OASIS Mailing List ArchivesView the OASIS mailing list archive below
or browse/search using MarkMail.


Help: OASIS Mailing Lists Help | MarkMail Help

office message

[Date Prev] | [Thread Prev] | [Thread Next] | [Date Next] -- [Date Index] | [Thread Index] | [List Home]

Subject: [OASIS Issue Tracker] Commented: (OFFICE-3703) Proposal: ODF 1.3 Protection-Key Enhancements

    [ http://tools.oasis-open.org/issues/browse/OFFICE-3703?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=30615#action_30615 ] 

Andre Rebentisch commented on OFFICE-3703:

Sounds interesting. Prior to inclusion any proposal should be professionally checked for third party patent infringements. Applied cryptography is mined territory and in this case overriding third party patents would fundamentally break interoperability of implementations. I am aware that often the prospect of US triple damages is used to avoid patent searches by industry but here the standards has to be kept clean.
(Visible to TC List role)
> Proposal: ODF 1.3 Protection-Key Enhancements
> ---------------------------------------------
>                 Key: OFFICE-3703
>                 URL: http://tools.oasis-open.org/issues/browse/OFFICE-3703
>             Project: OASIS Open Document Format for Office Applications (OpenDocument) TC
>          Issue Type: Improvement
>          Components: Security, Table, Text
>    Affects Versions: ODF 1.0, ODF 1.0 (second edition), ODF 1.1, ODF 1.2, ODF 1.2 COS 1
>         Environment: This is an enhancement, described in terms of changes to OpenDocument-v1.2-os.
>            Reporter: Dennis Hamilton
>            Assignee: Dennis Hamilton
>             Fix For: ODF 1.3, ODF 1.3 CSD 01
>    The use of password hashes in easily-discovered XML element and attribute values is subject to compromise of the hashed password.  Although the use    of increasingly-stronger digest algorithms may lengthen the time required    for carrying out a brute-force attack on the hash, memorable passwords    remain subject to compromise and the attack becomes easier as processor    technology advances.  Recent (June 2012) reveal that there is an explosive growth in hacks involving the discovery of passwords that are authenticated by use of unsalted digest algorithms.
>  In addition, the presence of hashes in plain sight in XML documents allows the digest value to be easily compared with the same digest value elsewhere, revealing worthy targets to an adversary.  In addition, the digest value is easily removed/replaced.  And an extracted digest value can be repurposed for malicious purposes.
> This proposal introduces two protection-key digest algorithms, AUTHZ160 and SHA1DK that are intended to mitigate risks associated with use of digest algorithms and provision of the digests in plain view in XML documents.  AUTHZ160, the recommended new default, uses protection-keys that are not derived from a password at all.  They are 100% protection against discovery of an actual password known to the user by analysis of the protection-key alone.  SHA1DK uses an AUTHZ160-sized cryptographically-random salt and an iterative key derivation procedure that makes discovery of a password by repeated trials very costly.  (SHA1DK and an extension, SHA1DKX, can be used to create tear-off secret authenticators for AUTHZ160 protection keys, even though a protection-key that includes all of the SHA1DK result is password based.)

This message is automatically generated by JIRA.
If you think it was sent incorrectly contact one of the administrators: http://tools.oasis-open.org/issues/secure/Administrators.jspa
For more information on JIRA, see: http://www.atlassian.com/software/jira


[Date Prev] | [Thread Prev] | [Thread Next] | [Date Next] -- [Date Index] | [Thread Index] | [List Home]