	[image: image13.png]

	Document No
	PLCS/805

	
	Version
	0.2
	Classification:
	Report

	
	Issue Date
	23 December 2003

	
	Status
	Draft

	[image: image12.png]

	Document No
	PLCS/805

	
	Version
	0.2
	Classification:
	Report

	
	Date
	23 December 2003

	
	Status
	Draft

	DEX Cookbook

DEX Cookbook
Author: Trine Hansen
Company: Det Norske Veritas
Document produced for and owned by:

PLCS, Inc.

©PLCS, Inc. 2003
Keywords: DEX, Data Exchange
www.plcsinc.org

Contents

51.
Introduction

2.
What is a DEX?
5
2.1
DEX Architecture
5
2.2
DEX Structure
6
2.3
Definition of a completed DEX
7
3.
What is a Capability?
7
3.1
Capability structure
8
3.2
Definition of a complete capability
9
4.
Reference data
11
4.1
What is Reference data?
11
4.2
What is a Reference data library?
11
4.3
Reference data solution for PLCS/DEXs
11
5.
How to define a DEX
12
6.
How to define a Capability
15
7.
Administration of DEXs, Capabilities and Reference data
16
7.1
Administration of DEXs
16
7.2
Administration of Capabilities
16
7.3
Administration of Reference data
16
8.
Testing
17
8.1
Quality checks applied to capabilities
17
8.2
Testing applied to the DEXs as deliverables
18
8.3
Testing applied to example data sets
19
8.4
Testing of software implementations
21
9.
Check Lists
22
10.
Tools
23
10.1
CVS
23
10.2
DEXLIB
30
10.3
Instance Explorer
31
10.4
Establish DEX longforms
31
10.5
Reference data uploaded to DEXlib (Mindnet)
31

Revision History

	Version
	Date
	Distribution
	Purpose and comments

	0.2
	12232003
	
	Draft

	0.1
	12152003
	
	Draft

A Data Exchange Process in Application Protocol 239
1. Introduction

This Note describes the procedures for developing Data EXchange (DEX) sets established in ISO 10303 Application Protocol 239 - Product Life Cycle Support(PLCS) application.

2. What is a DEX?

In ISO 10303 AP 239 PLCS a DEX is a selected subset of the Integrated Data Model formed to support efficient exchange of assured product and support information (APSI) between IT systems or organizations. The DEXs are defined to support specific business processes. A DEX may support part of, one or several arrows from the PLCS Application Activity Model (AAM).

The AP 239 DEXs can be used to:

· Automate the process of populating a Life Cycle PDM system

· Automate the ongoing exchange of APSI between different IT systems, which are PLCS compliant and share the same information management rules

· Demonstrate compliance of a software application to an agreed set of information management rules, based on the PLCS standard

2.1 DEX Architecture

In an early stage in the DEX development, an architecture based on linking the main DEXs together by DEX id’s was suggested. At this stage the main focus was on the DEX itself and the relevant AP 239 modules for the specific DEX.

Later the capabilities were introduced and the main focus in the DEX development turned to development and administration of capabilities.

At the moment the capabilities are the main building blocks of a DEX. The capabilities reference to modules, entities and attributes in STEPmod. See Figure 1.

 It is expected that the DEX architecture will be a subject for further discussions in the ongoing and future DEX development.

[image: image1.wmf]Reference

data

Reference

data

STEPmod

(

modules

,

entities

,

attributes

)

STEPmod

(

modules

,

entities

,

attributes

)

DEXLIB

DEXLIB

–

DEX1

Cap001

#

xx

Cap002

#

xx

DEX2

DEXn

Generic

capabilities

–

Business independent.

To be

reused

in

mulitple

DEXs

.

Cap001

Cap002

Cap003

Cap00n

Cap002

#

yy

Cap003

#

xx

Cap<n

>

#<n>

DEX

Providing

a

solution

to a

particular

business problem

DEX1

Cap001

#

xx

Cap002

#

xx

DEX2

DEXn

Generic

capabilities

–

Business independent.

To be

reused

in

mulitple

DEXs

.

Cap001

Cap002

Cap003

Cap00n

Cap002

#

yy

Cap003

#

xx

Cap<n

>

#<n>

DEX

Providing

a

solution

to a

particular

business problem

Figure 1 Relations between DEXs, capabilities and modules

2.2 DEX Structure

A DEX is divided into different sections. Figure 2 below gives a structural overview of a DEX. The intention is to store business understandable information in the DEX itself, and to provide user guidance for implementers as part of the capabilities.

