1.1.1 Definitions

Mechanisms:

CKM_AES_GCM

CKM_AES_CCM
CKM_AES_GMAC
1.2 AES-GCM Authenticated Encryption / Decryption

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K (key) and AAD (additional authenticated data) are as described in [GCM]. AES-GCM uses CK_GCM_PARAM for Encrypt, Decrypt and CK_GCM_AEAD_PARAM for MessageEncrypt, and MessageDecrypt.

Encrypt:

· Set the IV length ulIvLen in the parameter block.

· Set the IV data pIv in the parameter block. pIV may be NULL if ulIvLen is 0.

· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.

· Set the tag length ulTagBits in the parameter block.

· Call C_EncryptInit() for CKM_AES_GCM mechanism with parameters and key K.

· Call C_Encrypt(), or C_EncryptUpdate()*
 C_EncryptFinal(), for the plaintext obtaining ciphertext and authentication tag output.

Decrypt:

· Set the IV length ulIvLen in the parameter block.

· Set the IV data pIv in the parameter block. pIV may be NULL if ulIvLen is 0.

· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.

· Set the tag length ulTagBits in the parameter block.

· Call C_DecryptInit() for CKM_AES_GCM mechanism with parameters and key K.

· Call C_Decrypt(), or C_DecryptUpdate()*1 C_DecryptFinal(), for the ciphertext, including the appended tag, obtaining plaintext output. Note: since CKM_AES_GCM is an AEAD cipher, no data should be returned until C_Decrypt() or C_DecryptFinal().

MessageEncrypt::

· Set the IV length ulIvLen in the parameter block.
· Set the tag data to hold the pTag returned from C_EncryptMessage or the final C_EncryptMessageNext
· Set the IV data to hold the pIv returned from C_EncryptMessage and C_EncryptMessageBegin.

· Set the tag length ulTagBits in the parameter block.

· Call C_MessageEncryptInit() for CKM_AES_GCM mechanism key K.

· Call C_EncryptMessage(), or C_EncryptMessageBegin followed by C_EncryptMessageNext()*
 mechanism parameter is passed to all three of these functions.

· Call C_MessageEncryptFinal() to close the message decryption.

MessageDecrypt:

· Set the IV length ulIvLen in the parameter block.

· Set the IV data pIv in the parameter block. pIV may be NULL if ulIvLen is 0.

· Set the tag length ulTagBits in the parameter block.
· Set the tag data pTag in the parameter block before C_DecryptMessage or the final C_DecryptMessageNext()
· Call C_MessageDecryptInit() for CKM_AES_GCM mechanism key K.

· Call C_DecryptMessage(), or C_DecryptMessageBegin followed by C_DecryptMessageNext()*
 the mechanism parameter is passed to all three of these functions.
· Call C_MessageDecryptFinal() to close the message decryption

In pIv the least significant bit of the initialization vector is the rightmost bit. ulIvLen is the length of the initialization vector in bytes.
In Encrypt and Decrypt the tag is appended to the cipher text and the least significant bit of the tag is the rightmost bit and the tag bits are the rightmost ulTagBits bits. In MessageEncrypt the tag is returned in the bTag filed of CK_GCM_AEAD_PARAMS. In MesssageDecrypt the tag is provided by the bTag field of CK_GCM_AEAD_PARAMS. The application should provide at least 16 bytes of space for the tag.
The key type for K must be compatible with CKM_AES_ECB and the C_EncryptInit/C_DecryptInit calls shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

1.2.1 AES-CCM authenticated Encryption / Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC 3610].

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated data are as described in [RFC 3610].

Encrypt:

· Set the message/data length ulDataLen in the parameter block.

· Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce may be NULL if ulNonceLen is 0.

· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.

· Set the MAC length ulMACLen in the parameter block.

· Call C_EncryptInit() for CKM_AES_CCM mechanism with parameters and key K.

