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Executive Summary

The move to cut operating costs will lead to extensive uptake of information standards, such as STEP, and in particular, PLCS.


Syntactic standards, such as STEP part 21 or XML, are easily adopted because they are based in the objective world of computer operation. However, these are of limited benefit, since they only allow a computer to read in data, but do not define what the data means. This requires semantic standards, such as one of the hundreds of XML schemas, or a STEP Application Protocol.


The difficulty with semantic standards is that they are rooted in the subjective world of business culture. Traditional, point-to-point exchanges are negotiated between each business partner, but the number of interfaces increases as the square of the number of partners. With a standard, the number of interfaces increases only linearly, and the standard acts as proxy for all the other partners. However, to be widely applicable, as PLCS is, requires an extensive standard, and this creates a risk that it will not be fully understood by its implementers. The aim of the work reported here has been to investigate knowledge-based support in order to make interpretation of a standard more consistent.


The work has focused around the PLCS Product subtype model. An ontology has been inferred from this model, the ontology giving both a more tractable structure for a knowledge-based system, and links to the work on automatic interface generation - a separate part of this study which will be reported in the OFFA intranet site http://www.atc.intranet.baesystems.com/di/projects/ontology/default.htm.


The knowledge-based approach separates out the detailed knowledge of the data model from the techniques needed to detect mismatches between business terminology and the ontology, and from the task of systematically classifying business terminology against the ontology.


The study identified fuzzy logic and Bayesian Belief Networks as potential inference mechanisms, but for simplicity adopted an approach based on the Logic of Partial Functions.


The task structure has dealt with the flexibility of the way humans use language, and the way context plays a significant role in determining the meaning of terms. For example, in the design world, "part" always means the design information for a part, whereas in the support world, "part" refers to a physical object.


The results of the work have led to a significant clarification of the general problem of interpreting standards and the identification of the sorts of knowledge that are used when standards are interpreted. The inference method suggested herein uses an innovative approach based on the Logic of Partial Functions. This overall approach shows the way towards full-scale exploitation of the various sorts of knowledge currently held by the small number of experts in the field.
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1 Introduction

1.1 The General Problem


There are a number of problems to solve when creating an open environment of interoperating computer-based systems. These range from standardizing the physical shape of the connectors through distinguishing the roles of control, data, process, display and management integration. Historically much of the effort has been concentrated on the objective behaviour of computer systems, however such environments are not constructed for the benefit of computers, but rather for the socio-technical complex of a user organization. In this, we must bridge from the objective world of the computer to the subjective world of the user, every one of whom brings a separate set of assumptions, explicit knowledge and tacit knowledge. Here, even the simplest operation may lead to confusion if the terms of operation  incorporate the knowledge of a particular culture. For example, the instruction "Press any key" has left inexperienced users unable to continue as they fail to find the key marked "any".


The particular problem addressed here is the consistent interpretation of the objective terms of a computer data model in the context of the subjective understandings of a business or organizational culture.


In fact, the underlying problem is the alignment of understanding between separate organizations in order that they may exchange data with each other. This could be done with every pair of organizations negotiating a specific exchange model, however this creates N2 interchange agreements, all of which must continue to be aligned as business processes change. Further, a new organization cannot join the interchange until it has negotiated the additional interfaces needed. The alternative is to create a single, common data exchange standard. This requires only N interfaces; as long as the interchange adheres to the standard, the business processes may evolve, and a new organization can build the single interface it needs without having to negotiate its meaning with the other organizations.


However, the objective terms of the exchange standard must be supported by a definition of the meaning of the exchange and the definitions must be interpreted in the same way by all organizations in the environment. Many standards cover only the objective aspects, not the meaning of the exchange. Consider an example: telecommunications have created an open environment where anyone may ring anyone else, but dialling a number in say China doesn't mean to say that you will understand what the person at the other end is saying. That is, the objective standards covering voice telephony signals work perfectly well, but they do not cover the meaning of what is transmitted.


The class of data exchange standards referred to as "semantic standards" attempts to ensure that an exchange conveys not only the content of the message, but also its meaning. In order to do this, the standard creates its own de facto culture, in which terms have particular meanings. The problem of using the standard is then one of negotiating with the standard to understand its culture, which stands in as proxy for the culture of all organizations.

1.2 The Particular Problem


Product Life Cycle Support (PLCS) is one of the system of STEP standards (ISO 10303). This brings together the existing data exchange standards which define the design of a product with newly standardized elements which both define the support environment and record the history of support.


PLCS is supported by the aircraft and ship sectors, both of which produce high value products which are kept in service for extended periods by both restorative maintenance and by a programme of continual improvements and enhancements. The intended environment for PLCS encompasses both the companies which design the products and the end users of those products. For design companies, this also includes their partners and subcontractors, and for the users it includes both the actual operators, their maintenance suppliers and the providers of their logistics infrastructure.


Within the overall PLCS standard, there is a complex type hierarchy for Product, the root entity for the various systems of product description. This hierarchy encompasses many related concepts, such as the design of an individual part, the life history of a particular part, the various breakdowns that are used for complex products, the requirements for a product, etc. Meeting the need to represent the complexity of real products has resulted in a large and complex standard. Further, in order to meet the need for interoperability with the entire system of STEP standards, a modular structure has been used. This fragments the knowledge of the system into the individual modules of the standard. In consequence, the PLCS model is somewhat opaque to the uninitiated, and poses a learning curve that is both steep and high for anyone wishing to adopt the standard.


Given the limitations on budgets that are imposed by companies both large and small on data exchange projects, the complexity of PLCS poses the risk that the model will be misinterpreted, particularly given the wide user base anticipated. The aim of this study was not to directly mitigate that risk, but to develop techniques by which the risk can be mitigated (although the outputs of this study should also actually do so). In particular, it aimed to use the PLCS Product type hierarchy as a test case for developing techniques to map from the business environment to an ontology.

1.3 Relation to Other Parts of the OFFA Project


The OFFA project has three main elements:

· The automated alignment of partial ontologies 

· The mapping of an ontology to a data model

· The consistent interpretation of an ontology (this part)

More details are given on the OFFA intranet site http://www.atc.intranet.baesystems.com/di/projects/ontology/default.htm.

