
RCT-2014-06-24-1856-Doc-Antipattern-Sketch Page 1 of 4 2014-06-24 19:12:16

Tracked Changes:

Navigating the Document-Format Anti-Pattern
 Dennis E. Hamilton

Interoperability Architect
4401 44th Ave SW

Seattle, WA 98116, USA
+1-206-779-9430

dennis.hamilton@acm.org

ABSTRACT

Editing of word-processing documents at the presentation level,

with visible tracking of changes, operates at a different level of

abstraction and granularity than representation of the document

in common document-file formats. The consequent mismatches

are demonstrated using OpenDocument format provisions for

tracked changes. A selection-copy analogy is introduced for

bridging the abstraction levels while adhering to file-format

provisions. The enhancements improve reliability and interoper-

ability and are implementable incrementally without obsoleting

current software and documents.

Categories and Subject Descriptors

H.4.1 [Information Systems Applications]: Office Automation

– word processing; D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement – portability; restructuring,

reverse engineering, re-engineering; D.2.9 [Software Engineer-

ing]: Management – life cycle; H.1.2 [Models and Principles]

User/Machine Systems – human factors, I.7.1 [Document and

Text Processing]: Document and Text Editing – version control,

document management

General Terms

Algorithms, Design, Management, Standardization, Verification

Keywords

OpenDocument, XML, change tracking, document formats, over-

lapping markup, user conceptualization, WYSIWYG.

1. INTRODUCTION
Repaired Change Tracking (RCT) is an extension profile for

change-tracking provisions in OpenDocument format (ODF)[8].

RCT accounts for the level of abstraction that users perceive

when operating with graphical word-processing software. The

clash and mismatch with representation in standard file formats

is part of the situation to be comprehended (section 2). The dis-

parity is evident in the format-level representation of tracked

changes (section 3). Reconciliation of the disparity sufficient for

improved interchange follows (section 4).

Interchange

Format

Interactive

Manifestation

Internal

Document Model

Conceptions/

Fixations

Specification Gap

Document-Format Anti-Pattern

Figure 1. WYSIWYG Document Processing Interactions

(typical). Software implements an internal document model

in order to manifest views manipulated at the graphical user

interface, shielding users from the intricacies of interchange

formats. Microsoft Word, OpenOffice.org Writer, and other

word-processing programs exhibit this pattern.

2. THE SITUATION
In today’s office-productivity software suites, document produc-

tion is accomplished by manipulations of a graphical-interface

presentation, a manifestation, of the document under develop-

ment or review. The operator initiates, manipulates and reviews

the manifestation as the document develops. Success is achieving

a manifestation having acceptable appearance of the content,

reinforced by obtaining a faithful printed edition or some final

electronic form (Figure 1). Through these interactions, users are

trained to their tools through trial and error.

Software that operates the manifestation and interaction process

maintains, in some manner, an internal document model that

captures what there is of the document at any point in time.

The software also saves work in one or more file formats for

digital interchange of editable documents. Commonly-employed

RCT-2014-06-24-1856-Doc-Antipattern-Sketch Page 2 of 4 2014-06-24 19:12:16

formats include ODF[7], Office Open XML[3], and older formats

such as those of Microsoft Office[5].

It is important to appreciate that the emitted file formats are not

directly used for authoring, editing, or any purpose but re-

introduction into computer programs that manifest the represent-

ed document. It is near-inconceivable that users of the software

have either interest or means to interpret complex document files

and discern their relationship to the recognizable documents that

are represented.

The disparate levels at which documents are manifest to users

and represented in interchange formats is a consequence of the

document-format anti-pattern1: Specifications for these docu-

ment formats do not address manifestation; the formal require-

ments and definitions are not related to any internal model. The

anti-pattern’s absence of specified behavior is intentional (Figure

1).

Consequently, achievement of interchange fidelity and interoper-

ability is driven by forces and agreements between parties that

are beyond the scope of the file-format specifications.

