Adding New Functions proposal:

Existing C_GetFunctionList() returns the PKCS #11 2.41 function list.

A new Function called C_GetInterfaces
is defined:

C_GetFunctionLists(CK_CHAR **interface_string, CK_INTERFACES *interfaces, CK_LONG flags);

#define MAX_FUNCTION_LISTS 10

typedef struct {
 CK_ULONG ulIinterfaceCount;
 CK_FUNCTION_LISTS *pFunctionList[MAX_FUNCTION_LISTS];

} CK_INTERFACES;

typedef struct {
 CK_CHAR *pInterface;
 void **pFunctions;

} CK_FUNCTION_LISTS;

#define CKF_FORK_SAFE_INTERFACE 0x00000001UL

Applications get C_GetFunctionLists the same way they get C_GetFunctionList. Each interface is specified by a string. Up to MAX_FUNCTION_LISTS can be acquired in a single call. Interfaces are selected using the interface_string, which is a NULL terminated array of character strings. Each returned interface contains a string value for that interface (same as the string passed in). If the interface is unknown, then the *pFunctionList value for that function is set to NULL. For compatibility pFunctions point something like CK_FUNCION_LIST, with a CK_VERSION followed by a bunch of functions.

Defined flags:

CKF_FORK_SAFE_INTERFACE The returned interface will have fork tolerant semantics. When the application forks, each process will get their own copies of all session objects, session states, login states, and encryption states. Each process will also maintain access to token objects with their previously supplied handles

The following interfaces are defined.

“PKCS 11 2.41” returns the same function list as C_GetFunctionList (CK_FUNCTION_LIST)
“PKCS 11 2.42” returns a new function list which has the same first function as C_GetFunctionList plus the following new functions: C_GetInterfaces(), C_MessageEncryptInit(), C_EncryptMessage(), C_EncryptMessageBegin(), C_EncryptMessageNext(), C_MessageEncryptFinal(), C_MessageDecryptInit(), C_DecryptMessage(), C_DecryptMessageBegin(), C_DecryptMessageNext(), C_MessageDecryptFinal(), C_MessageSignInit(), C_SignMessage(), C_SignMessageBegin(), C_SignMessageNext(), C_MessageSignFinal(), C_MessageVerifyInit(), C_VerifyMessage(), C_VerifyMessageBegin(), C_VerifyMessageNext(), C_MessageVerifyFinal(),

This will be defined as CK_FUNCTION_LIST_2_42

PKCS #11 modules may return the same function list for 2.41 as 2.42, but applications cannot depend on the fact the 2.41 function list actually has the 2.42 functions.

PKCS #11 modules must not add new functions at the end of the “PKCS 11 2.42” function list that are not defined by the PKCS #11 spec.

PKCS #11 modules should not add new functions at the end of the “PKCS 11 2.41” function list that are not defined by the PKCS #11 spec.

Interfaces starting with the string: “Vendor ” are reserved for vendor use and will not ever be defined as interfaces in the PKCS #11 spec. Vendors should supply new functions under interface names of “Vendor {vendor name}:{function} {version}”. For example “Vendor Red Hat, Inc.:Coolkey Provisioning 1.0”. After the colon (following the vendor name),the string is free format and this spec is only an example.

�Please harmonize use of C_GetInterfaces and C_GetFunctionLists (see occurences marked in yellow), or did I get something wrong?