[image: image2.wmf]DEX Cover

DEX no.,

version

,

title,responsible

organisation

,

issue

source

.

During

development

period

:

Name

of

project

leader

and

responsible

DEX team.

Generic

DEX

rules

.

Introduction

Simple,

short

statement

.

Scope

Specify

what

is in/

out

of

scope

with

respect

to

top

level

module

.

Business

process

-

Application

Activity

Model

coverage

-

Definitions

Arrows

and

Activities

-

DEX Business

Application

Bibliography

Reference

to relevant

documents

,

e.g

. PDM

Schema

User

Guide

Capabilities

Refer

/ link to

capabilities

relevant for

this

DEX.

Any

specialization

requirements

related

to

the

generic

Capability

is given in

this

section

.

For

content

of

Capabilities

,

see

separate

Figure

.

Instantiation

of

Capabilities

.

Link to

Reference

data

Capabilities

Refer

/ link to

capabilities

relevant for

this

DEX.

Any

specialization

requirements

related

to

the

generic

Capability

is given in

this

section

.

For

content

of

Capabilities

,

see

separate

Figure

.

Capabilities

Refer

/ link to

capabilities

relevant for

this

DEX.

Any

specialization

requirements

related

to

the

generic

Capability

is given in

this

section

.

For

content

of

Capabilities

,

see

separate

Figure

.

Instantiation

of

Capabilities

.

Link to

Reference

data

Longform

.

Figure 2 DEX structure
2.3 Definition of a completed DEX

See section 8.1.

3. What is a Capability?

A capability is a portion of the PLCS data model that is reused in instantiations of the data model. A Capability is independent of business context and domain of the instantiations. Reusability is solely based on the structural similarity of the instantiations; a Capability consists of a fixed set of entities, relationships, and internal, fixed-value attributes.

A Capability may be regarded as a macro-entity with a set of parameters. Its purpose is not in data modelling, but in describing typical instantiations of a portion of a data model.

Why Capabilities:

· To ensure a common interpretation of ISO 10303 AP 239
· To avoid multiple dialects of ISO 10303 AP 239

·
· To reduce the amount of documentation for the ISO 10303 AP 239

· usage guide.
· To simplify instantiation of the ISO 10303 AP 239

· data model.
A capability can be identified as one of 3 types/families;

· Representing:
A full data set describing and classifying the target. This would always include the provision of a referencing function.

· Referencing:
Enabling a DEX to identify a target without the need to send the complete representation. This would always include an identification function.

· Assigning:
The ability to attach routine pieces of additional information, as required, to elements within a representation. (The use of “Assigning” as the introductory verb to the capability is not always appropriate and is therefore not mandated.)

3.1 Capability structure

A capability is divided into different sections. Figure below gives a structural overview of a capability. The intention is to store business understandable information in the DEX itself, and to provide user guidance for implementers as part of the capabilities.

[image: image3.wmf]REPRESENTING

REFERENCING

IDENTIFICATION

Introduction

Business

concept

overview

Information

model

overview

Characterization

of

the

model

Reference

data

summary

Dependent

capabilities

Relationship

to

other

standards

Content

Modules

Entities

Usage

Capability

Longform

Figure 1 Capability structure
3.2 Definition of a complete capability

The definition of a completed capability is as follows:

· QC internal Team completed review

· Complete all sections according to PLCS/771, “Project Specification for DEX Development”

· Checked by second modeller

· Accepted by teams using the capability

· User guidance/ Documentation:
· The prime reader and user of the capabilities is the modellers and implementers
· Business experts in the development teams need sufficient understanding to confirm that business requirements are met. Hence the documentation of each capability should comprise a short business focused overview
The business focussed introduction must be clear and concise to enable the ‘business users/sponsors’ to understand the capability’s functionality
· Instantiation diagram complete
· XML is semantically correct
· Checked by second modeller

· Sign off by team leader

· QC external to the team

· Accepted by teams using the capability

Sign off by DEX coordinator

4. Reference data

4.1 What is Reference data?

Reference data is data that

· may be reused

· may be used for data validation and QA activities

· may be extended in the future (specializations)

4.2 What is a Reference data library(RDL)?

A library for storage of reference data.