That is the setting in which interoperable change-tracking is

expected.

3. CHANGE-TRACKING COMPLEXITIES
ODF employs XML documents as carriers of the structure and

content of the represented OpenDocument document. Represen-

tation of ODF features and structure introduces off-hierarchy

interdependencies in the XML[1]. Structural-consistency and

1http://en.wikipedia.org/w/index.php?title=Anti-pattern&oldid=612745076

referential-integrity constraints for the OpenDocument document

representation are not conveyed in the ODF XML schema ([8]

Appendix A).

The anti-pattern and complexities of XML representation are

magnified in the case of change-tracking provisions ([8] section

5.5).

3.1 Tracked-Deletion Representation
For deletions, typical manifestations present a progression of

formatted text in some progressive layout. Users select spans of

individual visual elements by some means. The deletions are

achieved by single actions (Figure 2).

After a deletion the document appears to have a new continuous

progression with the selected material absent. The textual

material on each side of the deletion usually appears unchanged.

There may be layout effects, including material beyond the

deletion drawn into the layout of material preceding the deletion.

When changes are tracked and presented for review, deleted

material will be presented as it was, along with some visible

indication of deletion, such as colorization and strike-through.

In the XML representation, deletions may be far more conse-

quential than what is manifest. Multiple XML elements of the

representation can be excised. Other elements may have been

severed at the edges of the deletion, with start tags losing their

end tags and vice versa. Although the deletion can be represented

by a single deletion point, an invisible seam, cosmetic curing

User View abcde fghi … QRSTU VWXYZ

ODF XML <e><e 1>abcde␠ fghi</e 1><e 2> … </e n-1><e n>qrstu ␠vwxyz</e n></e>

User View abcde fghi … QRSTU VWXYZ

ODF XML <e><e 1>abcde␠ <text:span><text:s>vwxyz

</text:span></e 1></e>

fghi</e 1><e 2> … </e n-1><e n>qrstu </e n></text:deletion>

OpenDocument Tracked-Deletion Pattern (simplified)

<text-changed-region xml:id="id">

 <office:change-info provenance-information />

</text-changed-region>

 <text:deletion><e 1>

selected text

optionally-visible "red-lined" text

<text:change text:change-id="id" />

BEFORE DELETION

AFTER DELETION

Figure 2. Cross-cutting text deletions replace excised text and markup components with user-invisible seams. The seam

element replaces extracted material set-aside elsewhere in the XML representation. Curing occurs beyond the seam in order

to have a properly rendered result, as in bold-italic small caps rendering of ␠vwxyz. Orphaned end tags for elements whose

start tags are consumed in the deletion (</en> in the figure) are cured by tying to widowed (or new) start tags as

appropriate. Adjoined white space (␠ in the XML) is preserved as seen before deletion. Set-aside material is “wrapped” with

XML tags to be well-formed in place, with introduction of namespace bindings as needed in the scope of the set-aside

location[2]. RCT introduces extended attributes in start tags (underlined in the figure).

http://en.wikipedia.org/w/index.php?title=Anti-pattern&oldid=612745076

RCT-2014-06-24-1856-Doc-Antipattern-Sketch Page 3 of 4 2014-06-24 19:12:16

 may be necessary adjacent to the seam. Curing adjusts surround-

ing XML tags and introduces additional elements so that the

document is manifest as if there is no disturbance to text content

adjacent to the deletion2. Deletion is not a context-free activity at

the XML representation level.

Tracking and reversion of deletions require retention of the ex-

tracted material. When XML elements are severed, XML start

tags and end tags are adjoined to the extraction, achieving a valid

XML <text:deletion> element (Figure 2).

