
WS-ServiceData

 1

Describing ServiceData in Web Services

(Authors Alphabetically)
{Steve Graham, Martin Nally, Frank Leymann, Ellen Stokes, Tony Storey, Sanjiva
Weerawarana}1 { Karl Czajkowski}2 {Steve Tuecke}3
1 IBM
2 USC/ISI
3 Argonne National Labs

121/2601/2002

1 ServiceData
The approach to stateful Web services introduced in the Grid services specification
[http://www.ggf.org/ogsi-wg/drafts/draft-ggf-ogsi-gridservice-05_2002-11-04.pdf]
identified the need for a common mechanism to expose a service instance’s state data to
service requestors for query and change notification. The term used is “serviceData”.

Since this concept is applicable to any Web service including those used outside the
context of Grid applications, we propose a common approach to exposing Web service
state data called serviceData.

The structure of this document is as follows: in the next section we discuss the motivation
for serviceData, following that, we give details on how to describe serviceData within a
portType, including a brief example of its use from the Grid services specification, and a
discussion additional aspects of serviceData.

~Insert Frey’s treatise on serviceData, and upon said insertion, include Frey’s name on
author list.

2 Motivation
The serviceData concept was introduced to provide a flexible, properties-style approach
to access state data of a Web service. We developed this approach based on scenarios
from systems management and the grid. These domains exhibit entities that have a
potentially large number of properties. If we wish to model these entities using Web
services, we need an approach that models this complex state effectively.

An alternative approach, of providing "get operation per property" was considered, but
not adopted for several reasons:

1. If we use a "get" operation per property, then the set of messages to get multiple
properties is chatty, does not allow atomicity to be addressed, and does not allow
queries across multiple properties. Example: A Web service modeling an
operatingSystem object contains (among other properties) the following four
properties: totalVirtualMemorySize, freeVirtualMemory, freePhysicalMemory,

WS-ServiceData

 2

totalVisibleMemorySize. Two of the properties, totalVirtualMemorySize and
totalVisibleMemory, are constant and set at boot time. The other two properties,
freeVirtualMemory and freePhysicalMemory, change over time as memory is
allocated and de-allocated to a process. Consider the case wherein a management
application is monitoring (and displaying) memory usage,
totalVirtualMemorySize and totalVisibleMemorySize can be read individually
since both are constant in a running system. Since freeVirtualMemory and
freePhysicalMemory do change and change with respect to each other, these two
properties need to be obtained together atomically in a single get operation;
otherwise, the usage displayed of physical and virtual memory for a given point in
time is incorrect. We could just define an operation that does a get on both
freeVirtualMemory and freePhysicalMemory, but this approach does not scale
with the number of properties (see point 2.).

2. If we then compel portType designers to define additional operations to get all the

combinations of the serviceData, the number of operations is voluminous.
Although the above example is simple, in reality there are many other properties
in the operatingSystem object, many of which have exactly the same behavior
described in the example in 1. and depending on exactly what you monitor from
the complete operatingSystem object would require all combinations of
dynamically changing properties, e.g. 10 properties (from OperatingSystem)
would yield 10! operations.

By supporting a serviceData approach, we provide the mechanism for requestors(e.g.
example management applications) to build query expressions (eg XPath and XQuery) to
express queries involving combinations of service data elements. Example: The
operatingSystem resource contains (among other properties) the following three
properties: totalSwapSpaceSize, sizeStoredInPagingFiles, and freeSpaceInPagingFiles.
The filesystem resource contains (among other properties) the following two properties:
fileSystemSize and availableSpace. These two resources are related since filesystem is
contained in or booted from operating system. The properties fileSystemSize and
totalSwapSpaceSize are typically constant, even between system boots. The other
properties in this example change over time and with respect to each other, e.g. as
sizeStoredInPagingFiles increases, freeSpaceInPagingFiles and availableSpace decreases.
To monitor filesystem usage and display that usage, the query spans instances of both
objects (operatingSystem and filesystem) and multiple properties within those instances.
Single 'get' operations does not solve the problem of retrieving data across multiple object
instances atomically.

