Flexible Symmetric Key Derivation Mechanism – Draft 1
March 13, 2017
Author: Darren Johnson
Summary:
SafeNet currently supports a vendor defined mechanism (CKM_NIST_PRF_KDF) for a key derivation function (KDF) that implements a small subset of the functionality defined in NIST SP800-108. Rather than promote the existing mechanism, this proposal introduces a new mechanism for a flexible key derivation function that is based on (and includes all the functionality defined in) NIST SP800-108, but extends it further to meet some additional customer requirements.
Proposal:
The CKM_FLEXIBLE_KDF mechanism is based on the KDF framework defined in NIST SP800-108 which outlines various methods of using a PRF (pseudo random function) to derive a symmetric key from another symmetric key. This mechanism extends beyond what is defined in NIST SP800-108 to allow for additional use cases. For example:
· provide multiple counters (this feature is not based on any requirement and is a side effect of the design and is unlikely to be supported by any vendor)
The mechanism parameter structure is based on the input parameters defined in NIST SP800-108 which allow a KDF type, PRF type and PRF input to be specified.
The PRFs defined in NIST SP800-108 take two input parameters; a key and an iteration variable combined with optional fixed input data. For this mechanism, the key parameter is taken from the hBaseKey parameter to C_Derive. The PRF input data is constructed from the array of CK_FKDF_DATA_PARAM structures in the mechanism parameter. All of the values defined by the CK_FKDF_DATA_PARAM array are concatenated in the order they are defined and passed in to the PRF as the data parameter.
This mechanism requires that at least one CK_FKDF_DATA_PARAM of type CK_FKDF_COUNTER must be defined. Beyond that requirement, any number of CK_FKDF_DATA_PARAM structures can be defines as was as any number of duplicate types and values. Any addition limitation and restrictions on the number and type of CK_FKDF_DATA_PARAM structures are vendor-specific.	Comment by Dieter Bong: Wording not clear to me
The CK_FKDF_PARAMS structure provides the input and output parameters to the CKM_FLEXIBLE_KDF mechanism. It is defined as follows:
typedef struct CK_FKDF_PARAMS {
 CK_FKDF_KDF_TYPE kdfType;
 CK_FKDF_PRF_TYPE prfType;
 CK_ULONG ulNumberOfDataParams;
 CK_FKDF_DATA_PARAM_PTR pDataParams;
 CK_ULONG ulDerivedKeys;
[bookmark: _GoBack] 	 CK_FKDF_DERIVED_KEYS pDerivedKeys;
} CK_FKDF_PARAMS;

typedef CK_FKDF_PARAMS CK_PTR CK_FKDF_PARAMS;

The fields of the CK_FKDF_PARAMS structure have the following meaning:
	kdfType	type of KDF (counter, feedback, pipeline)
	prfType	type of PRR (HMAC, CMAC)
	ulNumberOfDataParams	number of elements in the array pointed to by pDataParams
	pDataParams	an array of CK_FKDF_DATA_PARAM structures. The array defines input parameters that make up the “data” input to the PRF.
	ulAdditionalDerivedKeys	number of additional keys that will be derived and the number of elements in the array pointed to by pDerivedKeys.	Comment by Dieter Bong: This should be ulDerivedKeys I guess, as in the struct above.
	pDerivedKeys	array of CK_FDF_DERIVED_KEYS structures

The supported values for CK_FKDF_KDF_TYPE are taken from and defined in NIST SP800-108.
typedef CK_ULONG CK_FKDF_KDF_TYPE;

#define CK_FKDF_COUNTER 0x00000000
#define CK_FKDF_FEEDBACK 0x00000001
#define CK_FKDF_DOUBLE_PIPELINE 0x00000002

The supported values for CK_FKDF_PRF_TYPE are taken from and defined in SP800-108.
typedef CK_ULONG CK_FKDF_KDFPRF_TYPE;

#define CK_PRF_HMAC_SHA1 0x00000000
#define CK_PRF_HMAC_SHA224 0x00000001
#define CK_PRF_HMAC_SHA256 0x00000002
… (additional SHA2 and SHA3 HMACs)
#define CK_PRF_3DES_CMAC 0x00000003
#define CK_PRF_AES_CMAC 0x00000004
(consider using existing mechanism instead of additional types?)

