl : definitions ...
xm ns: gsdl =
"http://ww. gridf orum or g/ nanespaces/ 2002/ 11/ gri dSer vi ces"
t ar get Nanespace=
"http://ww. gridf orum or g/ nanespaces/ 2002/ 11/ gri dSer vi ces"
xnl ns="http://wwmv. gri df orum or g/ namespaces/ 2002/ 11/ gri dSer vi ces" >

<wsdl : port Type nane="Gi dServi ce” >
<wsdl : operati on nanme= ..>

<wsdl : servi ceDat a nane="Port Type” type="gsdl: port TypeNaneType”
m nCccur s="1" maxOccur s=" unbounded”
nmut abi | i ty="constant”/ >
<wsdl : servi ceDat a nane="ser vi ceDat aNane” type="xsd: QNane”
mut abi | i ty="rmut abl e” maxQOccur s=" unbounded”/ >
<wsdl : servi ceDat a nane="Fact or yHandl| e”
t ype="gsdl : gri dServi ceHandl eType”
m nOccurs="0" mnutability="constant”/>
<wsdl : servi ceDat a name="G i dSer vi ceHandl e”
t ype="gsdl : gri dServi ceHandl eType”
m nOccur s="0" maxCccur s=" unbounded”

WS-ServiceData

nmut abi | i ty="extend”/>
<wsdl : servi ceDat a name="G i dSer vi ceRef er ences
t ype="gsdl : gri dServi ceRef erenceType”
m nCccur s=" 0" maxQOccur s=" unbounded”
mut abi |i ty="nut abl e”/>
<wsdl : servi ceDat a nane=" Quer yExpr essi onType”
t ype="gsdl : quer yExpr essi onType”
m nCccurs="1" maxQOccur s=" unbounded”
mut abi |ity="extend”/>
<wsdl : servi ceDat a nane="Term nati onTi me” type="gsdl:termnationTi ne”
nmut abi | i ty="nut abl e”/>
<wsdl : servi ceDat a nane="Current Ti ne" type="gsdl: currentTi ne"
mut abi | i ty="nut abl e"/>

And an example set of serviceData element values for some Web service instance might
look like:

xm ns: gsdl =
"http://ww. gridf orum or g/ nanespaces/ 2002/ 11/ gri dSer vi ces"
xm ns: crm="http://gridforum org/ namespaces/ 2002/ 11/ cr nf
xm ns:tns="http://exanpl e. com exanpl eNS”
xnl ns="htt p://exanpl e. conml exanpl eNS” >

<wsdl| : servi ceDat aVal ues>
<gsdl : Port Type>cr m Generi cOSPT</ gsdl : Port Type>
<gsdl : Port Type>gsdl : Gri dSer vi ce</ gsdl : Port Type>

<gsdl : servi ceDat aNane>gsdl| : Port Type

</ gsdl : servi ceDat aNane>

<gsdl : servi ceDat aName>gsdl : gsdl servi ceDat aNane
</ gsdl : servi ceDat aNanme>

<gsdl : servi ceDat aNanme>gsdl : Fact or yHandl e

</ gsdl : servi ceDat aNane>

<gsdl : servi ceDat aNane>gsdl| : gsdl Gri dSer vi ceHandl e
</ gsdl : servi ceDat aNanme>

<gsdl : servi ceDat aNanme>gsdl : Gri dSer vi ceRef er ences
</ gsdl : servi ceDat aNane>

<gsdl : servi ceDat aNanme>gsdl : Quer yExpr essi onType
</ gsdl : servi ceDat aNane>

<gsdl : servi ceDat aNane>gsdl : Ter mi nati onTi me

</ gsdl : servi ceDat aNanme>

<gsdl : servi ceDat aNanme>gsdl| : Current Ti ne

</ gsdl : servi ceDat aNane>

<gsdl : Fact or yHandl e>sonmeURI </ gsdl : Fact or yHandl e>

<gsdl : Gri dSer vi ceHandl e>soneURI </ gsdl : Gri dSer vi ceHand| e>
<gsdl : Gi dSer vi ceHandl e>someQ her URI </ gsdl : Gri dSer vi ceHandl| e>

<gsdl : Gi dSer vi ceRef erence>..</ gsdl : G'i dSer vi ceRef erence>
<gsdl : Gi dSer vi ceRef erence>..</ gsdl : G'i dSer vi ceRef erence>