There is also a requirement to support dynamic addition of "properties" at runtime. The
notion is that the interface (portType) defines the majority of the serviceData elements
(properties), however it is possible that at runtime, perhaps associated with a particular
lifecycle state, to add serviceData elements to the Web service instance. Example: A
Web service contains its lifecycle state in a serviceData element where the possible
lifecycle values are 'exists', 'running', 'maintenance', and 'failed'. There is additional and
different serviceData associated with each of these lifecycle states. In the failed lifecycle

WS-ServiceData

 3

state, there is an additional serviceData element that contains the 'debug stack'. In the
maintenance lifecycle state, the additional serviceData element is the list of data to help
process the maintenance state. The 'exists' and 'running' lifecycle states have no
additional serviceData elements. In Web services, when serviceData elements exist in a
portType, they are expected to be valid. In this example where the information
associated with a lifecycle state is variable, use of dynamic serviceData for access to that
additional information is a good solution because the right needed information is returned
based on lifecycle state. A counter argument would be to define an operation
'getLifecycleState' to accomplish the same, but it is not the state itself that that operation
would get, but rather the five (or however many) new serviceData elements associated
with that new state; you wouldn't want to model the aggregation of those five properties
into a getLifecycleState given the variability of serviceData information associated with
each lifecycle state.

3 Extending PortType with WS-ServiceData
ServiceData defines a new child element of a portType named serviceData. This element
defines serviceData elements associated with that portType. Optionally, initial values for
those serviceData elements can be specified.

 <wsdl:portType name="ncname"> *
 <wsdl:documentation /> ?
 <wsdl:operation name="ncname"> *
…
 <wsdl:serviceData name="ncname" … /> *
 <wsdl:staticServiceDataValues>?
 <some element>*
 </wsdl:staticServiceDataValues>
…
 </wsdl:portType>

For example, a portType declares a set of serviceData elements such as shown below:
<wsdl:definitions xmlns:tns=”xxx” targetNamespace=”xxx”>
 <wsdl:portType name="exampleSDUse"> *
 <wsdl:operation name=…>
…
 <wsdl:serviceData name="sd1" type=”xsd:String”
 mutability=”static”/>
 <wsdl:serviceData name="sd2" type=”tns:SomeComplexType”/>
…
 <wsdl:staticServiceDataValues>
 <xxx:sdl>initValue</xxx:sd1>
 </wsdl:staticServiceDataValues>
 </wsdl:portType>
…
</wsdl:definitions>

Initial values for “static” serviceData elements can also be declared in the portType.

WS-ServiceData

 4

Any service that implements the portType named “exampleSDUse” MUST have as part
of its state, serviceData elements with qualified names “tns:sd1” and “tns:sd2”. This
concept is similar to the notion of an instance variable in Object-Oriented programming
languages such as Java tm, Smalltalk and C++ and most closely associated with a Java
Bean property.

3.1 Structure of the ServiceData Element Declaration
The definition for serviceData element is:

<xs:complexType name=“ClosedServiceDataElementType”>
 <xs:complexContent>
 <xs:restriction base=”xs:element”>
 <xs:attribute name="name" type="xs:NCName"/>
 <xs:attributeGroup ref="xs:defRef" /> (name and ref)
 <xs:attribute name="type" type="xs:QName" />
 <xs:attributeGroup ref="xs:occurs" /> (minOccurs, maxOccurs)
 <xs:attribute name="nillable" type="xs:boolean" use="optional"
 default="false" />
 <xs:anyAttribute namespace="##other" processContents="lax" />
 </xs:restiction>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name=”ServiceDataType”>
 <xs:complexContent>
 <xs:extension base=”ClosedServiceDataElementType”>
 <xs:sequence>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="mutability" default=”extend”>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="static"/>
 <xs:enumeration value="constant"/>
 <xs:enumeration value="extend"/>
 <xs:enumeration value="mutable"/>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="modifiable" type=”xs:boolean”
 default=”false”>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<element name=”serviceData” type=”ServiceDataType”/>

<xs:complexType name=”ServiceDataValuesType”>
 <xs:complexContent>
 <xs:sequence>
 <xs:any namespace="##any" minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 <xs:complexContent>
</xs:complexType>

WS-ServiceData

 5

<element name=”serviceDataValues” type=”ServiceDataValuesType”/>

In the above approach, a serviceData element is restricted to contain only these properties
from xsd:element:

• name
• type
• minOccurs
• maxOccurs
• nillable
• open attribute content model

And the model is extended to allow open element content model, and to define the
mutability attribute (3.7) and the modifiable attribute.

