
[bookmark: _Toc437440478][bookmark: _Toc441162319][bookmark: _Toc319287676][bookmark: _Toc319313516][bookmark: _Toc319313709][bookmark: _Toc319315702][bookmark: _Toc322855302][bookmark: _Toc322945144][bookmark: _Toc323000711][bookmark: _Toc323024128][bookmark: _Toc323205462][bookmark: _Toc323610891][bookmark: _Toc383864898][bookmark: _Toc385057927][bookmark: _Toc405794747][bookmark: _Toc72656137][bookmark: _Toc235002355][bookmark: _Toc370634030][bookmark: _Toc391468821][bookmark: _Toc395183817][bookmark: _Toc437440594][bookmark: _Toc416959744][bookmark: _Toc441755807][bookmark: _Toc319287675][bookmark: _Toc319313515][bookmark: _Toc319313708][bookmark: _Toc319315701][bookmark: _Ref319839546]C_EncryptCancel proposal draft 3, March 29, 2017
Author: Darren Johnson

Summary:
Draft 1 of this proposal introduced multiple functions that could be used to terminate indiviual session based operations. That idea was rejected in favour of a single API that can be used to cancel any/all session based operations.
Draft 2 of proposal introduced a new function C_SessionCancel that can be used to cancel any session based operation as well as all session based operations that are currently active in a session.
Draft 3 of this proposal introduces some additional text to existing APIs (C_EncryptInit, C_DecryptInit, C_DigestInit, C_SignInit, C_VerifyInit, C_SignRecoverInit, C_VerifyRecoverInit, C_MessageEncryptInit, C_MessageDecryptInit, C_MessageSignInit, C_MessageVerifyInit) to allow them to be used to cancel their corresponding session based operation.

Note:
This proposal depends on the “New function table proposal” as it introduces a new function.

A new error code will be added to “Section 5.1.6 All other Cryptoki function return values“
· CKR_OPERATION_CANCEL_FAILED: This value can only be returned by C_SessionCancel. It means that one or more of the requested operations could not be cancelled for implementation or vendor-specific reasons.

A new mechanism information flag will be added to Table 8, Mechanism Information Flags.
	Bit Flag
	Mask
	Meaning

	CKF_FIND_OBJECTS
	0x00000040
	This flag can be passed in as a parameter to C_CancelSession to cancel an active object search operation. Any other use of this flag is outside the scope of this standard.

· C_SessionCancel
CK_DECLARE_FUNCTION(CK_RV, C_SessionCancel)(
 CK_SESSION_HANDLE hSession
 CK_FLAGS flags
);
C_SessionCancel terminates active session based operations. hSession is the session’s handle; flags indicates the operations to cancel.
[bookmark: _GoBack]To identify which operation(s) should be terminated, the flags parameter should be assigned the logical bitwise OR of one or more of the bit flags defined in the CK_MECHANISM_INFO structure.
If no flags are set, the session state will not be modified and CKR_OK will be returned.
If a flag is set for an operation that has not been initialized in the session, the operation flag will be ignored and C_SessionCancel will behave as if the operation flag was not set.
If any of the operations indicated by the flags parameter cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned. If multiple operation flags were set and CKR_OPERATION_CANCEL_FAILED is returned, this function does not provide any information about which operation(s) could not be cancelled. If an application desires to know if any single operation could not be cancelled, the application should not call C_SessionCancel with multiple flags set.
If C_SessionCancel is called from an application callback (see Section 5.16), no action will be taken by the library and CKR_FUNCTION_FAILED must be returned.
If C_SessionCancel is used to cancel one half of a dual-function operation, the remaining operation should still be left in an active state. However, it is expected that some Cryptoki implementations may not support this and return CKR_OPERATION_CANCEL_FAILED unless flags for both operations are provided.