4.3 Reference data solution forISO 10303 AP 239 PLCS/DEXs

In the PLCS board meeting in Washington in September it was decided to use the reference data library in ISO 15926
for storage of reference data.

Until satisfactorily routines for integration between ISO 10303 AP 239 PLCS and the ISO 15926 RDL is establish, the reference data identified under the DEX development is temporary stored in DEXLIB.

5. How to define a DEX

	Step
	Activity
	Comments

	1
	Identify the business need to be supported by a DEX.
	

	2
	Sent a request to the organisation/person that is responsible for the management of the DEXs.
	The request should contain:

· The business needs. Basis for scope statements.

· Context

· Life cycle stage

· Request responsible

· etc.

	3
	Investigate whether the business need is covered, or partly covered, of an existing DEX.
	· Compare business needs with already covered business needs.

· All needs have to be supported by capabilities which contain the technical usage guide for implementation of the DEX. Investigate if existing capabilities are relevant for the business needs.

	4a
	If a new DEX has to be defined, a new unique number is allocated to the DEX in addition to a short name and a long name.
	

	4b
	If the business need is partly covered by an existing DEX it has to be considered if a new DEX shall be defined.
	

	5
	Create a new DEX in DEXLIB.

	· Run \dexlib\utils\dex\mk_DEX.wsf to create DEX XML outline

· Update \dexlib\dex_index.xml with DEX short name

	6
	Perform the capability dependence check in DEXlib
	

	6
	Introduction statement
	

	7
	Scope statements
	

	8
	Business process.

	All PLCS DEXs are related to the AAM model.

	9
	Establish a DEX longform
	

	10
	Establish test plans
	

	11
	Perform testing
	Reference should be made to separate document for testing of DEXs and capabilities

	11
	QA
	See separate check lists

Table 1 How to establish a new DEX

The Figure below illustrates the DEX development process.

[image: image4.wmf]DEX

Team

Pilot 2?

Pilot 1

Pilot 3?

DEX testing

Publication

And

Compliance testing

Figure 2 DEX development process

The figure below illustrates the DEX development process inside each DEX team.

[image: image5.wmf]Business case

PLCS Inc Y4+

PLCS DEX

Published to ISO

as Conformance

Classes

Quality Assurance

Business Need

for a NEW DEX

$

$

Founding

DEX

development

Vendor

testing

Does the

DEX work ?

DEX

Documentation

Project

Reference data

needs

Exsisting

Ref data

SOURCE

REFERENCE DATA

Passed?

PLCS identified

DEX

ISO ballot

ISO approved

Rework

needed

As an ISO std it it vital for the

widespread usage of PLCS

that DEXes are PUBLIC and

ISO standard

But this would be after a

closed view period

Make Public ?

PLCS Privat

Usage guide

~

stable

Iterations

Vendor forum /

User group

Marketing

Figure 3 DEX development process inside each DEX team

6. How to define a Capability

	Step
	Activity
	Comments

	1
	Requesting a new capability.

	When defining a new capability, a request shall be sent to the organisation/person that is responsible for the management of the capabilities.

	2
	Modules as basis for the capability.
	For each capability, determine the stepmod modules it requires.
- Write initial additional text for the capability

	3
	Determine subset of entities for the capability

	For each module in a capability, determine the subset of entities
- Write the initial additional text for the module
- Review existing RDL for the entity for its applicability to the entity in the capability and if all is not applicable add only what's applicable to class of class for capability
- Create new RDL as required and include in class of class if necessary

	4
	Determine subset of attributes for the capability

	For each entity in a module in a capability, determine subset of attributes required including their cardinality
- Write the initial additional text for the entity
- Review existing RDL for the attribute for its applicability to the attribute in the capability and if all is not applicable add only what's applicable to class of class for capability
- Create new RDL as required and include in class of class if necessary

	5
	Create the capability in DEXlib
	

	6
	Perform “DEX dependencies” check in DEXlib
	

	7
	Establish user guidance
	Instantiation diagrams and descriptive text.

	8
	Establish test plan
	

	9
	Testing
	

	10
	QA
	

Table 2 How to establish a new capability

7. Administration of DEXs, Capabilities and Reference data

7.1 Administration of DEXs

The co-ordinator is responsible for the Master DEX list and for defining unique DEX numbers.