We describe how the concept of serviceData can be exposed through operations in
section 3.5. In a related document “Grid Services Operations on ServiceData”, we
describe one convention on how the serviceData element values can be queried and set by
service requestors and how service requestors can be notified of a change in the
serviceData element’s value.

3.2 Using ServiceData, an Example from Grid Services,
Lets examine how ServiceData can be used by reviewing an example currently
documented in the Grid Services Specification. The Grid Service Specification defines a
portType, named “GridService” (in a namespace that is commonly associated with the
prefix gsdl) that acts as the base for all other Grid service portTypes (similar to “Object”
class in Java or Smalltalk). The serviceData elements declared for the Grid Service
portType are shown below:

<wsdl:definitions …
 xmlns:gsdl=
 "http://www.gridforum.org/namespaces/2002/11/gridServices"
 targetNamespace=
 "http://www.gridforum.org/namespaces/2002/11/gridServices"
 xnlns="http://www.gridforum.org/namespaces/2002/11/gridServices">

<wsdl:portType name=”GridService”>
 <wsdl:operation name= …>
 …

 <wsdl:serviceData name=”PortType” type=”gsdl:portTypeNameType”
 minOccurs=”1” maxOccurs=”unbounded”
 mutability=”constant”/>
 <wsdl:serviceData name=”serviceDataName” type=”xsd:QName”
 mutability=”mutable” maxOccurs=”unbounded”/>
 <wsdl:serviceData name=”FactoryHandle”
 type=”gsdl:gridServiceHandleType”
 minOccurs=”0” mutability=”constant”/>
 <wsdl:serviceData name=”GridServiceHandle”
 type=”gsdl:gridServiceHandleType”
 minOccurs=”0” maxOccurs=”unbounded”

WS-ServiceData

 6

 mutability=”extend”/>
 <wsdl:serviceData name=”GridServiceReferences”
 type=”gsdl:gridServiceReferenceType”
 minOccurs=”0” maxOccurs=”unbounded”
 mutability=”mutable”/>
 <wsdl:serviceData name=”QueryExpressionType”
 type=”gsdl:queryExpressionType”
 minOccurs=”1” maxOccurs=”unbounded”
 mutability=”extend”/>
 <wsdl:serviceData name=”TerminationTime” type=”gsdl:terminationTime”
 mutability=”mutable”/>
 <wsdl:serviceData name="CurrentTime" type="gsdl:currentTime"
 mutability="mutable"/>
…

And an example set of serviceData element values for some Web service instance might
look like:

…
 xmlns:gsdl=
 "http://www.gridforum.org/namespaces/2002/11/gridServices"
 xmlns:crm=”http://gridforum.org/namespaces/2002/11/crm”
 xmlns:tns=”http://example.com/exampleNS”
 xnlns=”http://example.com/exampleNS”>

<wsdl:serviceDataValues>
 <gsdl:PortType>crm:GenericOSPT</gsdl:PortType>
 <gsdl:PortType>gsdl:GridService</gsdl:PortType>

 <gsdl:serviceDataName>gsdl:PortType
 </gsdl:serviceDataName>
 <gsdl:serviceDataName>gsdl:gsdlserviceDataName
 </gsdl:serviceDataName>
 <gsdl:serviceDataName>gsdl:FactoryHandle
 </gsdl:serviceDataName>
 <gsdl:serviceDataName>gsdl:gsdlGridServiceHandle
 </gsdl:serviceDataName>
 <gsdl:serviceDataName>gsdl:GridServiceReferences
 </gsdl:serviceDataName>
 <gsdl:serviceDataName>gsdl:QueryExpressionType
 </gsdl:serviceDataName>
 <gsdl:serviceDataName>gsdl:TerminationTime
 </gsdl:serviceDataName>
 <gsdl:serviceDataName>gsdl:CurrentTime
 </gsdl:serviceDataName>

 <gsdl:FactoryHandle>someURI</gsdl:FactoryHandle>

 <gsdl:GridServiceHandle>someURI</gsdl:GridServiceHandle>
 <gsdl:GridServiceHandle>someOtherURI</gsdl:GridServiceHandle>

 <gsdl:GridServiceReference>…</gsdl:GridServiceReference>
 <gsdl:GridServiceReference>…</gsdl:GridServiceReference>