<gsdl : Quer yExpr essi onType>
gsdl : quer yBySer vi ceDat aNane

WS-ServiceData

</ gsdl : Quer yExpr essi onType>

<gsdl : Quer yExpr essi onType>
gsdl : quer yByMil ti pl eSer vi ceDat aNanes
</ gsdl : Quer yExpr essi onType>

<gsdl : Term nati onTi me after="2002-11-01T11: 22: 33"
bef or e="2002- 12- 09T11: 22: 33"/ >

<gsdl : Current Ti me>2002- 11- 02T12: 22: 00</ gsdl : Current Ti ne>

</ wsdl : servi ceDat aVal ues>

3.3 Interpretation of the ServiceData Element Declaration

The declaration of a serviceData element is very similar to the declaration of an element
in XML Schema. Therefore we use arestriction of xsd:element syntax from XML
Schema to declare serviceData elements.

maxOccurs = (nonNegativelnteger | unbounded) : 1
0 Thisvalue indicates the maximum number of times the serviceData element
can appear in the service instance’ s serviceDataV aues
minOccurs = nonNegativelnteger : 1
0 Thisvalue indicates the minimum number of times the serviceData element
can appear in the service instance' s serviceDataVaues
o If thevalueisO, then the serviceData element is optional
name = NCName and { target namespace}
0 The name of the serviceData element must be unique amongst all serviceData
element declarations in the target namespace of the wsdl:definitions element.
0 The combination of the name of the serviceData element and the target
namespace of the wsdl:definitions element forms a QName, allowing a unique
reference to this serviceData element.
nillable = boolean : false
o]
o Indicates whether the serviceData element can have anil value (that isavalue
that has an attribute xsi:nil with value="true’

= For example a serviceData element
<servi ceDat aEl ement nane="f 00" type="xs:string”
nillable=true” />

= can have avalid serviceDataElement value
<foo xsi:nil="true"/>
type = QName
0 Definesthe type of the serviceData element
modifiable = “boolean” : false
o |If true, itislegal for requestors to update the serviceData value through
operations, subject to constraints on cardinality (minOccurs, maxOccurs) and
mutability. If false, the serviceData element should be regarded as “read only”
by the requestor.

WS-ServiceData

mutability = “static” | “constant” | “extend” | “mutable” : extend
o Anindication on how the values of a serviceData element can change. See
(section 3.7)
{any attributes with non-schema namespace}
0 Open content on the attributes of serviceData declaration will be allowed.
Content
0 Open content element model, meaning elements from any other namespace
(besides XML Schema) may appear as child elements of the serviceData
element.

3.4 ServiceData Values

Each service instance is associated with a collection of serviceData elements. The set of
serviceData elements are defined within the various portTypes that form the interface of
the service and may aso be dynamically extended to include additional serviceData
elements (see). We call the set of serviceData elements associated with a service
instance a“ serviceData set”. A serviceData set may also refer to the set of serviceData
elements aggregated from all of the serviceData elements declared in a portType
extension hierarchy (see 3.8).

Each service must convey a“logical” XML document that contains the serviceData
element values, thisis contained within a serviceDataV alues element. An example of a
serviceDataV alues element is shown above. The implementation of the serviceisfreeto
choose how the SDE values are stored; for example, it is not obliged to store the SDE
values as XML, Javainstance variables are one option.

Furthermore, the wsdl:binding associated with various operations manipulating
serviceData elements will indicate the encoding of that data between service requestor
and service provider. For example, a binding might indicate that the serviceData element
values are encoded as serialized Java objects.

3.5 Operations on ServiceData

ServiceData elements can be consumed in multiple ways. There are several approaches.
An approach to query, set and receive notification on serviceData value changes is
described in the Grid services specification.

Once serviceData has been defined, it is necessary to indicate when and where a service
allows modification (setting) or query (getting) values of that serviceData element. We
say a service provides a getter operation for a serviceData element if it provides one or
more operations that reference the serviceData element as a part of the output of an
operation. Similarly, we say a service provides a setter operation for a serviceData
element if it provides one or more operations that reference the serviceData element as a
part of an input operation.

Operation-level get or set of serviceData can be defined using the following modified
WSDL syntax:

WS-ServiceData

<port Type nanme="ncnane" >
<oper ati on nanme="ncnane" >+
<i nput nessage="gnanme" servi ceData="Ii st-of - gnanmes"/>
<out put message="qnane" serviceData="1i st-of - gnames"/ >
</ oper ati on>
</ port Type>
Note that while the summary syntax above doesn't indicate it, the usual WSDL 1.1
permutations of <input> and <output> are allowed to create the four styles of operations.