3.2 Cross-Cutting Markup Effects
Three XML elements are seams in the ODF representation of

tracked changes. Along with <text:change /> for deletions,

<text:change-start /> and <text:change-end />

bracket insertions. Traversal of XML from a –start seam to its

corresponding –end seam can be off-hierarchy, cross-cutting the

XML akin to the deletion case. All seam elements identify an

out-of-line <text:changed-region> element providing

particulars about the kind of change, as in (Figure 2).

There are also off-hierarchy bracketing’s for non-change-tracking

purposes (e.g., annotation and phrase indexing) in ODF’s XML

representation. Any bracket pairing, including around an

insertion, can be severed by a deletion. Insertions can spread

bracket pairs farther apart. Deletions can also capture markers

that serve as targets, as sources for cross-references, and

connections that bind structural features of the ODF document,

breaking the associations.

3.3 Atomicity Conflicts and Failures
In ODF 1.2, all changes are represented as unconnected

insertions and deletions. Substitution by insertion into a selection

becomes a deletion following by an insertion. If a selection is

moved from another part of the document, there is no association

of the insertion with deletion at the original location. Failure to

treat these actions as joined and atomic leads to conflicts when a

deletion is reverted and an associated insertion is accepted. This

is exacerbated when implementations divide single-selection

deletions and insertions into multiple, smaller change-tracked

operations, presenting users with inscrutable side-effects of their

actions.

Copying of certain selections, if allowed, introduces conflicts in

the document structure, including violation of internal identifier

uniqueness in the XML[4]. The outcome can be irreparable loss

of document structural connections, including inbound identi-

fiers, in the XML representation of the changes in the file.

4. RCT APPROACH
The fundamental extension to accomplish RCT consists of addi-

tional attributes in the out-of-line <text:changed-

region> elements and their change-specific sub-elements (as

in Figure 2). New attributes provide details for correctly-

reversing cures introduced at seams. Other attributes chain

2 Since the seam is invisible in the rendering of text contiguous with it, there

are exotic cases where appearance does change depending on altered

character positions in words and applicable text-joining rules[9].

Visualizations of tracked changes might present these cases as

substitutions so the situation is made explicit.

<text:changed-region> elements together when they are

intended to be taken as part of a single atomic change action,

with acceptance or reversal as a whole. The links can also be

used to assert partial ordering among overlapping and colliding

changes so that incorrect order of acceptance and reversal is

inhibited.

The selection-copy analogy relates occurrences of tracked-change

seams and associated <text:changed-region> elements

to hypothetical selection and copy operations at the manifestation

level. A changed region is expected to be tied to a selection in

the manifestation, there being limited places to point and select

in a practical manifestation. Implementations need only manifest

those changed regions of an input OpenDocument document that

the implementation could have produced. Implementations may

ignore RCT features by design and when they are not

representations an implementation is designed to support. The

default is to treat the tracked changes as accepted.

Selections of sources for copies and/or a move can be further

characterized as if the selections are extracted into XML markup

akin to set-aside deletion markup, even when no deletion has

occurred. Insertion of such a copy is characterized as the

reversion of a deletion that was already at the place of insertion,

although different curing may be involved in introducing the

insertion. Explicit representation of a selection as an XML

element in this manner is also practical for delivery by clip-board

negotiation into a different document or embedding via OLE[6].

5. OUTLOOK
Development of RCT starts with comprehensive analysis of the

ODF schema and specification. All interdependencies and inter-

actions between tracked-change markup and other markup of

ODF documents are identified. A stable set of generic cases is

chosen by which combinatorial explosion is avoided and tracked-

change overlaps and collisions are addressed.

Generic cases are expressed in terms of selection, deletion, inser-

tion, copying, moving, and curing at change boundaries.

Description is at the level of XML representation of the changed

document and of clip-board equivalents. There is no appeal to

internal document models and interactive manifestations beyond

the selection-copy analogy.

Analysis, collection of details, derivation of principles and

guidance are maintained on a public web site.3

6. CONCLUSIONS
Any approach to recorded and presented change-tracking of

ODF-based documents must reconcile the same cases identified

for RCT. The RCT analysis is valuable support to any efforts of

greater ambition.