 <gsdl:QueryExpressionType>
 gsdl:queryByServiceDataName

WS-ServiceData

 7

 </gsdl:QueryExpressionType>

 <gsdl:QueryExpressionType>
 gsdl:queryByMultipleServiceDataNames
 </gsdl:QueryExpressionType>

 <gsdl:TerminationTime after=”2002-11-01T11:22:33”
 before=”2002-12-09T11:22:33”/>

 <gsdl:CurrentTime>2002-11-02T12:22:00</gsdl:CurrentTime>

</wsdl:serviceDataValues>

3.3 Interpretation of the ServiceData Element Declaration
The declaration of a serviceData element is very similar to the declaration of an element
in XML Schema. Therefore we use a restriction of xsd:element syntax from XML
Schema to declare serviceData elements.

• maxOccurs = (nonNegativeInteger | unbounded) : 1

o This value indicates the maximum number of times the serviceData element
can appear in the service instance’s serviceDataValues

• minOccurs = nonNegativeInteger : 1
o This value indicates the minimum number of times the serviceData element

can appear in the service instance’s serviceDataValues
o If the value is 0, then the serviceData element is optional

• name = NCName and {target namespace}
o The name of the serviceData element must be unique amongst all serviceData

element declarations in the target namespace of the wsdl:definitions element.
o The combination of the name of the serviceData element and the target

namespace of the wsdl:definitions element forms a QName, allowing a unique
reference to this serviceData element.

• nillable = boolean : false
o
o Indicates whether the serviceData element can have a nil value (that is a value

that has an attribute xsi:nil with value=”true”
§ For example a serviceData element
<serviceDataElement name=”foo” type=”xs:string”
nillable=true” />
§ can have a valid serviceDataElement value
<foo xsi:nil=”true”/>

• type = QName
o Defines the type of the serviceData element

• modifiable = “boolean” : false
o If true, it is legal for requestors to update the serviceData value through

operations, subject to constraints on cardinality (minOccurs, maxOccurs) and
mutability. If false, the serviceData element should be regarded as “read only”
by the requestor.

WS-ServiceData

 8

• mutability = “static” | “constant” | “extend” | “mutable” : extend
o An indication on how the values of a serviceData element can change. See

(section 3.7)
• {any attributes with non-schema namespace}

o Open content on the attributes of serviceData declaration will be allowed.
• Content

o Open content element model, meaning elements from any other namespace
(besides XML Schema) may appear as child elements of the serviceData
element.

3.4 ServiceData Values
Each service instance is associated with a collection of serviceData elements. The set of
serviceData elements are defined within the various portTypes that form the interface of
the service and may also be dynamically extended to include additional serviceData
elements (see3.103.9). We call the set of serviceData elements associated with a service
instance a “serviceData set”. A serviceData set may also refer to the set of serviceData
elements aggregated from all of the serviceData elements declared in a portType
extension hierarchy (see 3.8).

Each service must convey a “logical” XML document that contains the serviceData
element values, this is contained within a serviceDataValues element. An example of a
serviceDataValues element is shown above. The implementation of the service is free to
choose how the SDE values are stored; for example, it is not obliged to store the SDE
values as XML, Java instance variables are one option.

Furthermore, the wsdl:binding associated with various operations manipulating
serviceData elements will indicate the encoding of that data between service requestor
and service provider. For example, a binding might indicate that the serviceData element
values are encoded as serialized Java objects.

3.5 Operations on ServiceData
ServiceData elements can be consumed in multiple ways. There are several approaches.
An approach to query, set and receive notification on serviceData value changes is
described in the Grid services specification.

Once serviceData has been defined, it is necessary to indicate when and where a service
allows modification (setting) or query (getting) values of that serviceData element. We
say a service provides a getter operation for a serviceData element if it provides one or
more operations that reference the serviceData element as a part of the output of an
operation. Similarly, we say a service provides a setter operation for a serviceData
element if it provides one or more operations that reference the serviceData element as a
part of an input operation.

Operation-level get or set of serviceData can be defined using the following modified
WSDL syntax:

WS-ServiceData

 9

<portType name="ncname">
 <operation name="ncname">+
 <input message="qname" serviceData="list-of-qnames"/>
 <output message="qname" serviceData="list-of-qnames"/>
 </operation>
</portType>
Note that while the summary syntax above doesn't indicate it, the usual WSDL 1.1
permutations of <input> and <output> are allowed to create the four styles of operations.