Example:
CK_SESSION_HANDLE hSession;
CK_RV rv;

rv = C_EncryptInit(hSession, &mechanism, hKey);
if (rv != CKR_OK)
{
 .
 .
}

rv = C_SessionCancel (hSession, CKF_ENCRYPT);
if (rv != CKR_OK)
{
 .
 .
}

rv = C_EncryptInit(hSession, &mechanism, hKey);
if (rv != CKR_OK)
{
 .
 .
}

Below are modifications to existing API descriptions to allow an alternate method of cancelling individual operations. The additional text is highlighted.

· [bookmark: _Toc323024129][bookmark: _Toc323205463][bookmark: _Toc323610892][bookmark: _Toc383864899][bookmark: _Toc385057928][bookmark: _Toc405794748][bookmark: _Toc72656138][bookmark: _Toc235002356][bookmark: encryptinit]C_EncryptInit
CK_DECLARE_FUNCTION(CK_RV, C_EncryptInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_EncryptInit initializes an encryption operation. hSession is the session’s handle; pMechanism points to the encryption mechanism; hKey is the handle of the encryption key.
The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports encryption, MUST be CK_TRUE.
After calling C_EncryptInit, the application can either call C_Encrypt to encrypt data in a single part; or call C_EncryptUpdate zero or more times, followed by C_EncryptFinal, to encrypt data in multiple parts. The encryption operation is active until the application uses a call to C_Encrypt or C_EncryptFinal to actually obtain the final piece of ciphertext. To process additional data (in single or multiple parts), the application MUST call C_EncryptInit again.
C_EncryptInit can be called with pMechanism set to NULL_PTR to terminate an active encryption operation. If an active operation operations cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_EncryptFinal.

· [bookmark: _Toc385057933][bookmark: _Toc405794753][bookmark: _Toc72656143][bookmark: _Toc235002361]C_DecryptInit
CK_DECLARE_FUNCTION(CK_RV, C_DecryptInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_DecryptInit initializes a decryption operation. hSession is the session’s handle; pMechanism points to the decryption mechanism; hKey is the handle of the decryption key.
The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports decryption, MUST be CK_TRUE.
After calling C_DecryptInit, the application can either call C_Decrypt to decrypt data in a single part; or call C_DecryptUpdate zero or more times, followed by C_DecryptFinal, to decrypt data in multiple parts. The decryption operation is active until the application uses a call to C_Decrypt or C_DecryptFinal to actually obtain the final piece of plaintext. To process additional data (in single or multiple parts), the application MUST call C_DecryptInit again.
C_DecryptInit can be called with pMechanism set to NULL_PTR to terminate an active decryption operation. If an active operation cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_DecryptFinal.

· [bookmark: _Toc323024138][bookmark: _Toc323205472][bookmark: _Toc323610901][bookmark: _Toc383864908][bookmark: _Toc385057938][bookmark: _Toc405794758][bookmark: _Toc72656148][bookmark: _Toc235002366]C_DigestInit
CK_DECLARE_FUNCTION(CK_RV, C_DigestInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism
);
C_DigestInit initializes a message-digesting operation. hSession is the session’s handle; pMechanism points to the digesting mechanism.
After calling C_DigestInit, the application can either call C_Digest to digest data in a single part; or call C_DigestUpdate zero or more times, followed by C_DigestFinal, to digest data in multiple parts. The message-digesting operation is active until the application uses a call to C_Digest or C_DigestFinal to actually obtain the message digest. To process additional data (in single or multiple parts), the application MUST call C_DigestInit again.
C_DigestInit can be called with pMechanism set to NULL_PTR to terminate an active message-digesting operation. If an operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_DigestFinal.