· Call C_Encrypt(),C_DecryptUpdate(), or C_EncryptFinal(), for the plaintext obtaining ciphertext output obtaining the final ciphertext output and the MAC. The total length of data processed must be ulDataLen. The output length will be ulDataLen + ulMACLen.
Decrypt:

· Set the message/data length ulDataLen in the parameter block. This length should not include the length of the MAC that is appended to the cipher text.

· Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce may be NULL if ulNonceLen is 0.

· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.

· Set the MAC length ulMACLen in the parameter block.

· Call C_DecryptInit() for CKM_AES_CCM mechanism with parameters and key K.

· Call C_Decrypt(), C_DecryptUpdate(), or C_DecryptFinal(), for the ciphertext, including the appended MAC, obtaining plaintext output. The total length of data processed must be ulDataLen + ulMACLen. Note: since CKM_AES_CCM is an AEAD cipher, no data should be returned until C_Decrypt() or C_DecryptFinal().
MessageEncrypt::

· Set the message/data length ulDataLen in the parameter block.

· Set the nonce length ulNonceLen and pNonce to space to old the nonce data. pNonce may be NULL if ulNonceLen is 0. pNonce will be returned from C_EncryptMessage and C_EncryptMessageBegin.
· Set the MAC length ulMACLen in the parameter block.
· Set the MAC data to hold the pMAC returned from C_EncryptMessage or the final C_EncryptMessageNext
· Call C_MessageEncryptInit() for CKM_AES_CCM mechanism key K.

· Call C_EncryptMessage(), or C_EncryptMessageBegin followed by C_EncryptMessageNext()*
.. The mechanism parameter is passed to all three functions.

· Call C_MessageEncryptFinal() to close the message decryption.
· The MAC is returned in pMac of the CK_CCM_AEAD_PARAM structure.The application should provide at least 16 bytes of space for the MAC.
MessageDecrypt:
· Set the message/data length ulDataLen in the parameter block. This length should not include the length of the MAC that is appended to the cipher text.

· Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce may be NULL if ulNonceLen is 0.

· Set the MAC length ulMACLen in the parameter block.
· Set the MAC data pMAC in the parameter block before C_DecryptMessage or the final C_DecryptMessageNext()
· Call C_MessageDecryptInit() for CKM_AES_CCM mechanism key K.

· Call C_DecryptMessage(), or C_DecryptMessageBegin followed by C_DecryptMessageNext()*
. The mechanism parameter is passed to all three functions.
· Call C_MessageDecryptFinal() to close the message decryption
The key type for K must be compatible with CKM_AES_ECB and the C_EncryptInit/C_DecryptInit calls shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.
1.2.2 AES-GMAC

AES-GMAC, denoted CKM_AES_GMAC, is a mechanism for single and multiple-part signatures and verification. It is described in NIST Special Publication 800-38D [GMAC]. GMAC is a special case of GCM that authenticates only the Additional Authenticated Data (AAD) part of the GCM mechanism parameters. When HMAC is used with C_Sign or C_Verify, pData points to the AAD. HMAC does not use plaintext or ciphertext.

The signature produced by HMAC, also referred to as a Tag, is 16 bytes long.

Its single mechanism parameter is a 12 byte initialization vector (IV).

Constraints on key types and the length of data are summarized in the following table:

Table 1, AES-GMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_AES
	< 2^64
	16 bytes

	C_Verify
	CKK_AES
	< 2^64
	16 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
1.2.3 AES GCM and CCM Mechanism parameters

1* CK_GCM_PARAMS; CK_GCM_PARAMS_PTR
CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism. It is defined as follows:
typedef struct CK_GCM_PARAMS {
 CK_BYTE_PTR pIv;
 CK_ULONG ulIvLen;
 CK_BYTE_PTR pAAD;
 CK_ULONG ulAADLen;
 CK_ULONG ulTagBits;

} CK_GCM_PARAMS;
The fields of the structure have the following meanings:

pIv
pointer to initialization vector

ulIvLen
length of initialization vector in bytes. The length of the initialization vector can be any number between 1 and 256. 96-bit (12 byte) IV values can be processed more efficiently, so that length is recommended for situations in which efficiency is critical.

pAAD
pointer to additional authentication data. This data is authenticated but not encrypted.

ulAADLen
length of pAAD in bytes.

ulTagBits
length of authentication tag (output following cipher text) in bits. Can be any value between 0 and 128.