7.2 Administration of Capabilities

The co-ordinator is responsible for defining new unique capability numbers when requested.

A Master capability list is automatically generated by DEXlib.

7.3 Administration of Reference data

Stable routines for generating and administration of reference data is not established yet.

8. Testing

Reference should be made to a draft version of a document describing an overall approach to testing as applied to the domain of the PLCS Technical Committee of OASIS.

The document focus on establishment of a framework for testing that supports the overall objectives of the PLCS Technical Committee of OASIS. This will apply to different targets:

· Testing applied to the Capabilities used in the DEXs

· Testing applied to the DEXs as deliverables from the TC;

· Testing applied to example Data sets that are made available to support formal documents;

· Testing of software implementations.

The specific testing is divided into four main groups:

· Quality checks applied to the capabilities

· Testing applied to the DEXs as deliverables

· Testing applied to example data sets

· Testing of software implementations

8.1 Quality checks applied to capabilities

This quality check relates to the definition of a complete capability, which is

· QC internal Team completed review

· Complete all sections according to PLCS/771, “Project Specification for DEX Development”

· Checked by second modeller

· Accepted by teams using the capability

· User guidance/ Documentation:
· The prime reader and user of the capabilities is the modellers and implementers
· Business experts in the development teams need sufficient understanding to confirm that business requirements are met. Hence the documentation of each capability should comprise a short business focused overview
· Instantiation diagram complete
· XML is semantically correct
· Checked by second modeller

· Sign off by team leader

· QC external to the team

· Accepted by teams using the capability

· Sign off by DEX coordinator

When DEXs using the Capability has reached Level 2 and Level 3 there is higher levels of quality for this Capability. This should be reflected in a master listing of the Capabilities.

8.2 Testing applied to the DEXs as deliverables

The testing of DEXs as deliverables relates to the definition of a completed DEX. The completeness of a DEX is divided into four (4) levels:

Level 1 - Drafting the DEX documentation
· Completed all sections according to PLCS/771, “Project Specification for DEX Development”

· Reference data

· Establish Normative Reference data mandatory classes identified

· Provide examples for each of the others class types

· The DEX should contain documentation on how the Reference data is implemented in the DEX

· Accepted by the team. Sign off by team leader

Level 2 - Testing by mapping

· The DEX should contain the longform needed to implement the DEX

· The DEX should contain the DEX Reference data

· Generated exchange file (Part 21 or Part 28) and Reference Data based on industrial data

· Update DEX and capabilities according to lessons learned

· Submit DEX for Committee Draft ballot (full membership of the PLCS TC)

Level 3- Testing by exchange

· Establish a test data set and Reference Data (Extending ‘bike data set’)

· Exchange tested between two or more systems (systems may be based on the same application)

· Verify the DEX in a business context

· Update DEX and capabilities according to lessons learned

Level 4 - Published

· At least 3 implementations

· Submit for OASIS Standard ballot (entire OASIS)

8.3 Testing applied to example data sets

The availability of test data sets is vital in establishing a critical mass of software implementations. It is important that such data sets are published in support of the formal DEX documentation and developed in conjunction with the DEX. (The development of test data sets provides necessary feedback on the DEX and its documentation.)

Data sets may be presented in a variety of formats:

· ISO 10303-21

· XML according to bindings in ISO 10303-28: 2003

· XML according to the XML Schema binding (in preparation)

(It may be preferable to have the same data set available in more than one format.)

It is anticipated that data sets will fall into two major categories:

· Simple or artificial.
Simple or artificial data sets are those designed primarily for the purposes of either documentation or testing. Such artificial data sets may, of necessity, be hand-coded.

· Production.
Production data sets will be based on “real life” data and will have been written by a software implementation.

Independent of format it is suggested that the following criteria are applied:

· Is the content of the data set within the scope of the DEX?

· Is there supporting documentation?

· Text description of content

· Instance diagram (possibly only for simpler data sets)

· Supporting illustrations where appropriate.

· Is the data set syntactically correct according to the relevant format’s rules?

· Does the data set properly correspond to the data model for the DEX?

· Does the data set properly correspond to the data model for AP239?

· Is the meta data defined in the data set? (File header)

· Where a data set has been created by a software system with import (read) capability, has the data set been successfully re-imported? (The so-called loop-back test.)

· Has the data set successfully been processed by 2 or more implementations, excluding the creating system? The implementations should themselves claim to support the same DEX.