The automated alignment of ontologies is concerned more with the problem where two systems implement different parts of the same ontology rather than the alignment of different ontologies. The problem here is to discover what can be exchanged between two systems, and to agree what should be exchanged. In the extreme case, this could be a piece of built-in test equipment, which has only its own identity and a file of analysis data, trying to download to an integrated maintenance and configuration tracking system.


The advantage of such an approach is that the interface is defined on-the-fly, rather than having to be pre-programmed for every potential pairwise interchange.  This would allow for rapid change in a virtual enterprise, since there would no longer be the lead-time needed to build the interfaces. It may also reduce the total cost of building and maintaining interfaces.


It is not the case that current industrial systems support Knowledge-based exchange formats such as KIF or OWL, nor does it seem particularly likely in the foreseeable future. Rather, most data will be held in a standard database, be it relational or object-based. Thus, although it should be possible to negotiate the semantics of the information through an ontology, there is a second problem to extract the data in the right format from the database. The second part of the OFFA study showed how, once the ontologies were aligned, the information could be extracted from a database and converted to an agreed format for exchange.


The significance of this is that ontology negotiation can be performed as an add-on to an existing system, rather than requiring that the two ends of the exchange hold their information in a Knowledge-based System (KBS). It is interesting to note that this part of the study used a pattern ontology as the way of aligning formats, given the assumption of a common ontology covering the semantics of what was exchanged.


These two parts of the study dealt with the objective, computer-based elements of the exchange. This third part deals with the relation of the objective, ontology-based elements to the subjective world of the enterprises which use the data exchanged. That is, it deals with the negotiation between the culture embedded in the standard and that of the organisation attempting to use it.


Its aims are to make clear the definition of the problem, and investigate one potential way of solving it. The general approach investigated is a knowledge-based approach, loosely based on the KADS methodology. This is reified as a manual classification protocol, as this provides more flexibility for experiments than a computerised KBS, although the final result would be computerisable. In order to continue the work beyond the period and resources of the current study, the details of the protocol will be reported separately via http://www.atc.intranet.baesystems.com/di/projects/ontology/default.htm.


A knowledge-based approach has the advantage of separating out the various knowledge levels needed. At the "lowest" level is the domain knowledge, that is, the knowledge of the terms of the standard and how they are interpreted. The separation out of domain knowledge allows the same techniques to be applied to different standards. The next level is inference knowledge. Separating out the inference level allows alternative approaches, such as Bayesian Belief Networks and Fuzzy Logic, to be considered, although for the manual protocol a simpler inference based on the Logic of Partial Functions is used. The top level is task knowledge, covering what needs to be done in order to collect the basic data, process it, and invoke subsequent tasks.


In order to make concrete the approach and test its limitations, the protocol is based around classifying "items", such as parts or requirements, in order to place them in the PLCS Product hierarchy. As the study will show, although the problem appears initially well bounded, this provides a particularly complex example, raising problems that do not occur in many large, more complex ontologies. Separately funded extensions to this project will continue to develop and test the protocol, and to try to provide a useful tool to the PLCS consortium.

1.4 Report Structure


Chapter 2 of the report provides enough general technical background to STEP, ontologies and Knowledge-based Systems (KBS), to allow a general reader to follow the main arguments.


Chapter 3 provides a more formal description of the problem and briefly explores its relationship to the alignment of different ontologies. Chapter 4 describes the ontology developed for PLCS. Chapter 5 then describes the technical background to the classification protocol in terms of a KBS. The details of the protocol, its general test cases and experimental tests will be provided through separately published appendices.


Chapter 6 provides a summary of the overall conclusions of the work, and recommendations for future studies.

2 Technical Background

2.1 Different Types of Information Exchange Standard


Information exchange standards come with a wide variety of scopes, from simple character representation standards such as ASCII and Unicode upwards. For the purposes of this study, it is most useful to look at syntactic standards and semantic standards, and to be clear about the difference between them.


In any data exchange, a distinction is to be drawn between the structure of the message into processable units and the actual data itself. For example

#100 POINT(1.0, 2.0, 3.0)

operates with three sets of conventions:

1. Characters, such as space, new line and parenthesis serve to delimit lexical elements;

2. The lexical elements such as "POINT", "1.0" etc represent individual data elements, and must appear in a defined order to create a valid sentence;

3. The sentence represents a particular fact, in this case a reference to a point in 3-D Cartesian space.

Syntactic standards define the lexical rules and the syntactic rules, that is, the rules which identify the elements of a sentence and the rules that define what is a valid sentence. In the example above, a sentence starting with "POINT" will only be valid if it is followed by a list of three numbers in parentheses.


A semantic standard defines what is the meaning of the each sentence. In computational terms, we can interpret the meaning of data as being exhibited by the behaviour of the computer in the context of the organization using the computer. So, as a user of the computer, I would expect the machine to display a point at the correct place in space. (This definition of meaning avoids the problem of meaning being an idea in somebody's head.)


Obviously, a semantic standard must make use of a syntactic standard to decode the physical data. STEP, in fact, makes use of a number of syntactic standards, including a simple text encoding defined by STEP itself in ISO 10303-21, and XML.


One distinguishing criterion between a syntactic and a semantic standard is that a syntactic standard can only identify if a sentence is valid, that is, if it has been correctly constructed, whereas a semantic standard can be used to check if a fact is true. For example "a cat dog backwards the blue" is clearly a badly constructed sentence, but "a cat is a dog" is grammatically correct, however we know - from external knowledge - that it is in fact false.


Syntactic standards are applicable to a wide variety of exchanges, exactly because they do not embed any concept of meaning, whereas semantic standards are applicable only to exchanges between the narrow group of applications that share the constructs that interpret the data in the same way.


Examples of syntactic standards include HTML, XML together with XSL, KIF and OWL. With XML, the agreed use of a particular XML schema (such as a STEP schema) provides a semantic standard, however it is the fact that it is a particular schema, rather than the fact it is XML, which makes it a semantic standard. Similarly, KIF (Knowledge Interchange Format) provides only a means of encoding knowledge, and does not allow the meaning of any particular exchange to be decoded.