CK_GCM_PARAMS_PTR is a pointer to a CK_GCM_PARAMS.

2* CK_GCM_AEAD_PARAMS; CK_GCM_AEAD_PARAMS_PTR
CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism. It is defined as follows:
typedef struct CK_GCM_AEAD_PARAMS {
 CK_BYTE_PTR pIv;
 CK_ULONG ulIvLen;
 CK_BYTE_PTR bTag;
 CK_ULONG ulTagBits;

} CK_GCM_PARAMS;
The fields of the structure have the following meanings:

pIv
pointer to initialization vector

ulIvLen
length of initialization vector in bytes. The length of the initialization vector can be any number between 1 and 256. 96-bit (12 byte) IV values can be processed more efficiently, so that length is recommended for situations in which efficiency is critical.
 bTag

location of the authentication tag which is returned on MessageEncrypt, and provided on MessageDecrypt.

ulTagBits
length of authentication tag in bits. Can be any value between 0 and 128.

CK_GCM_AEAD_PARAMS_PTR is a pointer to a CK_GCM_AEAD_PARAMS.
3* CK_CCM_PARAMS; CK_CCM_PARAMS_PTR
CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism. It is defined as follows:
typedef struct CK_CCM_PARAMS {

CK_ULONG ulDataLen; /*plaintext or ciphertext*/

CK_BYTE_PTR pNonce;

CK_ULONG ulNonceLen;

CK_BYTE_PTR pAAD;

CK_ULONG ulAADLen;

CK_ULONG ulMACLen;

} CK_CCM_PARAMS;
The fields of the structure have the following meanings, where L is the size in bytes of the data length’s length (2 < L < 8):

ulDataLen
length of the data where 0 <= ulDataLen < 28L.

pNonce
the nonce.

ulNonceLen
length of pNonce (<= 15-L) in bytes.

pAAD
Additional authentication data. This data is authenticated but not encrypted.

ulAADLen
length of pAuthData in bytes.

ulMACLen
length of the MAC (output following cipher text) in bytes. Valid values are 4, 6, 8, 10, 12, 14, and 16.
CK_CCM_PARAMS_PTR is a pointer to a CK_CCM_PARAMS.

4* CK_CCM_AEAD_PARAMS; CK_CCM_AEAD_PARAMS_PTR
CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism. It is defined as follows:
typedef struct CK_CCM_AEAD_PARAMS {

CK_ULONG ulDataLen; /*plaintext or ciphertext*/

CK_BYTE_PTR pNonce;

CK_ULONG ulNonceLen;
 CK_BYTE_PTR bMAC;

CK_ULONG ulMACLen;

} CK_CCM_PARAMS;
The fields of the structure have the following meanings, where L is the size in bytes of the data length’s length (2 < L < 8):

ulDataLen
length of the data where 0 <= ulDataLen < 28L.

pNonce
the nonce.

ulNonceLen
length of pNonce (<= 15-L) in bytes.
 bMAC
location of the CCM MAC returned on MessageEncrypt, provided on MessageDecrypt

ulMACLen
length of the MAC (output following cipher text) in bytes. Valid values are 4, 6, 8, 10, 12, 14, and 16.
CK_CCM_AEAD_PARAMS_PTR is a pointer to a CK_CCM_AEAD_PARAMS.
�

	 “*” indicates 0 or more calls may be made as required

�

	 “*” indicates 0 or more calls may be made as required

�

	 “*” indicates 0 or more calls may be made as required

�

	 “*” indicates 0 or more calls may be made as required

�

	 “*” indicates 0 or more calls may be made as required

pkcs11-curr-v2.41-wd02
Working Draft 02
26 September 2015

Standards Track Draft
Copyright © OASIS Open 2015. All Rights Reserved.
Page 11 of 11