The CK_FKDF_DATA_PARAM structure is used to define a piece of data that makes up part of the PRF data parameter.
The following types of data can be defined by a CF_FKDF_DATA_PARAM structure:
typedef CK_ULONG CK_FKDF_DATA_TYPE;

#define CK_FKDF_COUNTER 0x00000000
#define CK_FKDF_BYTE_ARRAY 0x00000001
#define CK_FKDF_KEY_HANDLE 0x000000021

 The CK_FKDF_DATA_PARAM structure is defined as follows:
typedef struct CK_FKDF_DATA_PARAM {
 CK_FKDF_DATA_TYPE type;
 CK_VOID_PTR pValue;
 CK_ULONG ulValueLen;
} CK_FKDF_DATA_PARAM;

typedef CK_FKDF_DATA_PARAM CK_PTR CK_FKDF_DATA_PARAM_PTR;

The fields of the CK_FKDF_DATA_PARAM structure have the following meaning:
	type	defines the type of data pointed to by pValue
	pValue	pointer to the data defined by type
	ulValueLen	size of the data pointed to by pValue
If the type field of the CK_FKDF_DATA_PARAM structure is set to CK_FKDF_COUNTER, then pValue must be assigned a valid CK_FKDF_COUNTER_PARAM_PTR and ulValueLen must be set to sizeof(CK_FKDF_COUNTER_PARAM).

If the type field of the CK_FKDF_DATA_PARAM structure is set to CK_FKDF_BYTE_ARRAY, then pValue must be assigned a valid CK_BYTE_PTR value and ulValueLen must be set to a non-zero length.

If the type field of the CK_FKDF_DATA_PARAM structure is set to CK_FKDF_KEY_HANDLE, then pValue must be assigned a valid CK_OBJECT_HANDLE_PTR value and ulValueLen must be set to sizeof(CK_OBJECT_HANDLE). The object handle provided must be for an object of type CKO_SECRET and must have CKA_DERIVE set to true.
The CK_FKDF_COUNTER_PARAM structure defines information about a counter. It is defined as follows:
typedef struct CK_FKDF_COUNTER_PARAM {
 CK_ULONG ulCounterInitialValue;
 CK_ULONG ulCounterWidthInBits;
 CK_COUNTER_ENDIAN counterEndian;
} CK_FKDF_COUNTER_PARAM;

typedef CK_FKDF_COUNTER_PARAM CK_PTR CK_FKDF_COUNTER_PARAM_PTR;

typedef CK_ULONG CK_COUNTER_ENDIAN;

#define CK_FKDF_COUNTER_BIG_ENDIAN 0x00000000
#define CK_FKDF_COUNTER_LITTLE_ENDIAN 0x00000001

The fields of the CK_FKDF_COUNTER_PARAM structure have the following meaning:
	ulCounterInitialValue	defines the initial counter value
	ulCounterWidthInBits	defines the counter width in bits
	counterEndian	defines how the counter should be represented

The C_Derive function already accepts a template to define the derived key as well as a CK_OBJECT_HANDLE pointer to receive the handle of the derived key. This mechanism can derive multiple keys and uses the CK_FKDF_DERIVED_KEYS structure to provide information about the additional keys that should be derived; a template to define the derive key and CK_OBJECT_HANDLE pointer to receive the handle of the derived key. The CK_FKDF_DERIVED_KEYS structure is defined as follows:

typedef struct CK_FKDF_DERIVED_KEYS {
 CK_ATTRIBUTE_PTR pTemplate;
 CK_ULONG ulAttributeCount;
 CK_OBJECT_HANDLE_PTR phKey;
} CK_FKDF_DERIVED_KEYS;
typedef CK_FKDF_DERIVED_KEYS CK_PTR CK_FKDF_DERIVED_KEYS_PTR;

The fields of the structure have the following meaning:
	pTemplate	pointer to a template that defines a key to derive
	ulAttributeCount	number of attributes in the template pointed to by pTemplate
	phKey	pointer to receive the handle for a derived key

Examples of how to use this mechanism:

Example 1:

An example of how to use this mechanism to perform the KDF defined in section 5.1 of SP800-108 to derive an AES-256 key.

#define DIM(a) (sizeof((a))/sizeof((a)[0]))
CK_OBJECT_HANDLE hBaseKey;
CK_OBJECT_HANDLE hDerivedKey;
CK_ATTRIBUTE derivedKeyTemplate = { … };
CK_FKDF_COUNTER_PARAM counterParam = {
 1,
 32,
 CK_FKDF_COUNTER_BIG_ENDIAN
};

/*
Define the data parameter for the PRF
data = [32-bit counter | label | 0x00 | label | length]
*/
CK_FKDF_DATA_PARAM dataParams[] = {
 { CK_FKDF_COUNTER, & counterParam, sizeof(counterParam) },
 { CK_FKDF_BYTE_ARRAY, {0xde, 0xad, 0xbe , 0xef }, 4 },
 { CK_FKDF_BYTE_ARRAY, {0x00}, 1 },
 { CK_FKDF_BYTE_ARRAY, {0xfe, 0xed, 0xbe , 0xef }, 4 },
 { CK_FKDFFDPT_BYTE_ARRAY, {0x00, 0x00, 0x01, 0x00}, 4 }	Comment by Dieter Bong: There are a few more occurences where I think CK_FDPT_BYTE_ARRAY must be replaced by CK_FKDF_BYTE_ARRAY. Would you please check.
};

CK_FKDF_PARAMS kdfParams = {
 CK_FKDF_COUNTER,
 CK_PRF_AES_CMAC,
 DIM(dataParams),
 &dataParams,
 0,
 NULL
};
CK_MECHANISM = mechanism {
 CKM_FLEXIBLE_KDF,
 &kdfParams,
 sizeof(kdfParams)
};

hBaseKey = GetBaseKeyHandle(.....);

rv = C_DeriveKey(
 hSession,
 &kdfParams,
 hBaseKey,
 &derivedKeyTemplate,
 DIM(derivedKeyTemplate),
 &hDerivedKey);

Example 2:

An example using a SCP03 compliant KDF to derive a 16-byte key.

