
Proposal: Authenticated Attributes

for Key Wrap in PKCS#11

Graham Steel

13 August 2014

1 About this Document

This document describes a shortcoming in PKCS#11 up to and including version 2.40 that has
serious consequences for the applicability of the standard to a number of use cases, in particular in
the world of Hardware Security Modules (HSMs), and a proposal for its solution.

2 The Problem

PKCS#11 includes the commands C WrapKey and C UnwrapKey for encrypted key export and import
respectively. This allows a certain amount of security when managing keys, since keys are encrypted
during transport. However, in an environment in which, in the worst case, an attacker might be able
to make authorized PKCS#11 calls, very little security is offered. One reason is that C UnwrapKey

takes a template as input. This means that an attacker can, for example, take an encrypted key
and import is as a non-sensitive key, i.e. one with CKA SENSITIVE=FALSE, and then read it using
C GetAttribute.

Simple example: Target of the attack is key k, stored on the device with attributes CKA SENSITIVE

and CKA EXTRACTABLE set, note that {|x|}y denotes encryption of plaintext x under key y, while &k
indicates a handle pointing to key k. All keys are symmetric.

1. C GenerateKey(&k1, {CKA WRAP,CKA UNWRAP})
generates k1 with CKA WRAP,CKA UNWRAP set

2. C WrapKey(&k1, &k) gives {|k|}k1

3. C UnwrapKey({|k|}k1
, &k1, {CKA SENSITIVE=FALSE})

stores k at new location &k′

4. C GetAttribute(&k′) gives value of k

There are many variations on this kind of attack, such as importing a key with both CKA WRAP

and CKA DECRYPT set to TRUE [1, 3].
Since version 2.20, PKCS#11 contains a solution to this problem: CKA UNWRAP TEMPLATE. If a

key k1 has a certain template t as its value CKA UNWRAP TEMPLATE , then any time C UnwrapKey is
called using using k1, attribute values in t will be assigned to the new key created. If the calling
application supplies a template that is not consistent with the CKA UNWRAP TEMPLATE, the call fails.

This can be used to prevent the above attack. Assume k now has CKA UNWRAP TEMPLATE set to
CKA SENSITIVE=TRUE:

1. C GenerateKey(&k1, {CKA WRAP,CKA UNWRAP})
generates k1 with CKA WRAP,CKA UNWRAP set

2. C WrapKey(&k1, &k) gives {|k|}k1

3. C UnwrapKey({|k|}k1
, &k1, {CKA SENSITIVE=FALSE})

fails with CKR TEMPLATE INCONSISTENT

The problem with this solution is that it is inflexible. To avoid attacks like wrap/decrypt,
one is forced to specify all the attribute values in the UNWRAP TEMPLATE, so only one kind of key
profile can now be transported under each key encrypting key k. It makes sense to ensure that
CKA UNWRAP TEMPLATE is not modifiable by C SetAttribute, but this means it has to be fixed once
and for all at key generation time. What’s more, this solution is only secure when the attributes
CKA TRUSTED and CKA WRAP WITH TRUSTED are also used to ensure that a key is not wrapped by an
insecure wrapping key [5, 7]. This requires new wrapping keys to be approved by Security Officer
login.

Given this complexity and the limited support for UNWRAP TEMPLATE in real implementations,
many users of HSMs just set their keys to have CKA EXTRACTABLE=FALSE, to avoid any attacks. This
makes backups and key sharing difficult, so they have to use proprietary solutions specific to their
vendors at the expense of interoperability.

What is required is a flexible, interoperable way to share keys of any attribute profile securely
using C WrapKey and C UnwrapKey that avoids all these problems.

3 Proposed Solution

Several academic papers have proposed cryptographic key management APIs with formal proofs of
security properties in recent years [2, 4]. These proposals have one feature in common: wrapped key
blobs contain the attributes the key had at the moment the wrap command was called. This enables
a whole range of flexible configurations that are not vulnerable to the attacks described above.

In version 2.40 of the standard, there is already a new mechanism for RSA encryption that
serves this purpose, CKM RSA AES KEY WRAP. We propose to add an equivalent mechanism for AES
encryption, specifically in GCM mode. Additionally, we propose to clarify exactly how attributes
are encoded and interpreted in CKM RSA AES KEY WRAP (which is not currently specified).

Below we show how the new wrapping mode prevents attack shown above.

1. C GenerateKey(&k1, {CKA WRAP,CKA UNWRAP})
generates k1 with CKA WRAP,CKA UNWRAP set

2. C WrapKey(&k1, &k)
gives {|k|}k1

t where t is an encoding of the attributes of k
present as the associated data of the GCM encryption.

3. C UnwrapKey({|k|}k1
, &k1, {CKA SENSITIVE=FALSE}

fails with CKR WRAPPED KEY INVALID since the template
does not match t, so GCM decryption fails

4 Security

Various secure configurations become possible once authenticated encryption for wrapping is possible
[6]. However, this security is dependent on a number of assumptions:

• The implementation of all commands that create and manage keys objects, e.g. C GenerateKey,
C CreateObject, C SetAttribute, C CopyObject must avoid creating keys with conflicting

2

attributes, e.g. wrap/decrypt, encrypt/unwrap etc. Note that this must be true for any imple-
mentation that is designed to achieve this level of security, whatever the wrapping mechanism.

• The new wrapping mechanisms with authenticated attributes must be the only ones made
available, and no other copies of the keys with other mechanisms available can exist. Again,
whatever the solution to the unwrapping issue, it seems clear that it must apply everywhere
to achieve the level of security required.

References

[1] Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi, and Graham Steel. Attacking and
fixing PKCS#11 security tokens. In Proceedings of the 17th ACM Conference on Computer
and Communications Security (CCS’10), pages 260 – 269, Chicago, Illinois, USA, October 2010.
ACM Press.

[2] C. Cachin and N. Chandran. A secure cryptographic token interface. In Computer Security
Foundations (CSF-22), pages 141–153, Long Island, New York, 2009. IEEE Computer Society
Press.

[3] J. Clulow. On the security of PKCS#11. In Proceedings of CHES 2003, pages 411–425, 2003.

[4] Vronique Cortier and Graham Steel. A generic security api for symmetric key management
on cryptographic devices. Information and Computation, 2014. In press. Available online at
http://dx.doi.org/10.1016/j.ic.2014.07.010.

[5] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11. In Proceedings of the 21st
IEEE Computer Security Foundations Symposium (CSF’08), pages 331–344, Pittsburgh, PA,
USA, June 2008. IEEE Computer Society Press.

[6] S. Fröschle and G. Steel. Analysing PKCS#11 key management APIs with unbounded fresh
data. In P. Degano and L. Viganò, editors, Preliminary Proceedings of the Joint Workshop
on Automated Reasoning for Security Protocol Analysis and Issues in the Theory of Security
(ARSPA-WITS’09), volume 5511 of Lecture Notes in Computer Science, pages 92–106, York,
UK, 2009. Springer. To appear.

[7] Sibylle B. Fröschle and Nils Sommer. Concepts and proofs for configuring pkcs#11. In Gilles
Barthe, Anupam Datta, and Sandro Etalle, editors, Formal Aspects in Security and Trust, volume
7140 of Lecture Notes in Computer Science, pages 131–147. Springer, 2011.

3

