1.1.1 Definitions

Mechanisms:

CKM_AES_GCM

CKM_AES_CCM
CKM_AES_GMAC
Generator Functions:

CKG_NO_GENERATE

CKG_GENERATE

CKG_GENERATE_COUNTER

CKG_GENERATE_RANDOM
AES-GCM Authenticated Encryption / Decryption (NOTE: this should be heading 3 not heading 2)
Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K (key) and AAD (additional authenticated data) are as described in [GCM]. AES-GCM uses CK_GCM_PARAM for Encrypt, Decrypt and CK_GCM_AEAD_PARAM for MessageEncrypt, and MessageDecrypt.

Encrypt:

· Set the IV length ulIvLen in the parameter block.

· Set the IV data pIv in the parameter block. pIV may be NULL if ulIvLen is 0.

· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.

· Set the tag length ulTagBits in the parameter block.

· Call C_EncryptInit() for CKM_AES_GCM mechanism with parameters and key K.

· Call C_Encrypt(), or C_EncryptUpdate()*
 C_EncryptFinal(), for the plaintext obtaining ciphertext and authentication tag output.

Decrypt:

· Set the IV length ulIvLen in the parameter block.

· Set the IV data pIv in the parameter block. pIV may be NULL if ulIvLen is 0.

· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.

· Set the tag length ulTagBits in the parameter block.

· Call C_DecryptInit() for CKM_AES_GCM mechanism with parameters and key K.

· Call C_Decrypt(), or C_DecryptUpdate()*1 C_DecryptFinal(), for the ciphertext, including the appended tag, obtaining plaintext output. Note: since CKM_AES_GCM is an AEAD cipher, no data should be returned until C_Decrypt() or C_DecryptFinal().

MessageEncrypt::

· Set the IV length ulIvLen in the parameter block.
· Set the tag data to hold the pTag returned from C_EncryptMessage or the final C_EncryptMessageNext
· Set the IV data to hold the pIv returned from C_EncryptMessage and C_EncryptMessageBegin. If ulIvFixedBits is not zero, then the most significant bits of pIV contains the fixed IV. If ivGenerator is set to CKG_NO_GENERATe, pIv is an input parameter with the full IV.

· Set the ulIvFixedBits and ivGenerator fields in the parameter block.
· Set the tag length ulTagBits in the parameter block.

· Call C_MessageEncryptInit() for CKM_AES_GCM mechanism key K.

· Call C_EncryptMessage(), or C_EncryptMessageBegin followed by C_EncryptMessageNext()*
 mechanism parameter is passed to all three of these functions.

· Call C_MessageEncryptFinal() to close the message decryption.

MessageDecrypt:

· Set the IV length ulIvLen in the parameter block.

· Set the IV data pIv in the parameter block. pIV may be NULL if ulIvLen is 0.

· Set the tag length ulTagBits in the parameter block.
· The ulIvFixedBits and ivGeneration fields are ignored.
· Set the tag data pTag in the parameter block before C_DecryptMessage or the final C_DecryptMessageNext()
· Call C_MessageDecryptInit() for CKM_AES_GCM mechanism key K.

· Call C_DecryptMessage(), or C_DecryptMessageBegin followed by C_DecryptMessageNext()*
 the mechanism parameter is passed to all three of these functions.
· Call C_MessageDecryptFinal() to close the message decryption

In pIv the least significant bit of the initialization vector is the rightmost bit. ulIvLen is the length of the initialization vector in bytes.
On MessageEncrypt, the meaning of ivGenerator is as follows: CKG_NO_GENERATE means the IV is passed in on MessageEncrypt and no internal IV Generation is done. CKG_GENERATE means that the non-fixed portion of the IV is generated by the module internally. The generation method is not defined. CKG_GENERATE_COUNTER means that the non-fixed portion of the IV is generated by the module internally by use of an incrementing counter. CKG_GENERATE_RANDOM means that the non-fixed portion of the IV is generated by the module internally using a PRNG. In any case the entire IV, including the fixed portion is returned in pIV.
Modules must implement CKG_GENERATE. Modules may also reject ulIvFixedBits values which are too large. Zero is always an acceptable