· [bookmark: _Toc323024143][bookmark: _Toc323205477][bookmark: _Toc323610906][bookmark: _Toc383864913][bookmark: _Toc385057944][bookmark: _Toc405794764][bookmark: _Toc72656154][bookmark: _Toc235002372]C_SignInit
CK_DECLARE_FUNCTION(CK_RV, C_SignInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_SignInit initializes a signature operation, where the signature is an appendix to the data. hSession is the session’s handle; pMechanism points to the signature mechanism; hKey is the handle of the signature key.
The CKA_SIGN attribute of the signature key, which indicates whether the key supports signatures with appendix, MUST be CK_TRUE.
After calling C_SignInit, the application can either call C_Sign to sign in a single part; or call C_SignUpdate one or more times, followed by C_SignFinal, to sign data in multiple parts. The signature operation is active until the application uses a call to C_Sign or C_SignFinal to actually obtain the signature. To process additional data (in single or multiple parts), the application MUST call C_SignInit again.
C_SignInit can be called with pMechanism set to NULL_PTR to terminate an active signature operation. If an operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_SignFinal.

· [bookmark: _Toc323024147][bookmark: _Toc323205481][bookmark: _Toc323610910][bookmark: _Toc383864917][bookmark: _Toc385057948][bookmark: _Toc405794768][bookmark: _Toc72656158][bookmark: _Toc235002376]C_SignRecoverInit
CK_DECLARE_FUNCTION(CK_RV, C_SignRecoverInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_SignRecoverInit initializes a signature operation, where the data can be recovered from the signature. hSession is the session’s handle; pMechanism points to the structure that specifies the signature mechanism; hKey is the handle of the signature key.
The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the key supports signatures where the data can be recovered from the signature, MUST be CK_TRUE.
After calling C_SignRecoverInit, the application may call C_SignRecover to sign in a single part. The signature operation is active until the application uses a call to C_SignRecover to actually obtain the signature. To process additional data in a single part, the application MUST call C_SignRecoverInit again.
C_SignRecoverInit can be called with pMechanism set to NULL_PTR to terminate an active signature with data recovery operation. If an active operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_SignRecover.

· [bookmark: _Toc323024149][bookmark: _Toc323205483][bookmark: _Toc323610912][bookmark: _Toc383864919][bookmark: _Toc385057951][bookmark: _Toc405794771][bookmark: _Toc72656161][bookmark: _Toc235002379]C_VerifyInit
CK_DECLARE_FUNCTION(CK_RV, C_VerifyInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_VerifyInit initializes a verification operation, where the signature is an appendix to the data. hSession is the session’s handle; pMechanism points to the structure that specifies the verification mechanism; hKey is the handle of the verification key.
The CKA_VERIFY attribute of the verification key, which indicates whether the key supports verification where the signature is an appendix to the data, MUST be CK_TRUE.
After calling C_VerifyInit, the application can either call C_Verify to verify a signature on data in a single part; or call C_VerifyUpdate one or more times, followed by C_VerifyFinal, to verify a signature on data in multiple parts. The verification operation is active until the application calls C_Verify or C_VerifyFinal. To process additional data (in single or multiple parts), the application MUST call C_VerifyInit again.
C_VerifyInit can be called with pMechanism set to NULL_PTR to terminate an active verification operation. If an active operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_VerifyFinal.

· [bookmark: _Toc323024153][bookmark: _Toc323205487][bookmark: _Toc323610916][bookmark: _Toc383864923][bookmark: _Toc385057955][bookmark: _Toc405794775][bookmark: _Toc72656165][bookmark: _Toc235002383]C_VerifyRecoverInit
CK_DECLARE_FUNCTION(CK_RV, C_VerifyRecoverInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_VerifyRecoverInit initializes a signature verification operation, where the data is recovered from the signature. hSession is the session’s handle; pMechanism points to the structure that specifies the verification mechanism; hKey is the handle of the verification key.
The CKA_VERIFY_RECOVER attribute of the verification key, which indicates whether the key supports verification where the data is recovered from the signature, MUST be CK_TRUE.
After calling C_VerifyRecoverInit, the application may call C_VerifyRecover to verify a signature on data in a single part. The verification operation is active until the application uses a call to C_VerifyRecover to actually obtain the recovered message.
C_VerifyRecoverInit can be called with pMechanism set to NULL_PTR to terminate an active verification with data recovery operation. If an active operations has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.
Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.
Example: see C_VerifyRecover.