The major semantic standards include EDIFACT (business data), AECMA (European Aerospace Industry), IGES (3-D geometry), EPISTLE (for the oil and gas industry), and STEP, although, given the date when then standards were developed, these also bring with them their own syntactic standards.

2.2 STEP and PLCS

2.2.1 Basics and History


STEP (STandard for the Exchange of Product information) is a system of standards for product information, and published as ISO 10303. It has been developed over the last twenty years in a series of interlocking parts.


STEP includes its own data definition language, EXPRESS (part 11), several syntactic bindings (plain text as part 21, XML as part 28) and test definitions (parts 31-39).


The major semantic elements are the Application Protocols (allocated numbers in the range 201 to 299). Application protocols (AP) include Configuration Controlled 3-D design (AP 203), Automotive Design (AP 214), Ship Structures (AP 218), Composite Analysis (AP 209), Printed Circuit Boards (210), etc. Each AP is a major development, requiring many man-years of effort, several years elapsed time, and producing a standard that runs from 500 to 5,000 pages.


Inevitably, such a large standard has been developed AP by AP by many different groups working in parallel. Equally inevitably, as well as the technical history there has been a political history as different groups have disagreed on the way some things should be modelled. This has lead to a number of harmonisation activities, either through revisions to the standard, or, more recently, through the adoption of a modular architecture. The modular architecture allows an AP to be assembled from a collection of standard parts. Note, the harmonisation activities have always aimed at upward compatibility from one version of an AP to the next, rather than change which makes versions incompatible.


The initial AP's, such as AP 203, dealt with design information. Subsequent developments have included AP's both for design and for manufacturing. However, the scope of STEP includes the whole of the product life cycle, and the Product Life Cycle Support project has developed AP 239 to link both design and support data, covering not only the definition of the support solution, but allowing the recording of the history of a product, including its upkeep, updating and upgrading. It is also one of the first AP's to make use of the modular architecture.

2.2.2 AP Structure


The core of an application protocol is a set of three models:

· The Application Activity Model (AAM) which provides the context of the AP

· The Application Reference Model (ARM) which defines what the elements of an exchange mean in the particular industrial context

· The Application Interpreted Model (AIM) which provides a common set of objects to implement the ARM

The definition of each standard also includes a detailed mapping from the ARM to the AIM.


Both the ARM and the AIM are based on EXPRESS data model, although in early AP's IDEF 1 was used for the ARM. EXPRESS is an enhanced entity relationship model, which identifies entities, their attributes and their relations to other entities. It also provides rules that can further constrain the values of particular attributes, combinations of attributes or the global structure of the model.


EXPRESS is purely a data definition language. Although it is compatible with an object-oriented approach, it does not define object encapsulation or object methods. This is actually an advantage, since the methods applicable to a piece of product data may change depending on where it is in the product's life cycle. For example, the methods implemented for a product in a PDM system will be quite different to those in an ERP system
.


EXPRESS also has a type model which allows both inheritance from multiple types, and the inheritance of multiple subtypes from the same parent. For example, Product may be subtyped as both a Part and a Product_as_realized (although, as it happens, PLCS imposes an additional where rule preventing this). In practice, subtyping is used in two ways. Firstly, it is used where subtypes have a different set of attributes for the same overall type of entity. For example, in effectivity, the cut in/cut out points are identified by product serial number in Serial Numbered Effectivity and by date in Date Effectivity. Secondly, subtyping is used to indicate strong semantic differences between the subtypes, for example, between the design of a part and a physical instance of a part that has been manufactured. Although both the design and instance have a shape, in one case it is a class of shape, in the other it is an occurrence of a shape. (This also illustrates a difficulty of terminology, in that, depending on context, the term "part" may mean a class of item - through its design - or an instance of that class.)


For the purposes of this note, only the ARM is of interest, since it defines the model of user level concepts. Since these concepts are modelled in EXPRESS, the system of entities is formally defined. The name of the entities, such as Part, Breakdown, Effectivity are chosen to be as close as possible to terms in the engineering culture they model, though some effort is made to ensure that the names are as culturally neutral as possible. However, the meaning of the entities is defined through natural language, though being a formal standard, these definitions tend to be concise. As a consequence, users may too easily assume that the entity is identical to the concept in their own organization with the same name. Experience has shown that this is not the case in general, and early adopters of an AP have often put considerable effort into developing additional usage guidance which helps determine how the standard is used.

2.2.3 PLCS


Among two of the constraints on PLCS were the needs to be compatible with existing STEP AP's and to use the modular architecture. The effect of the first was to bias the model towards existing STEP constructs, so that it is not a direct model of the environment. For example, PLCS extends the scope of STEP from the pure definition of a product, to the recording of information about actual products. In the design world, each part design is seen as an instance of the class of design item, whereas in the support world, a part design is seen as the class in itself - the class of individual part instances. For reasons of backward compatibility, this has been  modelled by extending the type hierarchy of product by creating a new subtype of Part_version called Product_as_individual, rather than by, say, creating a second subtype tree of Product containing *Product_design and *Product_as_individual
 (See figure 1). The result is a complex type hierarchy (figure 2) which needs some interpretation.
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Figure 2: Full PLCS Type Hierarchy






The effect of using the modular structure has been to separate out the definition of subtypes into a number of modules, with modules extending the type tree locally. While this allows an AP to select the subtypes relevant to its application area, it means that definitions stand in isolation, rather then depending on each other - the significance of this is further discussed in the section on ontology. The use of local extensions means that constructing the subtype tree must proceed bottom up, rather than top down. Further, global rules relating to the entire type structure cannot appear until the implementation modules - that is, higher level modules that bring together the detail modules into a form that can be sent as a coherent message.


In consequence, the product subtype type hierarchy is distributed through some twenty modules among around 200 used to build the PLCS AP. These are realized in several thousand files in an XML repository, and probably represent some 5,000 pages of text. This is to be supplemented by extensive usage guidance. It will therefore require a major investment in training and learning to be able to use PLCS effectively. Further, people new to data exchange need to be sensitised to the problems of interpretation, otherwise, when faced with project deadlines, they are likely to make design decisions based on an inadequate knowledge of the standard and the subtleties of its interpretation.

2.2.4 Data Models and Instance Models


A data model shows the entity types, their attribute types and the types of relationship between them. An instance model shows the particular occurrences of the entities, etc. needed to record data about some particular product. Instance diagrams contain very much more detail than the model diagram, since every instance of a particular entity type appears separately.