Note also that the same serviceData can be listed as an input and an output parameter of
the same operation.

3.6 Defining Initial Values within the PortType

A portType can declareinitial values for any serviceData element with mutability marked
as“static” inits serviceData set, regardless of whether the serviceData element was
declared locally, or in one of the portTypes it extends.

<wsdl : definitions xm ns:tns="xxx" target Namespace="xxx" >
<wsdl : port Type nane="exanpl eSDUse" extends “tns: ot her PT" >
<wsdl : operati on name=..>

<wsdl : servi ceDat a nane="sdl" type="xsd: Stri ng”
mut abi lity="static” />
<wsdl : servi ceDat a nane="sd2" type="tns: SoneConpl exType”/ >

<wsdl : st ati cServi ceDat avVal ues>
<xxx:sdl>an initial value</xxx:sdl>
<yyy:inheritedSDE>i nitial val </yyy:inheritedSDE>
</ wsdl : st ati cServi ceDat aVal ues>

. </ wsdl : port Type>

;}msdl:definitions>

Itisillegal to declare an initial value for a serviceData element with mutability other than
“static”.

3.7 Mutability

We provide amutability attribute on the serviceData element declaration. This attribute
indicates how the serviceData' s values may change over the lifetime of the instance

From the Grid services spec: (in the Grid services spec, the abbreviation SDE is often
used for serviceData element)
» mutability="static”: thisimplies that the SDE value is assigned in the WSDL
declaration (staticServiceDataV alues) and remains that value for any instance of
that portType. A “static” SDE is analogous to a class member variablein
programming languages.

WS-ServiceData

» mutability="constant”: thisimplies that the SDE value is assigned by the Grid
service instance and MUST not change during the lifetime of the Grid service
instance onceit is set to avalue.

» mutability="extend”: thisimplies that once elements are in the SDE value, they
are guaranteed to be part of the SDE value for the lifetime of the Grid service.
New elements can be added to the SDE value, but once these elements are added,
they cannot be removed.

» mutability="mutable’: thisimplies any of the elementsin the SDE value MAY
be removed at anytime, and others MAY be added.

Note: the functionality described here is different than the fixed and default attributes on
the element definition in XML Schema. Fixed could be used to suggest a static value, but
append and mutable would have to be modeled by a mutability attribute. The case where
mutability = “constant” would be used isto specify a property that does not change after
avalueisassigned (but the value is not assigned by the service description, but rather, it
must be initialized at runtime).

3.8 ServiceData Element Aggregation within a PortType
Extension Hierarchy

WSDL 1.2 has introduced the notion of multiple portType extension. A portType can
extend O or more other portTypes and a service can implement 1 or more portTypes.

The serviceData set defined by the service' sinterface is the set union of the serviceData
elements defined by each portType in the transitive closure of portTypesimplemented by
the Web service. Because serviceData elements are identified by QName, the set union
semantic implies that a serviceData element can appear only once in the set of
serviceData elements.

Consider the following example:

<port Type nanme="pt1l”>
<servi ceData name="sdl” ..[>
</ port Type>

<port Type nane="pt2" extends “ptl”>
<servi ceData nanme="sd2” ..[>
</ port Type>

<port Type nane="pt3” extends “ptl”>
<servi ceData nane="sd3” ../[>
</ port Type>

<port Type nane="pt4” extends “pt2 pt3”>

<servi ceDat a nane="sd4” ..[>
</ port Type>

The serviceData sets defined by each portType is summarized as follows:

| if aserviceimplements... | its serviceDataSet \

10

WS-ServiceData

contains...
ptl sdl
pt2 sdl, sd2
pt3 sdl, sd3
pt4 sdl, sd2, sd3, sd4

3.9 Initial Values of Static ServiceData Elements within a
PortType Extension Hierarchy

Initial values of static SDES can be aggregated down a portType extension hierarchy.
However, the cardinality (minOccurs and maxOccurs) can be problematic.

<port Type nanme="pt1l”>
<servi ceDat a name="sd1” m nCccurs="1" maxQccur s="1"
mut abi lity="static”/>
<wsdl| : st ati cServi ceDat aVal ues>
<sd1>1</sd1>
</wsdl : st ati cServi ceDat aVal ues>

</ port Type>
A Web service instance that implements pt1 would have the value <sd1>1</sd1> for
SDE named sdl.