All of the above criteria merit further explanation and expansion.
Data sets that meet the above criteria should be made available through a version-controlled repository.

8.4 Testing of software implementations

The following types of testing could apply to software implementations.

· Conformance – does the implementation satisfy requirements defined in the applicable standard?

· Interoperability – can different implementations exchange or share data?

· Robustness – How well does an implementation handle invalid data, large data volumes, etc?

· Performance – How well does the implementation perform?

Of these, interoperability testing is the closest to the desired business functionality. Conformance testing also merits further consideration it that it can be used as the basis for a certification program, allowing vendors of software implementations to support their claims.

Given that, at the time of writing, there are very few implementations that could claim conformance and AP239 has yet to complete DIS balloting, it is reasonable to treat development of testing processes for implementations as a lower priority.

9. Check Lists

Check lists are under development.

10. Tools

10.1 CVS

This section gives a detailed description of how to “Getting started as a developer with CVS” based on experience gained in DNV.

CVS is a revision control system. It can track changes to the files in your project and onform you of conflicts created when two developers make changes to the same file.

SSH is a protocol designed to provide secure communications between hosts on the Internet. ssh: (Secure SHell) A program used to securely establish and access an interactive session (i.e. a command prompt) on a remote host.

Table below describes all steps a modeller has to go through to became a developer on CVS.

	Step
	Activity
	Description

	1
	Install WinCVS
	Installation

The installation procedure does not depend on if you are a developer or not.

· Pick up WinCVS software from www.wincvs.org
· Choose the last stable version

· Extract the .zip file

· Run setup.exe

Read access to SourceForge

· Go to the page http://stepmod.sourceforge.net.

· Choose CVS Access Instructions

· Run wincvs.exe

· Admin / Preferences: Paste the following (from the Stepmod page): pserver:anonymous@cvs.sourceforge.net:/cvsroot/stepmod
· Admin / Commandline: Paste the following (from the Stepmod page):
cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/stepmod login

· Password; Press enter

· Make sure that you do not get any error messages

Update your local Stepmod area

Note; This will only give you read access to the database.

· Admin / Commandline: Paste the following:
cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/stepmod co stepmod

	2
	Install the SSH software PuTTY

	You need the following:

· putty.exe

· plink.exe

· pageant.exe

· puttygen.exe.

· the putty help pages would be a useful download as well.

These can be down loaded from http://www.chiark.greenend.org.uk/~sgtatham/putty/.

· Under Site map, choose Download PuTTY!

· Download each one of the applications listed above

Useful help pages: http://sourceforge.net/docman/display_doc.php?docid=6841&group_id=1

	3
	Set up and test your SSH to connect to SourceForge

	Get a username and password at SourceForge

Go to the page http://sourceforge.net/
Press the link New User via SSL

Fill in all the details

Press the Register button

You will receive an confirmation email on your username and password

Get registered as a developer on SorceForge

Send your SourceForge username to the administrator for the PLCS area on SorceForge. For the time being this is Rob Boddington, rob.bodington@eurostep.com
You will receive an confirmation email that you are added as an developer

Generate and post your SSH key to SourceForge:

Since you are making use of PuTTY, a passphrase/password may be added to your private key file by using the following process:

Execute "PUTTYGEN.EXE"

For the Parameters the Type of key to generate should be SSH1(RSA).

Click on the "Generate" button to load an existing private key file.

Follow the instructions on-screen (if applicable).

Enter your new (self generated) passphrase in to the "Key passphrase" field.

Enter your new passphrase in to the "Confirm passphrase" field.

Click on the "Save public key" button to save your public key. (The file should be a .PPK file.)

Click on the "Save private key" button to save your private key file (now protected by your new passphrase). (The file should be a .PPK file.)

Close the window.

Note; The difference of the two keys is that the private key is a cryptic key, but the public key is not a cryptic key.

Useful help pages: http://sourceforge.net/docman/display_doc.php?docid=761&group_id=1.

Upload your public key to SourceForge

SSH public key data may be posted to SourceForge.net using the Edit CVS/SSH Shared Keys page, accessible from the Account Maintenance page. SSH key usage is limited to those users who have access to SSH-able hosts. Log in with your SorceForge username and password.