Note also that the same serviceData can be listed as an input and an output parameter of
the same operation.

3.6 Defining Initial Values within the PortType
A portType can declare initial values for any serviceData element with mutability marked
as “static” in its serviceData set, regardless of whether the serviceData element was
declared locally, or in one of the portTypes it extends.

<wsdl:definitions xmlns:tns=”xxx” targetNamespace=”xxx”>
 <wsdl:portType name="exampleSDUse" extends “tns:otherPT”>
 <wsdl:operation name=…>
…
…
 <wsdl:serviceData name="sd1" type=”xsd:String”
 mutability=”static” />
 <wsdl:serviceData name="sd2" type=”tns:SomeComplexType”/>

 <wsdl:staticServiceDataValues>
 <xxx:sd1>an initial value</xxx:sd1>
 <yyy:inheritedSDE>initial val</yyy:inheritedSDE>
 </wsdl:staticServiceDataValues>
…
 </wsdl:portType>
…
</wsdl:definitions>

It is illegal to declare an initial value for a serviceData element with mutability other than
“static”.

3.7 Mutability
We provide a mutability attribute on the serviceData element declaration. This attribute
indicates how the serviceData’s values may change over the lifetime of the instance

From the Grid services spec: (in the Grid services spec, the abbreviation SDE is often
used for serviceData element)

• mutability=”static”: this implies that the SDE value is assigned in the WSDL
declaration (staticServiceDataValues) and remains that value for any instance of
that portType. A “static” SDE is analogous to a class member variable in
programming languages.

WS-ServiceData

 10

• mutability=”constant”: this implies that the SDE value is assigned by the Grid
service instance and MUST not change during the lifetime of the Grid service
instance once it is set to a value.
• mutability=”extend”: this implies that once elements are in the SDE value, they
are guaranteed to be part of the SDE value for the lifetime of the Grid service.
New elements can be added to the SDE value, but once these elements are added,
they cannot be removed.
• mutability=”mutable”: this implies any of the elements in the SDE value MAY
be removed at anytime, and others MAY be added.

Note: the functionality described here is different than the fixed and default attributes on
the element definition in XML Schema. Fixed could be used to suggest a static value, but
append and mutable would have to be modeled by a mutability attribute. The case where
mutability = “constant” would be used is to specify a property that does not change after
a value is assigned (but the value is not assigned by the service description, but rather, it
must be initialized at runtime).

3.8 ServiceData Element Aggregation within a PortType
Extension Hierarchy

WSDL 1.2 has introduced the notion of multiple portType extension. A portType can
extend 0 or more other portTypes and a service can implement 1 or more portTypes.

The serviceData set defined by the service’s interface is the set union of the serviceData
elements defined by each portType in the transitive closure of portTypes implemented by
the Web service. Because serviceData elements are identified by QName, the set union
semantic implies that a serviceData element can appear only once in the set of
serviceData elements.

Consider the following example:

<portType name=”pt1”>
 <serviceData name=”sd1” …/>
</portType>

<portType name=”pt2” extends “pt1”>
 <serviceData name=”sd2” …/>
</portType>

<portType name=”pt3” extends “pt1”>
 <serviceData name=”sd3” …/>
</portType>

<portType name=”pt4” extends “pt2 pt3”>
 <serviceData name=”sd4” …/>
</portType>

The serviceData sets defined by each portType is summarized as follows:

if a service implements… its serviceDataSet

WS-ServiceData

 11

contains…
pt1 sd1
pt2 sd1, sd2
pt3 sd1, sd3
pt4 sd1, sd2, sd3, sd4

3.9 Initial Values of Static ServiceData Elements within a
PortType Extension Hierarchy

Initial values of static SDEs can be aggregated down a portType extension hierarchy.
However, the cardinality (minOccurs and maxOccurs) can be problematic.

<portType name=”pt1”>
 <serviceData name=”sd1” minOccurs=”1” maxOccurs=”1”
 mutability=”static”/>
 <wsdl:staticServiceDataValues>
 <sd1>1</sd1>
 </wsdl:staticServiceDataValues>

</portType>
A Web service instance that implements pt1 would have the value <sd1>1</sd1> for
SDE named sd1.