In Encrypt and Decrypt the tag is appended to the cipher text and the least significant bit of the tag is the rightmost bit and the tag bits are the rightmost ulTagBits bits. In MessageEncrypt the tag is returned in the pTag filed of CK_GCM_AEAD_PARAMS. In MesssageDecrypt the tag is provided by the pTag field of CK_GCM_AEAD_PARAMS. The application should provide at least 16 bytes of space for the tag.
The key type for K must be compatible with CKM_AES_ECB and the C_EncryptInit/C_DecryptInit calls shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

1.1.1 AES-CCM authenticated Encryption / Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC 3610].

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated data are as described in [RFC 3610].

Encrypt:

· Set the message/data length ulDataLen in the parameter block.

· Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce may be NULL if ulNonceLen is 0.

· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.

· Set the MAC length ulMACLen in the parameter block.

· Call C_EncryptInit() for CKM_AES_CCM mechanism with parameters and key K.

· Call C_Encrypt(),C_DecryptUpdate(), or C_EncryptFinal(), for the plaintext obtaining ciphertext output obtaining the final ciphertext output and the MAC. The total length of data processed must be ulDataLen. The output length will be ulDataLen + ulMACLen.
Decrypt:

· Set the message/data length ulDataLen in the parameter block. This length should not include the length of the MAC that is appended to the cipher text.

· Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce may be NULL if ulNonceLen is 0.

· Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if ulAADLen is 0.

· Set the MAC length ulMACLen in the parameter block.

· Call C_DecryptInit() for CKM_AES_CCM mechanism with parameters and key K.

· Call C_Decrypt(), C_DecryptUpdate(), or C_DecryptFinal(), for the ciphertext, including the appended MAC, obtaining plaintext output. The total length of data processed must be ulDataLen + ulMACLen. Note: since CKM_AES_CCM is an AEAD cipher, no data should be returned until C_Decrypt() or C_DecryptFinal().
MessageEncrypt::

· Set the message/data length ulDataLen in the parameter block.

· Set the nonce length ulNonceLen and pNonce to space to old the nonce data. pNonce may be NULL if ulNonceLen is 0. pNonce will be returned from C_EncryptMessage and C_EncryptMessageBegin.
· Set the MAC length ulMACLen in the parameter block.
· Set the MAC data to hold the pMAC returned from C_EncryptMessage or the final C_EncryptMessageNextIf ulMACFixedBits is not zero, then the most significant bits of pMAC contains the fixed MAC. If macGenerator is set to CKG_NO_GENERATE, pMAC is an input parameter with the full MAC.

· Set the ullMACFixedBits and macGeneration fields in the parameter block.
· Call C_MessageEncryptInit() for CKM_AES_CCM mechanism key K.

· Call C_EncryptMessage(), or C_EncryptMessageBegin followed by C_EncryptMessageNext()*
.. The mechanism parameter is passed to all three functions.

· Call C_MessageEncryptFinal() to close the message decryption.
· The MAC is returned in pMac of the CK_CCM_AEAD_PARAM structure.The application should provide at least 16 bytes of space for the MAC.
MessageDecrypt:
· Set the message/data length ulDataLen in the parameter block. This length should not include the length of the MAC that is appended to the cipher text.

· Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block. pNonce may be NULL if ulNonceLen is 0.
· The ullNonceFixedBits and nonceGenerator fields in the parameter block are ignored.
· Set the MAC length ulMACLen in the parameter block.
· Set the MAC data pMAC in the parameter block before C_DecryptMessage or the final C_DecryptMessageNext()
· Call C_MessageDecryptInit() for CKM_AES_CCM mechanism key K.

· Call C_DecryptMessage(), or C_DecryptMessageBegin followed by C_DecryptMessageNext()*
. The mechanism parameter is passed to all three functions.
· Call C_MessageDecryptFinal() to close the message decryption

In pNonce the least significant bit of the initialization vector is the rightmost bit. ulNonceLen is the length of the nonce in bytes.

