Mechanism Definition
CKM_SEAL_KEY
The mechanism is used to wrap and unwrap key material in an implementation specific manner. When used with a special class of wrap/unwrap keys, it is even possible to wrap keys that would normally be unextractable when the wrapping key is one of the defined seal keys (see [section on global objects, seal keys]).
The actual cryptographic mechanism used to perform the wrap and unwrap operations is implementation dependent, and, while the wrapping key must be a CKO_SECRET_KEY, it may be any type of secret key. Whatever mechanism is selected by the vendor MUST integrity protect the wrapped key, and MUST refuse to unwrap any key where the integrity fails to verify.
There are no parameters for this mechanism.
This mechanism provides a standard method for moving sensitive key material to storage external to the token, but where the material is still cryptographically tied to the token.
When used with one of the seal keys, the mechanism will allow C_WrapKey to wrap any existing key, whether exportable (CKA_EXTRACTABLE = TRUE) or not, and will output an opaque byte array. The information wrapped includes all pertinent key attributes in an implementation dependent form. "Pertinent" here means all attributes that are actually meaningful for the key - e.g. don't include CKA_MODULUS for an CKK_EC key that are present on the key with a non-default value.
The unwrap operation reverses the wrap operation and MUST produce exactly the same object as was wrapped with the single exception of key handle value. This mechanism DOES NOT support unwrapping keys on any token besides the token from which the key was originally wrapped.
The mechanism SHOULD refuse to wrap a key when the strength of the wrapping key is less than that of the key to be wrapped.
When used with any key other than one of the seal keys, the normal restrictions on wrapping MUST be enforced.
When this mechanism is used with C_UnwrapKey, ulAttributeCount should be 0. Any specified attributes are silently ignored.
When CKM_SEAL_KEY is used as the mechanism for C_UnwrapKey, and the unwrapping key is one of the token seal keys, the CKA_EXTRACTABLE, CKA_NEVER_EXTRACTABLE, CKA_LOCAL, CKA_SENSITIVE, and CKA_ALWAYS_SENSITIVE attributes are set from the data included with the wrapped key. If used with any other key, then those attributes are set as described in the C_UnwrapKey documentation.

Example of Use
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hSealKey;
CK_OBJECT_HANDLE hKeyToBeWrapped;
CK_ULONG ulObjectCount;
CK_RV rv;
CK_ATTRIBUTE template[] = {
	{CKA_GLOBAL, CKV_TOKEN_GLOBAL, 4},
	{CKA_OBJECT_ID, tokenSealOid, tokenSealOidLen},
	{CKA_CLASS, CKO_SECRET_KEY, 4}};
CK_MECHANISM sealMech = { CKM_SEAL_KEY, NULL_PTR, 0 };
CK_BYTE_PTR pWrappedKey;
CK_ULONG	ulWrappedKeyLength = 0;
.
.
// Find the seal key I want to use
rv = C_FindObjectsInit (hSession, template, 3);
// check return
rv = C_FindObjects (hSession, &hSealKey, 1, 	&ulObjectCount);
//check return
rv = C_FindObjectsFinal(hSession);
// check return
// get buffer length for wrapped key
rv = C_WrapKey (hSession, &sealMech,
		hSealKey, hKeyToBeWrapped,
		NULL_PTR, &ulWrappedKeyLength);
pWrappedKey = malloc (ulWrappedKeyLength);

rv = C_WrapKey (hSession, &sealMech,
		hSealKey, hKeyToBeWrapped,
		pWrappedKey, &ulWrappedKeyLength);