To upload your SSH key data, cut-and-paste your key data from your public key file in to the form on the Edit CVS/SSH Shared Keys page and make use of the "Update" button on that page. Note; If you post more than one key, the keys should be separated by a newline.

Once your key data has been posted to SourceForge.net, you will need to wait up to six hours before your keys will become available for use.

Test to make sure that your SSH client works

Once you have selected and installed a SSH client, you may immediately test that client to make sure it is functional.

To test your client, the best thing to do is to establish an interactive session to the project shell servers (shell.sourceforge.net). If you are able to login to shell.sourceforge.net, all other SourceForge.net-provided SSH-based services should also work correctly.

Since you are making use of the PuTTY SSH client suite, you may connect to the project shell server by doing the following:

· Execute "PUTTY.EXE"

· Enter "shell.sourceforge.net" in to the "Host Name" field.

· Select the "SSH" radio button in the "Protocol" field.

· Click on the "Open" button.

· Verify the key fingerprint for shell.sourceforge.net (this happens only by first login).

· Click "Yes" if the fingerprint matches (this happens only by first login).

· Enter your SourceForge.net user name at the "login as:" prompt.

· Enter your SourceForge.net password at the "username@shell.sourceforge.net's password:" prompt.

If you get a message that starts with “Welcome to the SorceForge.net Project Shell Server”, you are successfully logged in.

In the event that you encounter difficulties in connecting to the project shell server in this fashion, please refer to the troubleshooting instructions (see next chapter).

Troubleshooting procedure

If your attempt to verify basic SSH connectivity fails:

· Check your username and password, then try again.

· Note that usernames and passwords are case-sensitive.

· Some SourceForge.net hosts require that your password contain only letters of the alphabet or numbers; please change your password if this is not already the case. You may change your password using the Account Maintenance page.

· Check the SourceForge.net site status page for known issues.

· Ensure that your user account is a member of an active project. All SourceForge.net services which require SSH usage are provided ONLY to users who are members of active SourceForge.net projects.

· Verify that you are not behind a firewall which could be blocking your traffic. If you are behind a firewall and require assistance, please contact your network administrator.

· Verify that you can ping "shell.sourceforge.net". This will help to ensure that connectivity is possible between your workstation and the project shell servers. If ping fails, please contact your network administrator or wait and try again later.

· If accessing the compile farm, recognize that there may be a delay in password updates. If you have recently changed your SourceForge.net user account password, that update may take up to 48 hours to appear on the SourceForge.net compile farm.

If your attempt to verify SSH key functionality fails:

· Ensure that you have entered your SSH key file passphrase correctly (if applicable).

· Check your username and try again.

· Check the SourceForge.net site status page for known issues.

· Attempt to verify basic SSH connectivity, without using SSH keys (see above).

· Ensure that you have waited six hours since last uploading key data.

· Verify that your SSH client is using the correct SSH protocol version.

· Verify that you uploaded the right SSH public key.

· Ensure that your SSH client is configured to use your SSH key.

If the above troubleshooting procedure does not result in resolution of the issue you have encountered, please submit a support request. If you have already submitted a support request and have been asked to see this document, please re-open that support request and add a comment (mentioning that you have read this document and followed the troubleshooting procedure) if your issue still persists. Due the differences in SSH client behavior, please ensure that you include as much detail about your environment as possible (OS, platform, SSH client name and version, and and error messages you received).

	3
	Create and save a putty session that logs on to SourceForge using SSH
	· Run putty.exe

· Select Session from the left tree menu

· Host Name: cvs.dexlib.sourceforge.net

· Select the protocol SSH

· Select SSH from the left tree menu

· Select 1 for Preferred SSH protocol version

· Select SSH/Aut from the left tree menu

· Specify your authentication key, by browsing in the Private key file for authentication field

· Select Session from the left tree menu again

· Type the name of this session in the Saved Sessions field

· Press the Save button

* Exit by pressing the Cancel button

	4
	Set up PLINK and CVS environment variables
	· From your Start menu, choose Control Panel

· Double click on System

· Choose the Advanced tab

· Press the Environment Variables button

· In the System variables window, press New

· Variable name: CVS_RSH

· Variable value: C:\path\to\plink.exe (Note - path\to is the path to plink.exe in your computer)

· Press the OK button

· In the System variables window, press New again

· Variable name: PLINK_PROTOCOL

· Variable value: ssh

Press OK, OK, OK

	5
	Run pageant adding your key
	· Run pageant.exe

· If you do not see the Pageant Key List window immediately, double click the Pageant icon to the right on your Taskbar

· Press the Add Key button

· Browse to your private key

· Press open

· Press OK

· Press Close

Note; This must be done any time you switch on or reboot your computer, including the adding of your key.