The problem with data models is that they show all the relations, etc. that can exist. An instance model shows the data that does actually exist for a particular use case. That is, it illustrates what are the decisions on how to populate a model, and what the resulting model should look like. Figure 3 illustrated the relation between the two.


Increasing, with the use of reference data to classify relationships, the creation of instance diagrams is a modelling exercise in its own right. The decisions involved here are not part of the standard, but are defined through the user guide. The user can be greatly aided by the generation of instance diagrams that reflect their own particular business.
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2.3 Ontologies


The term "ontology" is adopted from philosophy, where it means the study of the things that exist. In the context of Artificial Intelligence (AI) it has come to mean a formally defined system of definitions or taxonomy (though given the solipsistic nature of most computer programs, the term has an ironic appropriateness).


A typical starting point for a discussion of ontology is Aristotle's remark that "definition goes by genus and species", that is, a definition starts by saying what sort of thing is being defined and continues by explaining how it is different from other species of the same genus. This remark can be extended by the observation that the terms of language are essentially arbitrary, but that they are often related to the sorts of behaviours of the people that use them. For example, many people are indifferent to the distinctions made by users of specialist tools - mattock v. pickaxe, spade v. shovel, ball end v. toroidal milling cutter, compiler v. interpreter v. link editor, etc. - although these are very significant to the users of such tools.


An ontology defines a hierarchy of terms and the relations between them. A typical ontology covers the space of meaning with a tree of terms, the leaves of which are mutually disjoint. The requirement to cover the space of meaning is equivalent to saying that everything within scope is covered by some term in the ontology. The requirement that the leaves be mutually disjoint is equivalent to saying that, at the finest level of definition, only one definition applies.


For example, airliners can, at the first level, be divided into Boeing, Airbus, Saab, Embraer, etc. At a finer level of detail, Airbus divides into A310, A320, A330, etc. The ontology covers the space - every airliner is manufactured by one of the manufacturers, and can be identified as belonging to one of their defined types. It is also disjoint - no A310 is an A320 or A330, etc. Further, because the ontology is structured and complete, it can be used to answer questions, such as "Is an A380 a Boeing?" or "What are the subtypes of Airbus?" or "Is there an A777?"


The question is sometimes raised "Is ontology being used as a synonym for taxonomy". A taxonomy is simply a tree of classifications. Firstly, an ontology adds the ability to traverse this tree automatically, and answer questions about subtypes. Secondly, an ontology may apply multiple taxonomy trees at the same time. For example, airlines may also be divided into jet powered and propeller driven, with, say jets further subdivided into those powered by Rolls-Royce, by Pratt & Whitney or by GE. Constraints may exist between these trees - for example, being an A380 may be incompatible with being powered by a GE jet. More generally, an ontology can be view as a system of axioms, from which about the truth of theorems about the terms can be deduced.


It can be reasonably argued that semantic standards such as STEP provide an informal ontology. The problem with the PLCS Product type hierarchy is that it is not complete (i.e. there are business concepts now covered by PLCS, such as Specification) and it is not well structured, in a large part due to its organic growth. Further, because the subtypes are defined one at a time in stand-alone modules, then the structure of differences between subtypes is not explored in the definitions. That is, the definitions are, in principle, incomplete.


The use of ontology within this part of the OFFA study is to provide an alternative, well-structured ontology, which can be directly manipulated within a KBS in order to determine the business concepts to be applied. This can then subsequently be mapped directly on to the STEP entity structure.

2.4 Knowledge-based Systems

2.4.1 Levels of Knowledge


The KADS KBS approach to knowledge divides it into three levels:

· Domain knowledge - facts about the particular problem area, such as an A380 is an Airbus product.

· Inference knowledge - techniques for deducing facts from other facts, for example, if A is a subtype of B, and B a subtype of C, then A is a subtype of C.

· Task knowledge - a process for applying individual inferences to reach a particular goal

Some approaches also distinguish strategic knowledge, that is the knowledge of which tasks to apply, while others treat this as a form of task knowledge. Other approaches focus on the difference between domain instance knowledge and domain ontology knowledge, the latter, being an ontology, including both knowledge of the domain classes and the inferences applicable.


The advantage of distinguishing these levels of knowledge is that, by separating them out, it is possible to build up general knowledge manipulation tools. For example, the KADS methodology provides a library of inferences and tasks, which are designed to be linked together with domain knowledge to provide particular KB systems.

2.4.2 KB Methodologies


Knowledge-based Methodologies, such as KADS (ref. 2, 3), and its replacement, CommonKADS, provide a system of models and a process for constructing them, in a manor analogous to the general software development methodologies such as SSADM. Besides knowledge models, they provide for models of interaction, system architecture, etc. Since these are designed for larger scale projects, it is not intended to make use of them in this project.

2.4.3 Knowledge Capture


There are a wide variety of methods for capturing domain knowledge, from methods for both explicit process knowledge to tacit knowledge. In this case, the author is also the primary source of domain expertise, and so no formal knowledge capture was done.

 
In extending the study, it is likely that standard knowledge acquisition techniques will be used, particularly those focused on concept knowledge, such as "card-sorting" or "concept-mapping".

3 The Problem Formalised

3.1 Relation to the General Problem of Ontology Alignment


Just as the PLCS standard can be viewed as implying an ontology, so can the culture of one particular business. The problem can be viewed as a particular example of the general problem of aligning independently developed ontologies, that is, the problem of matching concepts from one ontology with those of another.


Where the problem differs from the general ontology alignment problem is that it does not try to build an explicit ontology for the business environment. This has two implications. The first is political: building an ontology of a particular business environment is both relatively expensive, and will show up points of conflict between the business and the standard. Businesses, especially smaller ones, will not afford the cost of building the ontology, and once they have an ontology, they will not want to change it. However, given a reasonable match between their business concept and the standard in one, limited area, it is likely that they can be persuaded to migrate to conformance with the standard, especially if the cost is offset by savings and the opportunities for further business. Migration to the standard is, of course, of considerable benefit to large customers and suppliers, since they work directly with many smaller businesses, and a standard allows them to work in the same way with each. A share of these benefits needs to be made available to the smaller suppliers in order for them to be persuaded to take up the standard.


