PKCS#11 Asynchronous Operations
Overall concept:
Open a session in asynchronous mode that allows any function to return CKR_PENDING to indicate that the operation is still running. Use a new function to determine if the call has finished and obtain the result.
1. Section 3.3 add CKF_ASYNC_SESSION to flags to table 7
	CKF_ASYNC_SESSION
	0x00000008
	Ture if the session is asynchronous; false if the session is synchronous

2. Section 5.1.6 add CKR_PENDING: This value is returned if the operation is running asynchronously.
3. Add CKR_PENDING as an allowed return code to all functions in section 5 that require a session handle. Add CKR_OPERATION_ACTIVE active to any function in section 5 that requires a session handle and does not already include CKR_OPERATION_ACTIVE as a return code.
4. A token MAY return CKR_PENDING if the session is asynchronous and the token determines that the operation will take a long time to conclude.
5. Add a new structure
typedef struct CK_ASYNC_DATA {
	CK_ULONG			ulVersion;
	CK_BYTE_PTR			pValue;	
	CK_ULONG			ulValue;
	CK_OBJECT_HANDLE_PTR	phObject;
	CK_OBJECT_HANDLE_PTR 	phAdditionalObject;
} CK_ASYNC_DATA;	
	The fields of the CK_ASYNC_DATA structure have the following meaning:
		ulVersion
	version of this structure; always 0 for this version of Cryptoki

	pValue
	pointer to a buffer to contain the result of the operation

	ulValue
	size of the buffer pointed to by pValue

	phObject
	pointer to receive the handle for an object resulting from the operation

	phAdditionalObject
	Pointer to receive the handle for an additional object resulting from the operation

6. Add a new function
CK_DECLARE_FUNCTION(CK_RV, C_AsyncComplete) (
	CK_SESSION_HANDLE hSession,
CK_UTF8CHAR_PTR pFunctionName,
CK_ASYNC_DATA_PTR pResult
) ;
C_AsyncComplete checks if the function identified by pFunctionName has completed an asynchronous operation and, if so, returns the associated result(s). hSession is the session’s handle; pFunctionName is the name of the function whose state is being queried; pResult is a pointer to a structure to contain the result if the function has completed.

Return values: This function’s return values are as returned by the function identified by pFunctionName.

Example:
	CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
 CKM_DES_MAC, NULL_PTR, 0
};

CK_BYTE data[] = {...};
CK_BYTE mac[4];
CK_ULONG ulMacLen;
CK_RV rv;
.
.
rv = C_SignInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
 rv = C_SignUpdate(hSession, data, sizeof(data));
 while (rv == CKR_PENDING)
 {
 rv = C_AsyncComplete(hSession, (CK_UTF8CHAR_PTR)"C_SignUpdate", NULL_PTR);
 /* rv will contain CKR_PENDING if the operation is still running or it will contain the
 return code from the C_SignUpdate operation */
 }
 .
 .
 ulMacLen = sizeof(mac);
 rv = C_SignFinal(hSession, mac, &ulMacLen);

 if (rv == CKR_PENDING)
 {
 CK_ASYNC_DATA result;
 result.ulVersion = 0;
 result.pValue = NULL_PTR;
 result.ulValue = 0;
 rv = C_AsyncComplete(hSession, (CK_UTF8CHAR_PTR)"C_SignFinal", &result);
 if (rv == CKR_BUFFER_TOO_SMALL)
 {
 result.pValue = (CK_BYTE_PTR)malloc(result.ulValue);
 rv = C_AsyncComplete(hSession, (CK_UTF8CHAR_PTR)"C_SignFinal", &result);
 /* if rv is CKR_OK, result will contain the mac value */
 .
 .
 }
 }
}

7. C_CloseSession and C_CloseAllSessions cancel all pending operations.
8. C_SessionCancel works as usual and will cancel a pending operation matching the input flags.
9. 5.6.6 C_GetOperationsState will pause all pending operations and serialize them.
10. 5.6.7 C_SetOperationsState will reestablish pending operations and resume them.