Three features of OpenDocument representation secure the

opportunity for repair and improvement of textual change-

tracking via RCT: (1) empty-element XML markers where

changes have been made, (2) correct final form when markers are

ignored, and (3) extension attributes ignorable by default.

3 http://nfoworks.org/notes/2014/05/n140501.htm

http://nfoworks.org/notes/2014/05/n140501.htm

RCT-2014-06-24-1856-Doc-Antipattern-Sketch Page 4 of 4 2014-06-24 19:12:16

By selection-copy analogy, RCT avoids assumption of particular

manifestations of tracked changes, of internal document models,

and of implementation details.

Ultimately, deployment depends on the difficulty of adjusting

existing implementations to introduce and refine the change-

tracking that is produced, recognized, and, where not supported,

appropriately ignored.

The devil is in the details.

7. ACKNOWLEDGMENT
Thanks to colleague William L. Anderson for his enthusiastic

attention and careful eye.

8. REFERENCES
[1] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve

Maler, and François Yergeau (editors). .Extensible Markup

Language (XML) 1.0 (Fourth Edition). W3C Recommenda-

tion 16 August 2006, edited in place 29 September 2006.

http://www.w3.org/TR/2006/REC-xml-20060816.

[2] Tim Bray, Dave Hollander, Andrew Layman, and Richard

Tobin (editors). Namespaces in XML 1.0 (Second Edition).

W3C Recommendation 16 August 2006.

http://www.w3c.org/TR/2006/REC-xml-names-20060816.

[3] Ecma International. Office Open XML File Formats, 4th

edition. Standard ECMA-376, December 2012.

http://www.ecma-

international.org/publications/standards/Ecma-376.htm

[4] Jonathan Marsh, Daniel Veillard, and Norman Walsh

(editors). xml:id Version 1.0. W3C Recommendation

9 September 2005.

http://www.w3c.org/TR/2005/REC-xml-id-20050909.

[5] Microsoft Corporation. Office File Formats. Microsoft

Developer Network MSDN Library. Accessed 2014-06-19

at http://msdn.microsoft.com/en-

us/library/cc313118(v=office.12).aspx

[6] Microsoft Corporation. OLE Background. Microsoft

Developer Network MSDN Library. Accessed 2014-06-18

at http://msdn.microsoft.com/en-us/library/19z074ky.aspx

[7] OASIS. Open Document Format for Office Applications

(OpenDocument) Version 1.2. 29 September 2011 OASIS

Standard. master document introducing further parts by

reference,

http://docs.oasisopen.org/office/v1.2/os/OpenDocument-

v1.2-os.html

[8] OASIS. Open Document Format for Office Applications

(OpenDocument) Version 1.2 Part 1: OpenDocument

Schema. 29 September 2011 OASIS Standard. Available at

http://docs.oasis-open.org/office/v1.2/os/

[9] The Unicode Consortium. The Unicode Standard Version

5.2.0 defined by: The Unicode Standard, Version 5.2

(Mountain View, CA: The Unicode Consortium, 2009.

ISBN 978-1-936213-00-9).

http://www.unicode.org/versions/Unicode5.2.0/

http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3c.org/TR/2006/REC-xml-names-20060816
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.w3c.org/TR/2005/REC-xml-id-20050909
http://msdn.microsoft.com/en-us/library/cc313118(v=office.12).aspx
http://msdn.microsoft.com/en-us/library/cc313118(v=office.12).aspx
http://msdn.microsoft.com/en-us/library/19z074ky.aspx
http://docs.oasisopen.org/office/v1.2/os/OpenDocument-v1.2-os.html
http://docs.oasisopen.org/office/v1.2/os/OpenDocument-v1.2-os.html
http://docs.oasis-open.org/office/v1.2/os/
http://www.unicode.org/versions/Unicode5.2.0/