C_MessageEncryptInit

CK_DEFINE_FUNCTION(CK_RV,C_MessageEncryptInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);

C_MessageEncryptInit prepares a session for one or more encryption operations that use the same encryption mechanism and encryption key. hSession is the session’s handle; pMechanism points to the encryption mechanism; hKey is the handle of the encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports encryption, MUST be CK_TRUE.

After calling C_MessageEncryptInit, the application can either call C_EncryptMessage to encrypt a message in a single part, or call C_EncryptMessageBegin, followed by C_EncryptMessageNext one or more times, to encrypt a message in multiple parts. This may be repeated several times. The message-based encryption process is active until the application calls C_MessageEncryptFinal to finish the message-based encryption process.

C_MessageEncryptInit can be called with pMechanism set to NULL_PTR to terminate a message-based encryption process. If a multi-part message encryption operation is active, it will also be terminated. If an active operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.

C_MessageDecryptInit

CK_DEFINE_FUNCTION(CK_RV,C_MessageDecryptInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);

C_MessageDecryptInit initializes a message-based decryption process, preparing a session for one or more decryption operations that use the same decryption mechanism and decryption key. hSession is the session’s handle; pMechanism points to the decryption mechanism; hKey is the handle of the decryption key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports decryption, MUST be CK_TRUE.

After calling C_MessageDecryptInit, the application can either call C_DecryptMessage to decrypt an encrypted message in a single part; or call C_DecryptMessageBegin, followed by C_DecryptMessageNext one or more times, to decrypt an encrypted message in multiple parts. This may be repeated several times. The message-based decryption process is active until the application uses a call to C_MessageDecryptFinal to finish the message-based
decryption process.

C_MessageDecryptInit can be called with pMechanism set to NULL_PTR to terminate a message-based decryption process. If a multi-part message decryption operation is active, it will also be terminated. If an active operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.

C_MessageSignInit
CK_DEFINE_FUNCTION(CK_RV,C_MessageSignInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTRpMechanism,
 CK_OBJECT_HANDLEhKey
);

C_MessageSignInit initializes a message-based signature process, preparing a session for one or more signature operations (where the signature is an appendix to the data) that use the same signature mechanism and signature key. hSession is the session’s handle; pMechanism points to the signature mechanism; hKey is the handle of the signature key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports signatures with appendix, MUST be CK_TRUE.

After calling C_MessageSignInit, the application can either call C_SignMessage to sign a message in a single part; or call C_SignMessageBegin, followed by C_SignMessageNext one or more times, to sign a message in multiple parts. This may be repeated several times. The message-based signature process is active until the application calls C_MessageSignFinal to finish the message-based signature process.

C_MessageSignInit can be called with pMechanism set to NULL_PTR to terminate a message-based signature process. If a multi-part message signature operation is active, it will also be terminated. If an active operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.

C_MessageVerifyInit
CK_DEFINE_FUNCTION(CK_RV,C_MessageVerifyInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_MessageVerifyInit initializes a message-based verification process, preparing a session for one or more verification operations (where the signature is an appendix to the data) that use the same verification mechanism and verification key. hSession is the session’s handle; pMechanism points to the structure that specifies the verification mechanism; hKey is the handle of the verification key.
The CKA_VERIFY attribute of the verification key, which indicates whether the key supports verification where the signature is an appendix to the data, MUST be CK_TRUE.

After calling C_MessageVerifyInit, the application can either call C_VerifyMessage to verify a signature on a message in a single part; or call C_VerifyMessageBegin, followed by C_VerifyMessageNext one or more times, to verify a signature on a message in multiple parts. This may be repeated several times. The message-based verification process is active until the application calls C_MessageVerifyFinal to finish the message-based verification process.

C_MessageVerifyInit can be called with pMechanism set to NULL_PTR to terminate a message-based verification process. If a multi-part message verification operation is active, it will also be terminated. If an active operation has been initialized and it cannot be cancelled, CKR_OPERATION_CANCEL_FAILED must be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_OPERATION_CANCEL_FAILED.