	6
	Configure WinCVS
	· Run wincvs.exe

· Admin->Preferences->General

· In the Enter the CVSROOT field

· :ext:putty_session_name:/cvsroot/dexlib
where putty_session_name is the name of the putty session you just created.

· In the Authentication field

· Choose SSH server

· Press the Ports tab

· Check the Check for an alternate rsh name box

· Write C:\path\to\plink.exe (note - path\to is the path to plink.exe in your computer)

· Press OK

	7
	Check out the repository
	· Run wincvs.exe

· Admin->Command Line

· In the
Enter a cvs line command box, write
cvs -d:ext:username@cvs.dexlib.sourceforge.net:/cvsroot/dexlib co dexlib
where username is your username at SourceForge.

· Press OK

· Make sure you do not get any error messages (and make sure you have waited at last 6 hours since last uploading key data).

cvs -d:ext:username@cvs.dexlib.sourceforge.net:/cvsroot/dexlib co dexlib

Command for logging on to WinCVS:

Admin / Commandline:

cvs -d:pserver:<user>@cvs.sourceforge.net:/cvsroot/dexlib login

Password : <password>

Download DEXlib:

cvs -z3 -d:pserver:<user>@cvs.sourceforge.net:/cvsroot/dexlib co dexlib

Log out from WinCVS:

Admin / Commandline:

cvs -d:pserver:<user>@cvs.sourceforge.net:/cvsroot/dexlib logout
10.2 DEXLIB

“Dexlib” is an area on Sourceforge that contains all DEX relevant information to be applied by the DEX toolset.

dex.xml content
· Each DEX is stored in: dexlib/data/dex/<dex> where <dex> is the name of the dex.

· Each dex directory contains a dex.xml file

· Each dex directory is recorded in the dexlib/index.xml

· dex.xml has:

· id (number and short name) and name

· reference to implementation module

· Cover page

Contacts, responsible organisations, issue source, keywords

· Introduction

Sub sections

· Scope

· Business process

Sub sections

· Any other section

sub sections

· List of capabilities, optionally associated reference data, identified as a class_of_class

· A capability may also be based on another capability adding new usage.

· Bibliography

capability.xml content:
· Each capability is stored in: dexlib/data/capabilities/<capability> where <capability> is the name of the capability.

· Each capability directory contains a capability.xml file

· Each capability directory is recorded in the dexlib/index.xml

· capability.xml has the following content:

· Capability Id (short name) and name

· Capability ownership info

· Contacts, keywords

· Introduction

· Sub sections

· Any other section

· sub sections

· List of usage that references STEPmod, for module, entity, attribute

· optionally associated reference data, identified as a class_of_class.

· Note that if the DEX associates ref data, that will take precedence

Master capability list

A Master capability list is automatically generated by clicking

Tool/DEX summary/Sorted by ID or Sorted by Number.

10.3 Instance Explorer

The tool “Instance Explorer” is recommended used for establishing instantiation diagrams in the user guide part of the capabilities.

10.4 Establish DEX longforms

10.5 Reference data uploaded to DEXlib (Mindnet)

[image: image6][image: image7][image: image8][image: image9][image: image10][image: image11]

�PAGE \# "'Page: '#'�'" ��My overall feeling is that ‘modules’ utilised within a DEX must be illustrated in a hierarchical flow as previously demonstrated in DEX 1. From a business perspective there doesn’t seem to be a overall view of what the modulisation effort of PLCS has brought about.

�PAGE \# "'Page: '#'�'" ��Is this statement correct.

�PAGE \# "'Page: '#'�'" ��I would have thought that the contents of 771 should be embedded in this doc. Why have 2 docs to manage?

�PAGE \# "'Page: '#'�'" ��If there is no business requirement then there is no ‘capability’. It is essential that the business context of the capability is very clear and concise.

�PAGE \# "'Page: '#'�'" ��Needs full name

�PAGE \# "'Page: '#'�'" ��see previous comment on 771 – isn’t this part of that doc??

4

20

[image: image12.png][image: image13.png]