
PKCS #11 AEAD
functions

Wan-Teh Chang <wtc@google.com>

1

Outline

● Use case
● Problems
● Proposed solutions
● Review comments needed

2

Use case: encrypting TLS records

Time

C_EncryptInit C_EncryptFinal

TLS records

C_EncryptUpdate C_EncryptUpdate C_EncryptUpdate C_EncryptUpdate

TLS connection

RC4 stream cipher and CBC block ciphers,
even with per-record explicit IV

Key expansion Connection closure

3

Use case: encrypting TLS records

Time

TLS records

C_EncrypInit
C_Encrypt

C_EncryptInit
C_Encrypt

C_EncryptInit
C_Encrypt

C_EncryptInit
C_Encrypt

TLS connection

AEAD ciphers such as AES-GCM

Key expansion Connection closure

Need a C_EncrypInit call for each record to specify the IV and AAD, even though the key stays the same.

4

Problem 1: C_EncryptInit overhead

● Minimize number of PKCS #11 calls to
encrypt each record

● C_EncryptInit performs IV-independent
initialization repeatedly
○ AES-GCM derives the GHASH key H from the AES

key K: H = AES(K, 0^128)
5

Problem 2: IV generation

● For CTR and GCM, IV must not be repeated
○ IV provided by the caller: hard to verify uniqueness
○ IV generated by a crypto module: IV generation can

be validated

● Applies to both AEAD and non-AEAD

● Reference: draft-mcgrew-iv-gen-03
6

Use case: encrypting TLS records

Time

C_AEADEncryptInit
● AEAD mech.
● key
● IV generator

mech.

C_AEADEncryptFinal

TLS records

C_AEADEncrypt C_AEADEncrypt
● IV (in/out)
● AAD
● data

C_AEADEncrypt C_AEADEncrypt

TLS connection
Key expansion Connection closure

C_AEADEncrypt operates in single-part mode.

7

AES GCM and nonce generator
#define CKM_AEAD_AES_GCM 0x00000700

typedef struct CK_AEAD_GCM_PARAMS {
 CK_ULONG ulNonceLen;
 CK_ULONG ulTagLen;
} CK_AEAD_GCM_PARAMS;

#define CKM_GCM_NONCE_DETERMINISTIC 0x00000750
#define CKM_GCM_NONCE_RBG_BASED 0x00000751

typedef struct CK_GCM_NONCE_DETERMINISTIC_PARAMS {
 CK_BYTE_PTR pFixed; /* the fixed field */
 CK_ULONG ulFixedLen;
} CK_GCM_NONCE_DETERMINISTIC_PARAMS;

typedef struct CK_GCM_NONCE_RBG_BASED_PARAMS {
 CK_BYTE_PTR pFree; /* the free field */
 CK_ULONG ulFreeLen;
} CK_GCM_NONCE_RBG_BASED_PARAMS;

8

Review

● GCM and CTR as target algorithms.
Anything else?

● Other use cases?

● Are repeated calls to C_EncryptInit
expensive?

9