#define DIM(a) (sizeof((a))/sizeof((a)[0]))
CK_OBJECT_HANDLE hBaseKey;
CK_OBJECT_HANDLE hDerivedKey;
CK_ATTRIBUTE derivedKeyTemplate = { … };
CK_FKDF_COUNTER_PARAM counterParam = {
 CKFDP_FKDF_COUNTER,
 1,
 16,
 CKFDP_FKDF_COUNTER_BIG_ENDIAN
};

/*
Define the data parameter for the PRF
data = [label | 0x00 | 16-bit length | 16-bit counter | context]
*/
CK_FKDF_DATA_PARAM dataParams[] = {
 { CK_FDPT_BYTE_ARRAY, {0xde, 0xad, 0xbe , 0xef }, 4 },
 { CK_FDPT_BYTE_ARRAY, {0x00}, 1 },
 { CK_FDPT_BYTE_ARRAY, {0x80}, 1 },	Comment by Dieter Bong: Comment above states that length is encoded as 16 bit, here it is encoded as 1 byte only?
 { CK_FDPT_COUNTER, &counterParam, sizeof(counterParam) },
 { CK_FDPT_BYTE_ARRAY, {0xfe, 0xed, 0xbe , 0xef }, 4 },
};

CK_FKDF_PARAMS kdfParams = {
 CK_FKDF_COUNTER,
 CK_PRF_AES_CMAC,
 DIM(dataParams),
 &dataParams,
 0,
 NULL
};
CK_MECHANISM = mechanism {
 CKM_FLEXIBLE_KDF,
 &kdfParams,
 sizeof(kdfParams)
};

hBaseKey = GetBaseKeyHandle(.....);

rv = C_DeriveKey(
 hSession,
 &kdfParams,
 hBaseKey,
 &derivedKeyTemplate,
 DIM(derivedKeyTemplate),
 &hDerivedKey);

Example 3:

As an example, a fixed data array element containing a key handle might appear as follows:

#define DIM(a) (sizeof((a))/sizeof((a)[0]))
CK_OBJECT_HANDLE hBaseKey1;
CK_OBJECT_HANDLE hBaseKey2;
CK_OBJECT_HANDLE hDerivedKey1;
CK_OBJECT_HANDLE hDerivedKey2;
CK_ATTRIBUTE derivedKeyTemplate1 = { … };
CK_ATTRIBUTE derivedKeyTemplate2 = { … };

CK_FKDF_COUNTER_PARAM counterParam1 = {
 CK_FKDFFDPT_COUNTER,
 0,
 32,
 CK_FKDFFD_COUNTER_BIG_ENDIAN
};

CK_FKDF_COUNTER_PARAM counterParam2 = {
 CK_FKDFFDPT_COUNTER,
 128,
 32,
 CK_FKDFFD_COUNTER_BIG_ENDIAN
};

/*
Define the data parameter for the PRF
data = [counter1 | context| counter2 | base key 2]
*/
CK_FKDF_DATA_PARAM dataParams[] = {
 { CK_FKDF_COUNTER, & counterParam1, sizeof(counterParam1) },
 { CK_FDPT_BYTE_ARRAY, {0xde, 0xad, 0xbe , 0xef }, 4 },
 { CK_FKDF_COUNTER, & counterParam2, sizeof(counterParam2) },
 { CK_FKDF__KEY_HANDLE, &bBaseKey2, sizeof(CK_OBJECT_HANDLE) },
};

CK_FKDF_DERIVED_KEYS derivedKeys = {
 { derivedKeyTemplate2 ,
 DIM(derivedKeyTemplate2),
 &hDerivedKey2 }
};

CK_FKDF_PARAMS kdfParams = {
 CK_FKDF_COUNTER,
 CK_PRF_AES_CMAC,
 DIM(dataParams),
 &dataParams,
 DIM(derivedKeys),
 &derivedKeys
};
CK_MECHANISM = mechanism {
 CKM_FLEXIBLE_KDF,
 &kdfParams,
 sizeof(kdfParams)
};

hBaseKey1 = GetBaseKeyHandle1(.....);
hBaseKey2 = GetBaseKeyHandle2(.....);

rv = C_DeriveKey(
 hSession,
 &kdfParams,
 hBaseKey1,
 &derivedKeyTemplate1,
 DIM(derivedKeyTemplate1),
 &hDerivedKey1);