<portType name=”pt2” extends “pt1”>
 <serviceData name=”sd2” minOccurs=”1” maxOccurs=”1”
 mutability=”static”/>
 <wsdl:staticServiceDataValues>
 <sd2>2</sd2>
 </wsdl:staticServiceDataValues>
</portType>
A Web service instance that implements pt2 would inherit the value <sd1>1</sd1> for
SDE named sd1 and would have the value <sd2>2</sd2> for the SDE named sd2.

<portType name=”pt3” extends “pt1”>
 <serviceData name=”sd3” minOccurs=”1” maxOccurs=”unbounded”
 mutability=”static”/>
 <wsdl:staticServiceDataValues>
 <sd3>3a</sd3>
 <sd3>3b</sd3>
 </wsdl:staticServiceDataValues>
</portType>
A Web service instance that implements pt3 would have two values <sd3>3a</sd3> and
<sd3>3b</sd3> for the SDE named sd3. It would of course inherit the value for the SDE
named sd1.

<portType name=”pt4” extends “pt1”>
 <serviceData name=”sd4” minOccurs=”0” maxOccurs=”unbounded”
 mutability=”static”/>
</portType>
A Web service instance that implements pt4 would inherit the value for sd1 defined in
pt1, but the absence of a staticServiceDataValues element implies that there is no value

WS-ServiceData

 12

for sd4 (although it is most likely that one would be defined in a portType which extends
pt4).

<portType name=”pt5” extends “pt1”>
 <serviceData name=”sd5” minOccurs=”1” maxOccurs=”unbounded”
 mutability=”static”/>
 </wsdl:staticServiceDataValues>
 <wsdl:staticServiceDataValues>
</portType>
A Web service instance that implements pt5 could not be created. Since there is no initial
value for sd5, and the minOccurs value is greater than zero, an error is generated when
the instance is created. PortTypes of this sort can be encountered if it is the intention of
the designer to declare an “abstract” portType, wherein portTypes extending the abstract
portType define concrete values for SDEs with minOccurs greater than zero.

<portType name=”pt6” extends “pt1”>
 </wsdl:staticServiceDataValues>
 <sd1>6</sd1>
 <wsdl:staticServiceDataValues>
</portType>
A Web service instance that implements pt6 could not be created. Since this portType
declares an additional value for the SDE named sd1 (recall there is a value inherited from
pt1) which exceeds the maxOccurs value for the SDE named sd1, an error is generated
when the instance is created. PortTypes of this sort are in error and the designer should be
ridiculed.

<portType name=”pt7” extends “pt2 pt3”>
 <serviceData name=”sd7” minOccurs=”1” maxOccurs=”1”
 mutability=”static”/>
 <wsdl:staticServiceDataValues>
 <sd7>7</sd7>
 <sd3>7</sd3>
 </wsdl:staticServiceDataValues>
</portType>

A Web service instance that implements pt7 has a very interesting set of serviceData
element values. First, it has a single value <sd1>1<sd1> for the SDE named sd1. Despite
inheriting pt1 via pt2 and pt3, the initial values for sd1 are not repeated. The value
<sd2>2</sd2> is the only value for the SDE named sd2, this is inherited from pt2. The
SDE named pt3 has 3 values: <sd3>3a</sd3>,<sd3>3b</sd3> (inherited from pt3) and
<sd3>7</sd3> locally defined. And finally, there is a locally defined value for the SDE
named sd7 (<sd7>7</sd7>).

In general, values for static SDEs are aggregated down a portType extension hierarchy. If
the resulting set of SDE values violates the cardinality of the SDE (the number of values
is either less than the value of minOccurs, or greater than the value of maxOccurs), an
error is reported when a Web service instance is created.

WS-ServiceData

 13

3.10 Dynamic ServiceData Elements
Although many serviceData elements are defined in the Web service’s interface
definition, there are situations that surface in the Grid where serviceData elements can be
added or removed dynamically to the instance. The means by which the serviceData set
of an instance may be updated is implementation specific. Note, in GridService portType,
there is a serviceData element named “serviceData” that lists the serviceData elements
currently defined, allowing the requestor to use the subscribeServiceData operation if this
the serviceDataSet changes, and findServiceData operation to determine the current
serviceDataSet value.