The second implication arises from the most common approach to implementing data exchange, that is, to start with a small scale pilot, and hence be concerned only with a limited scope. The focus of such a pilot will likely cover only one or two concepts. Thus there will not a wholesale aligning of ontologies but rather it will occur piece-wise.


In both cases, the properties arising from completeness of coverage of an ontology cannot be used. In particular, there will not be a careful demarcation of concepts on which exact alignment depends. The following sections explore some of the issues that arise. 

3.2 Structure Clashes


It is sometimes naively thought that if two systems support the same sort of industrial organization, it must therefore be possible to interchange data between them. This is not in general true. For example, in CAD systems used to design surfaces such as an aircraft fuselage, some applications are based on bicubic surfaces, some on Ball surfaces (a form of rational conic) and some on polynomial surfaces. However, the mathematics of the surfaces are quite different from each other, and one cannot operate with the other's surface. It is at best possible to approximate one surface to the other, but to do that the approximating software must embed the mathematics of each type of surface.


In general, businesses structure their concepts in ways that suit their particular business processes, and although they may operate in broadly similar ways, the actual system of concepts may be incompatible. One major engineering example is the difference between part-based design management and drawing-based design management. In part-based design management, changes are controlled against each individual part. The parts are usually designed through a CAD system, which produces drawings as a by-product. Thus, it is possible to have a part without having a drawing, though not vice versa. In a drawing-based system, it is the drawing that is controlled, and parts are changed by changing the drawing they appear on. Thus, in terms of data structure, the relation between a change and a part is quite different (figure 4), and only in the special case of "one part - one drawing" is it possible to exchange information between systems.
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It should be noted that in mechanical design, part-based controls are the current practice, having replaced the older, drawing-based processes. In areas such as requirements capture, practices have focused on controlling the requirements document, but, with the coming of database tools, this too is beginning to change to the point where requirements are managed as entities in their own right. PLCS can support both types of process, but uses quite different entities to do so.

3.3 Terminological Clashes


Terminology clashes generally involve synonyms (where different words are used with the same meaning) and homonyms (where the same word is used with different meanings). Semantic drift, where terms change their meaning over time, is a significant source of homonyms. For example, in one Design Office, the term "drawing" referred to the control record in the data management system, whereas the thing that pictured the part was a "drawing sheet". In traditional drawing office practice, the drawing was controlled through the drawing control box, effectively a form drawn on the face of the drawing. This drift can be traced back to the transfer of the drawing control block into a computer system. Since the first step in changing a drawing was to update the control block, it took the term with it into the computer system, leaving the actual drawing with the term "drawing sheet".


In theory, an ontology is indifferent to terminology, that is, it remains the same whatever labels are given to its terms. However, in practice people wish to use the ontology in a natural way, and so choose labels that cue the user to the concept. In one of the taxonomy examples above, the classes were given labels "Boeing", "Airbus" etc., rather than X, Y, Z, simply because the choice of obvious names makes using the ontology easy.


Terminological clashes can be detected by comparing facts about the item, rather than by looking for a match between the terms used for the item. For example, "The item is defined by the customer" is used to help distinguish a Requirement from a Specification (see section on lifecycle below) and provides a criterion for classifying terms such as "business requirement", "customer specification" and "requirement specification".


The problem at the heart of this study is that, in relating business terminology to an ontology, there is the potential for both clashes in the structure of the ontologies and in the terminology used. The terminological clashes are resolvable, and information can be properly exchanged. Where the structural clashes are irreconcilable, then it is a business problem to develop and implement work-arounds.


Any mapping from business terms to an ontology can therefore fail in two fundamental ways: 

1. it can fail to create a mapping where one exists, because matching concepts are called different things (have synonyms);

2.  it can create a mapping where one does not exist because a structure clash is hidden behind homonyms.

The problem is to minimise the first type of error while avoiding the second type of error. The difficulty is that humans use language so flexibly that it is very hard to formulate the protocol strongly enough so that it will detect the second error without increasing the risk of making the first error.

3.4 Inferring Concept Clashes


A major goal of the protocol is to detect when the terms used by the business are being interpreted in a different way to those of PLCS. Experience indicates that interpretations are rarely completely incompatible. This is complicated by the need to distinguish many concepts in parallel where the scope of the system of terms is the same but for which there are potentially structural clashes in the system.


A model of this is shown in figure 5: both systems have five terms covering the same range of meaning. The problem is how to identify the meaning of the terms of system B given criteria based on System A. 
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Terms in system A can be differentiated by some set of criteria. In an ideal world, the terms would match up, and every criterion would have the same differential power in each of the two systems. For example, in the figure, Criterion A4.5 separates out A4 from A5 and equally effectively separates out B4 from B5. However, criterion A2.3, which distinguishes A2 and A3 has no differential value in system B since term B2 covers the same range of meaning as A2 and A3 together. Conversely, since term A4 covers the same range of meaning as B3 and B4, there is no criterion from system A that differentiates these terms. 


Further, criterion A1.2 will mostly separate out B1 from B2 because the range of B1 is similar to that of A1, however the match is not perfect, and there will be some instances in system B which are misclassified relative to A.


In a simple classification algorithm, the criteria of A are used to find the concept in A that needs to be classified. However, applying the same approach to B will fail to differentiate the concepts of B correctly. In writing the classification protocol we have only system A to base the criteria on, and therefore we require some means of sensitising the approach to such structural clashes.


In signal processing, integration of many observations in the presence of noise is used to make a more accurate estimate of the parameters of the signal. This is possible even in hard limited systems (i.e. systems that provide only single bit quantization), where the presence of noise allows resolution below the quantization error of the system. A similar approach is used here.


The user is presented with a number of separate questions, all of which are intended to differentiate concepts in the PLCS ontology. If the concepts in the business ontology line up exactly, then the chances of classifications conflicting are small. Where concepts do not exactly overlap, then there should be clashes in the classifications observed. In this, the inexactitude of language should play the role of noise.


Such an approach can only directly spot overlaps and concepts of a coarser granularity (e.g. B2 covering both A2 and A3). It can spot finer granularity only if two or more such concepts are classified, and noted to correspond to the same concept in the classifying ontology. As noted above, this may not happen if the exchange is implemented in a piecemeal way.