<port Type nane="pt2" extends “ptl”>

<servi ceDat a name="sd2” m nCccurs="1" maxQccur s="1"

mut abi lity="static”/>
<wsdl : st ati cServi ceDat avVal ues>
<sd2>2</sd2>

</wsdl : st ati cServi ceDat aVal ues>
</ port Type>
A Web service instance that implements pt2 would inherit the value <sd1>1</sd1> for
SDE named sd1 and would have the value <sd2>2</sd2> for the SDE named sd2.

<port Type nane="pt3" extends “ptl”>
<servi ceDat a nane="sd3” m nCccurs="1" maxQccur s=" unbounded”
mut abi lity="static”/>
<wsdl| : st ati cServi ceDat aVal ues>
<sd3>3a</ sd3>
<sd3>3b</ sd3>
</ wsdl : st ati cServi ceDat aVal ues>
</ port Type>
A Web service instance that implements pt3 would have two values <sd3>3a</sd3> and
<sd3>3b</sd3> for the SDE named sd3. It would of course inherit the value for the SDE

named sdl.

<port Type nane="pt4” extends “ptl”>
<servi ceData nane="sd4” m nCccurs="0" maxCccur s="unbounded”
nmut abi lity="static”/>
</ port Type>
A Web service instance that implements pt4 would inherit the value for sd1 defined in
ptl, but the absence of a staticServiceDataV aues element implies that thereis no value

11

WS-ServiceData

for sd4 (although it ismost likely that one would be defined in a portType which extends
pt4).

<port Type nane="pt5" extends “ptl”>
<servi ceDat a nane="sd5” m nCccurs="1" maxQccur s=" unbounded”
nmut abi lity="static”/>
</wsdl : st ati cServi ceDat aVal ues>
<wsdl| : st ati cServi ceDat aVal ues>
</ port Type>

A Web service instance that implements pt5 could not be created. Since thereisnoinitial
value for sd5, and the minOccurs value is greater than zero, an error is generated when
the instance is created. PortTypes of this sort can be encountered if it is the intention of
the designer to declare an “abstract” portType, wherein portTypes extending the abstract
portType define concrete values for SDEs with minOccurs greater than zero.

<port Type nane="pt6” extends “ptl”>
</wsdl : st ati cServi ceDat aVal ues>
<sd1>6</sd1>
<wsdl| : st ati cServi ceDat aVal ues>
</ port Type>

A Web service instance that implements pt6 could not be created. Since this portType
declares an additional value for the SDE named sd1 (recall there is avalue inherited from
pt1) which exceeds the maxOccurs value for the SDE named sd1, an error is generated
when the instance is created. PortTypes of this sort are in error and the designer should be
ridiculed.

<port Type nane="pt7” extends “pt2 pt3”>
<servi ceDat a name="sd7” m nCccurs="1" maxQccurs="1"
mut abi lity="static”/>
<wsdl : st ati cServi ceDat avVal ues>
<sd7>7</ sd7>
<sd3>7</ sd3>
</wsdl : stati cServi ceDat aVal ues>
</ port Type>

A Web service instance that implements pt7 has a very interesting set of serviceData
element values. Firgt, it has a single value <sd1>1<sd1> for the SDE named sd1. Despite
inheriting ptl via pt2 and pt3, the initial values for sd1 are not repeated. The value
<sd2>2</sd2> isthe only value for the SDE named sd2, thisisinherited from pt2. The
SDE named pt3 has 3 values: <sd3>3a</sd3>,<sd3>3b</sd3> (inherited from pt3) and
<sd3>7</sd3> locally defined. And finally, thereis alocally defined value for the SDE
named sd7 (<sd7>7</sd7>).

In general, values for static SDEs are aggregated down a portType extension hierarchy. If
the resulting set of SDE values violates the cardinality of the SDE (the number of values
is either less than the value of minOccurs, or greater than the value of maxOccurs), an
error is reported when a Web service instance is created.

12

WS-ServiceData

3.10Dynamic ServiceData Elements

Although many serviceData elements are defined in the Web service' sinterface
definition, there are situations that surface in the Grid where serviceData elements can be
added or removed dynamically to the instance. The means by which the serviceData set
of an instance may be updated is implementation specific. Note, in GridService portType,
thereis a serviceData element named “ serviceData” that lists the serviceData elements
currently defined, allowing the requestor to use the subscribeServiceData operation if this
the serviceDataSet changes, and findServiceData operation to determine the current
serviceDataSet value.

13