On MessageEncrypt, the meaning of nonceGenerator is as follows: CKG_NO_GENERATE means the nonce is passed in on MessageEncrypt and no internal MAC Generation is done. CKG_GENERATE means that the non-fixed portion of the nonce is generated by the module internally. The generation method is not defined. CKG_GENERATE_COUNTER means that the non-fixed portion of the nonce is generated by the module internally by use of an incrementing counter. CKG_GENERATE_RANDOM means that the non-fixed portion of the nonce is generated by the module internally using a PRNG. In any case the entire nonce, including the fixed portion is returned in pNonce.

Modules must implement CKG_GENERATE. Modules may also reject ulNonceFixedBits values which are too large. Zero is always an acceptable
In Encrypt and Decrypt the nonce is appended to the cipher text and the least significant byte of the nonce is the rightmost byte and the nonce bytes are the rightmost ulMACBytes bytes. In MessageEncrypt the nonce is returned in the pMAC field of CK_CCM_AEAD_PARAMS. In MesssageDecrypt the none is provided by the pMAC field of CK_CCM_AEAD_PARAMS. The application should provide at least 16 bytes of space for the MAC.
The key type for K must be compatible with CKM_AES_ECB and the C_EncryptInit/C_DecryptInit calls shall behave, with respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

1.1.2 AES-GMAC

AES-GMAC, denoted CKM_AES_GMAC, is a mechanism for single and multiple-part signatures and verification. It is described in NIST Special Publication 800-38D [GMAC]. GMAC is a special case of GCM that authenticates only the Additional Authenticated Data (AAD) part of the GCM mechanism parameters. When HMAC is used with C_Sign or C_Verify, pData points to the AAD. HMAC does not use plaintext or ciphertext.

The signature produced by HMAC, also referred to as a Tag, is 16 bytes long
.

Its single mechanism parameter is a 12 byte initialization vector (IV).

Constraints on key types and the length of data are summarized in the following table:

Table 1, AES-GMAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	CKK_AES
	< 2^64
	16 bytes

	C_Verify
	CKK_AES
	< 2^64
	16 bytes

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in bytes.
1.1.3 AES GCM and CCM Mechanism parameters

1* CK_GENERATOR_FUNCTION
Functions to generate unique IVs and nonces.

typedef CK_ULONG CK_GENERATOR_FUNCTION;
2* CK_GCM_PARAMS; CK_GCM_PARAMS_PTR
CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism. It is defined as follows:
typedef struct CK_GCM_PARAMS {
 CK_BYTE_PTR pIv;
 CK_ULONG ulIvLen;
 CK_BYTE_PTR pAAD;
 CK_ULONG ulAADLen;
 CK_ULONG ulTagBits;

} CK_GCM_PARAMS;
The fields of the structure have the following meanings:

pIv
pointer to initialization vector

ulIvLen
length of initialization vector in bytes. The length of the initialization vector can be any number between 1 and 256. 96-bit (12 byte) IV values can be processed more efficiently, so that length is recommended for situations in which efficiency is critical.

pAAD
pointer to additional authentication data. This data is authenticated but not encrypted.

ulAADLen
length of pAAD in bytes.

ulTagBits
length of authentication tag (output following cipher text) in bits. Can be any value between 0 and 128.

CK_GCM_PARAMS_PTR is a pointer to a CK_GCM_PARAMS.