4 The Negotiation Protocol Ontology

4.1 Overview


The type hierarchy for Product is shown in figure 2. From this, the ontology shown in figure 6 was developed. This shows four separate trees of concepts that are being applied in the hierarchy:

· Functional Class - the sort of information that is being controlled, such as Part, Breakdown, Slot etc.

· Modality - whether a design or an instance of a design

· Level - STEP has different entities, such as Product, Product_version, and Product_view_definition which are used to structure the relations between various product descriptions

· Container/Contained - whether it is the item itself that is controlled directly, or whether it is controlled through a container, such as a document or a drawing.
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Note, from the type hierarchy, there are constraints between these trees. For example, only a Part, a Slot of an Interface_connector can be an individual.


The following sections describe the fundamental concepts of the ontology. Detailed information is provided through the protocol.

4.2 Product Life Cycle


One of the difficulties with making explicit the ontology is that the concepts applicable and the terms used change over the product life cycle. Consequently, this analysis uses a simple product life cycle model as an explanatory principle when describing the ontology. The objective of this lifecycle description is not to provide a normative description of the design process, but to provide a recognisable description that points to some of the ambiguities of the language used, and to propose a way of resolving the ambiguity when mapping to the functional taxonomy. The lifecycle model used is shown in figure 7.


The lifecycle is broken into five phases:

· Customer phase - in which the purchaser of the end-product identifies what the end-product should do for them

· Functional Design Phase - which specifies the functional and physical characteristics of the product

· Physical Design Phase - in which the manufacturable item is designed

· Manufacturing Phase - in which the physical part is planned, then made and embodied in the end product

· Usage Phase - in which the end product is used then disposed of.
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The figure is divided vertically into a number of streams which describe the role of the information. The shapes in the diagram show where a particular unit of information sits.


Each of the design phases takes in something in the role of a specification for  the design, and outputs something in the role of a definition of the design. The output of each phase becomes the input for the next. In particular, requirements are the output from the customer phase and the input to the function specification phase. A specification is the output of the functional design phase and an input to the physical design phase. A design is the output from the physical design phase.

4.3 Functional Class

4.3.1 General Comments


The functional class of product subtypes is used to identify what sort of thing is being controlled. It turns out the definition of this ontology is more difficult that it appears at first.


In AP 203, the earliest of the main AP's, Product was the only type used. Product has subsequently been used in so many contexts, and has become heavily overloaded. PLCS uses Part to refer to either a part fitted to some end product, to an assembly of such parts, or to the entire assembly making up the end product itself. In PLCS, Product is now treated simply as the root of the hierarchy, although in older AP's, such as AP 203, it is the root concept.


The hierarchy is also incomplete. Most evidently it does not treat specifications in general or analysis data, even where this may need to be directly controlled. The structure Product should be applicable to any version controlled description of something. In theory, software could be treated as any other part, although for clarity it should have its own subtype. Product is also not used of people or organizations, although there is some argument for treating a human as a component in the overall system, with given physical characteristics such as size or response time. In the protocol, it has been assumed that things outside the basic scope have already been excluded.

4.3.2 Functional Class and Product Life Cycle


The biggest difficultly with defining the type ontology for Product is to ensure the subtypes are well defined and well differentiated. The problem is that something, such as a specification, is the starting point for one group, and the end product for another. Indeed, the shape of a part can be viewed as a specification for manufacture. The problem is that terms, such as specification, can refer to things in themselves (The Specification of X) and to properties or roles of other things ("the part design specifies the shape..."). Terms such as "requirements specification" muddy the water further. The approach taken here is to use the product life cycle to provide a context, and define the terms with respect to this context.


In particular, something is classified as a requirement if it is the output from the customer and the input to functional design phase. Something is classified as a specification if it is the output of a functional design phase and an input to the physical design phase. If there is no intermediate product between the customer requirement and the physical design, then there is no specification. Conversely, an organization need not separate the physical and functional design phases, but if uses internally specifications as an intermediate stage, then these count as specifications in the ontology.


There are three important boundaries implicit in this model: the internal boundary between design and manufacture, the boundary between the prime contractor and the subsidiaries, and the boundary between the product and the resources used.


At the internal boundary between design and manufacture, a part changes role from being an instance of the type "design object" to a class of type "part 123". This change is covered in the model ontology discussed below.


At the boundary between the prime contractor and the subsidiaries, one of two subcases may obtain: the subsidiary is a subcontractor or the subsidiary is a supplier. Firstly, a subcontractor is one who is doing part of the work on the product on behalf of the prime, in which case, what is a specification for the prime is a specification for the subcontractor. That is, the function of data is the same in both the prime and the subcontractor.


The second, more difficult subcase, is when the subsidiary is a supplier, with the prime acting as customer. That is, the prime is buying some product from the supplier without the supplier being involved in the design of the prime product. In this case, what the prime may view as a specification generated during functional design, the supplier may view as a requirement coming from the customer. This makes perfect sense if the supplier is seen as supplying a product which may then be used to make another product, but causes confusion if the supplier is seen as supplying part of an overall product. In either case, it is a business problem for the prime to make clear the relationship to the supplier, so that a consistent approach is taken.


The third boundary, between resources and products, occurs where two lifecycles intersect (figure 8). 
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A resource is a product in its own right, however in its usage phase, it is being used to support a different product. For example, a CAD package is an end product to a software company, but a resource for the design of a ship. For example, aviation fuel is the end product of an oil company, but is used as a resource by an aircraft operator. PLCS explicitly handles resources as both a resource and a product in its own right, with the resource entity referencing the Product that is the resource.

4.3.3 Part, Slot and Interface_connector


One of the key difficulties in formulating the protocol is that the concepts involved can be so different that concise statements about one concept make no sense in the context of another, and so there is a danger of not being able to classify something until you know what it is. The relation between Part, Slot and Interface illustrates this.


A part refers to a complete physical object that is built into a product. A slot is a designated place in a product where a part can be fitted (figure 9). In a support environment, it may be necessary to track the life history of an individual part, for example, if it has a fixed fatigue life. It is also necessary to track the life history of a slot, for example, to see if there is some systematic failure in that position. For example, if on a car, the front offside type wears out twice as quickly as the others, then that is suggestive of some kind of fault. However, this information cannot be gleaned from looking at the history of the tyres - all that would show was that some tyres wear out twice as fast as others. It is the fact that it was always the tyre in the front offside slot, and it is the history of the slot that records this information.
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An interface_connector is an aspect of a part that connects it to another part. For example, the prongs of a plug make the electrical connection with a wall socket. An interface_connector obviously can be positioned in a slot. An interface_connector can also have a history recorded against it.


When considering what sort of thing something is, there are questions, such as, "does it have a defined shape?" which become ambiguous it asked about a slot or interface. Consequently, the protocol needs to proceed carefully when dealing with these concepts. The approach taken is to define a hierarchy  of statements which start by distinguishing concepts so that only meaningful questions are asked for the concept involved.

4.4 Modality


The modality of an item refers to its "mode of existence", that is, it is either a design, or it is and individual example of the design. The individuals are further subdivided into planned, realized and decommissioned. The planned individual is used to track the intention to produce an item, and it most useful for long lead items, when their availability for use or embodiment is important for operational planning. The realized individual is the actual item when made. As such, it can accumulate usage. The decommissioned item is one that is no longer fit for use. This is useful, for example, in recycling, although in the aircraft industry it is also needed to allow the tracking of scrapped parts to ensure that they are not fraudulently resold as spares.


In practice, the "as designed" information is held by a PDM system, "as planned" by an ERP system, and "as realized" by maintenance and logistics systems. Systems for "as decommissioned" are not, as yet, common, and the entity type is not currently available within PLCS.


The Product type hierarchy originated in design, and so the presumption is that a Part is a design unless explicitly modelled as one of the subtypes of Product_as_individual. By contrast, the new subtypes Interface_connector and Attachment_slot have explicit subtypes for all modalities. The rule restrict_product_version_subtype in the implementation module Ap239_product_definition_information has the effect of restricting entity instances to being either a particular functional subtype or a Product_as_individual, however the collection of modules below this level does not restrict modality to Part, Interface_connector or Attachment_slot. It has been assumed here that such a restriction should be made. In terms of life cycle stage, to have a modality other than "as designed" means that the item must be in the usage phase. As far as this study is concerned, it has been assumed that a Breakdown is a design phase item.


It should be noticed that in the PLCS data model, modality is applied as a subtype of version. This is because a realization of a design is always the realization of a particular version of the design.
4.5 Level


One of the particular advantages of the STEP model is that it separates out the overall product definition concept into a series of levels, each of which subsume the lower levels. These levels are:

· Identification - the root of product description

· Version

· View (of a version), such as the mechanical or the electrical view

· Property (of a view), such as shape

· Representation (of a property), for example, shape representations include wireframe, exact boundary, faceted boundary, constructive solid geometry, etc.

· Presentation (of a representation) such as a drawing of a shape

This level structure has several implications, some of which make STEP the most powerful product modelling approach available. The most important here is that product structure is defined at the level of view. A product structure is the decomposition of a product into sub-products, and eventually into component parts. The intermediate nodes in this structure are the home for the emergent properties of its sub-products. For example, if the intermediate node is an assembly, then the relative positions of the components are determined by that particular assembly, and not a property of the various parts that make it up (otherwise how could the same type of bolt, say, be used in several different places). By associating the structure to a view, it makes it possible for the same component to be part of several views simultaneously. This issue is discussed further below under "breakdowns".


A second feature of the model is that the level "property" refers to the particular properties on the item being defined. That is, the property "material" would refer to the material that this item is made of. However, the property "material" will often be defined by a reference to an external specification, such as the specifications for the various standard types of steel or aluminium. Since the ontology needs to be complete to be successful, the pseudo-level "property type" has been added to the ontology, as a way of picking up this type of specification.


In this study, owing to time constraints, the protocol has been restricted to the Identification, Version and View levels.

4.6 Container/Contained Item


This is fundamentally a distinction between control processes, as discussed in Concept Structure Clashes above. Essentially, a contained item is controlled as an item in its own right, whereas a container is a mechanism to provide controls against one or more items. Examples of contained item include Part, Breakdown, Attachment_slot, Requirement. The only container supported in PLCS is Document, though that is thought of encompassing any paper-based document such as a report or drawing, and any electronic document, such as a file or a web page.


One distinguishing criterion is that a contained item may have a semantic model within the scope of STEP, whereas the meaning of the contents of a container are outside of the scope of STEP. Container is out of scope of this particular study.

4.7 Breakdown


The discussion of Breakdown was deferred since it requires some background in both the functional and the levels taxonomies. Essentially a Breakdown is a decomposition of the product into sub-products, the leaves of which may be a subtype of Product (identified via a Product_definition_element_relationship) or simply a Breakdown_element.


Breakdown is further subtyped into Function_breakdown, Physical_breakdown, Systems_breakdown and Hybrid_​breakdown. Only Hybrid_breakdown does not have Breakdown_elements, as it takes its elements from the other breakdowns.


It should be noted that Part includes the concept of "assembly", and so itself defines a breakdown, but one in which all the elements must be Parts.  Both Breakdown and Part build their structures at the view level. Hence, it has been thought necessary to include this level in the scope of the study.


The Logistic Support Number (LSN) is a form of breakdown used to monitor logistically significant items. It makes use of terminal elements including both Attachment_slot and Part. It is possible that some practices may include types such as Interface_connector and the various breakdown elements. Because of this complexity, the initial protocol does not cover LSN.

5 Protocol Structure

5.1 Aim and Overall Structure


The aim of this protocol is to identify how to model a business concept in PLCS. It is aimed to be used in two contexts:

· For a new PLCS user advised by an experienced PLCS developer, it will give the developer a structured way of analysing the user concept;

· For a PLCS user with some experience, it will give a way of classifying their own concepts, though in some cases they will still need expert advice.

It is not expected that the protocol can be used straightaway by a new PLCS user, but that, after some experience with a developer, they should be able to transition to using the protocol themselves.