3* CK_GCM_AEAD_PARAMS; CK_GCM_AEAD_PARAMS_PTR
CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism. It is defined as follows:
typedef struct CK_GCM_AEAD_PARAMS {
 CK_BYTE_PTR pIv;
 CK_ULONG ulIvLen;
 CK_ULONG ulIvFixedBits;

 CK_GENERATOR_FUNCTION ivGenerator;
 CK_BYTE_PTR pTag;
 CK_ULONG ulTagBits;

} CK_GCM_PARAMS;
The fields of the structure have the following meanings:

pIv
pointer to initialization vector

ulIvLen
length of initialization vector in bytes. The length of the initialization vector can be any number between 1 and 256. 96-bit (12 byte) IV values can be processed more efficiently, so that length is recommended for situations in which efficiency is critical.

ulIvFixedBits
number of bits of the original IV to preserve when generating an new IV. These bits are counted from the Most significant bits (to the right).

ivGenerator
Function used to generate a new IV. Each IV must be unique for a given session.
 pTag

location of the authentication tag which is returned on MessageEncrypt, and provided on MessageDecrypt.

ulTagBits
length of authentication tag in bits. Can be any value between 0 and 128.

CK_GCM_AEAD_PARAMS_PTR is a pointer to a CK_GCM_AEAD_PARAMS.
4* CK_CCM_PARAMS; CK_CCM_PARAMS_PTR
CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism. It is defined as follows:
typedef struct CK_CCM_PARAMS {

CK_ULONG ulDataLen; /*plaintext or ciphertext*/

CK_BYTE_PTR pNonce;

CK_ULONG ulNonceLen;

CK_BYTE_PTR pAAD;

CK_ULONG ulAADLen;

CK_ULONG ulMACLen;

} CK_CCM_PARAMS;
The fields of the structure have the following meanings, where L is the size in bytes of the data length’s length (2 < L < 8):

ulDataLen
length of the data where 0 <= ulDataLen < 28L.

pNonce
the nonce.

ulNonceLen
length of pNonce (<= 15-L) in bytes.

pAAD
Additional authentication data. This data is authenticated but not encrypted.

ulAADLen
length of pAuthData in bytes.

ulMACLen
length of the MAC (output following cipher text) in bytes. Valid values are 4, 6, 8, 10, 12, 14, and 16.
CK_CCM_PARAMS_PTR is a pointer to a CK_CCM_PARAMS.

5* CK_CCM_AEAD_PARAMS; CK_CCM_AEAD_PARAMS_PTR
CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism. It is defined as follows:
typedef struct CK_CCM_AEAD_PARAMS {

CK_ULONG ulDataLen; /*plaintext or ciphertext*/

CK_BYTE_PTR pNonce;

CK_ULONG ulNonceLen;
 CK_BYTE_PTR pMAC;

CK_ULONG ulMACLen;

} CK_CCM_PARAMS;
The fields of the structure have the following meanings, where L is the size in bytes of the data length’s length (2 < L < 8):

ulDataLen
length of the data where 0 <= ulDataLen < 28L.

pNonce
the nonce.

ulNonceLen
length of pNonce (<= 15-L) in bytes.

ulNonceFixedBits
number of bits of the original nonce to preserve when generating an new nonce. These bits are counted from the Most significant bits (to the right).

nonceGenerator
Function used to generate a new nonce. Each nonce must be unique for a given session.

 pMAC
location of the CCM MAC returned on MessageEncrypt, provided on MessageDecrypt

ulMACLen
length of the MAC (output following cipher text) in bytes. Valid values are 4, 6, 8, 10, 12, 14, and 16.
CK_CCM_AEAD_PARAMS_PTR is a pointer to a CK_CCM_AEAD_PARAMS.
�

	 “*” indicates 0 or more calls may be made as required

�

	 “*” indicates 0 or more calls may be made as required

�

	 “*” indicates 0 or more calls may be made as required

�

	 “*” indicates 0 or more calls may be made as required

�

	 “*” indicates 0 or more calls may be made as required

�Looks like something got cut off here.

�Should HMAC be GMAC here?

�Since GCM lets the user choose a tag size would it be worth adding that to GMAC?

�Is there a requirement to restrict the IV to 96bits? From what I can see in SP800-38D the IV is recommended to be 96, but isn’t restricted and it does have provisions for other sizes.

�Are these two fields also meant to be in the structure above?

pkcs11-curr-v2.41-wd02
Working Draft 02
26 September 2015

Standards Track Draft
Copyright © OASIS Open 2015. All Rights Reserved.
Page 6 of 14