One of the major design aims of the protocol is that it should be sensitive to ambiguity in the concept, and to both homonyms and synonyms. It is not expected to automatically resolve such problems, but rather to identify that a potential problem exists for an expert to resolve. That is, it is not expected to replace an expert, but it should reduce the requirements for an expert to those cases where a deep understanding of PLCS is needed.
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The overall structure of the protocol is divided into four phases (figure 10):

· Prefilter - to filter out a broad class of out-of-scope concepts, such as Container;

· Focus - to identify the ontology element applicable to the concept;

· Model generation - to map the ontology element to the PLCS data model;

· Example generation - to produce an instance from the data model.

The protocol development has focused on the first two stages, and only limited examples of the latter stages have been developed. As is noted below, the model generation stage uses domain knowledge about mapping of the ontology to the data model, rather than about the ontology itself, and is therefore beyond the scope of this part of the study.


The protocol is currently a paper-based procedure, although it is designed to be implementable in an expert system. Such a system would contain additional features, such as a dictionary of the user's terminology, which could be used to tailor the system to the user's own business, and a history of previous results, to enable the user to fast track where the protocol had been applied already. It is likely it would also need to allow the user to review their answers and backtrack if necessary.

5.2 Process/Co-operation Model


The overall model is of an expert in conversation with a user. In the protocol, the "expert system" side of the protocol takes the place of the expert, supplying domain level statements for the user to assess and analysing the answers.


For the Prefilter and Focus stages, the protocol is based around the user responding to a set of statements. The statements must be positively checked as applying to the concept to be matched. An unchecked statement is taken as a negative or uncertain response. Depending on the user's response, they will be presented with further statements, until a classification against the ontology is made. The output is either a statement about the concept in terms of the ontology or a failure to classify. Failure to classify can occur either because the concept is out of scope, or because the protocol detects a possible ambiguity.


In the model generation and example generation stage, the user would be asked additional questions about the sorts of information they use and for example values. The output is an instance model of how the concept should be realized.

5.3 Domain Knowledge

5.3.1 Knowledge Used


The domain knowledge used in the protocol is knowledge of the PLCS data model and its relation to the engineering environments likely to use it. The source of this domain knowledge is primarily the data modellers, who have translated the users' subject expert requirements into a STEP data model. In fact, the modellers used three types of domain knowledge:

· Knowledge gained from working within the engineering sector (each of the modellers had at least 10 years experience), and particularly of user subject expert requirements.

· Knowledge of industrial data standards (most of the modellers had been working with STEP or EPISTLE for 10 years or more, though not necessarily developing the standards).

· Knowledge of the design rationale for PLCS. This was developed over the project by face-to-face meetings, phone conferences and e-mail.

The problem can be reformulated as one in which the requirements of a new subject expert are translated using the PLCS design rationale into the form of an industrial data standard.


In this study, domain knowledge about the engineering sector and the domain knowledge of PLCS as an industrial standard have been separated using the ontology. The mapping from the business model to the ontology uses knowledge about the engineering sector. Knowledge about the data standard is used in model and example generation.


It may be argued that knowledge about rationale is a kind of meta-knowledge, and as such is not directly modelled. In fact, the knowledge of the rationale is used to help structure the other knowledge used in the protocol, and is not explicitly represented.

5.3.2 Representing Engineering Knowledge


Essentially, there are three approaches that can be taken: 

· present the user with information and see if they understand it
· elicit information from the user and try to understand it
· combine the two in a conversation
Although the third is the usual approach taken by an expert, given the current state of knowledge of natural language processing, only the first is practical for an automated system.


The approach used needs to represent both statements about the engineering environment and whether or not they are applicable to the target business environment. In this study, is not intended to consider any machine understandable encoding of the knowledge, rather, this knowledge will be represented through natural language strings. Since there is no encoding of knowledge in the statements supplied to the user, there can be no direct encoding of knowledge in the reply. Indeed, to provide a single uniform approach, the replies should fit into a single uniform schema. The simplest way of doing this is for the user to respond with whether a statement is true or false.


In fact, statements about ontology concepts can be definitive or indicative. If the ontology is partitioned into two subsets, then a definitive answer selects one of these subsets as containing the concept of interest. An indicative answer implies that the concept probably lies in one subset rather than the other.

Similarly, responses can be definitive (i.e. the statement is definitely true or definitely false) or indicative, that is, the user can put a "degree of belief" that something is true.


Restricting both statement and response to being definitive gives the strong classification approaches of conventional algorithms. The concern is that the such an approach will not be sensitive to slight differences in meaning (see overall inference strategy below). Conversely, allowing all possibilities, including a spectrum of "indicativeness" gives an approach so complex that some automation is needed to computerise the result.


The first simplification is not to quantify the level of "indicativeness", and let each statement be positively definitive (an A is an X), negatively definitive (an A is not an X) or simply indicative (an A may be an X). This gives a possible nine combinations. A further simplification is to reduce the number of classes of statement or response to two by merging a definitive with the indicative - either {(an A is an X) and (an A might not be an X)} or {(an A might be an X) and (an A is not an X)}.


It is thought that areas of possible conflict are more likely to be raise by providing indicate statements. For example (The B has a shape) is certainly true for a physical part, is false for a requirement, but for an interface the response will depend on the user's viewpoint. Further, it seems more natural for the user to respond positively for something they are sure of than negatively if they are not sure. Hence the classification of responses is positive definitive/negative indicative.


That is, user domain knowledge is represented as a triple:

[<user statement>, <set of concepts>, <definitive | indicative]>]

for which the user adds the information <positive definitive | negative indicative>

so, for example

[X occurs at one or more fixed places in the product, {part, interface, slot}, indicative]

means that if the user agrees, then the concept is probably a part, interface or slot, but if the use disagrees, then part, interface or slot are not ruled out as possible concepts (i.e. the user is assumed unsure if the concept applies).


The asymmetry of this representation must therefore be taken into account when formulating statements, in order that statements can be used to positively identify which concept is relevant. E.g.

[X does not have a spatial location in the product, {requirement, specification}, definitive] provides the converse proposition. 

5.4 Inference


A typical classification task works by posing a differential criterion and inferring a further level of classification from it. That is, the inference takes the form (true => A) or (false=> B). This is exactly the kind of inference that is too strong. The classification of criteria used in this protocol is {Yes, No, Maybe}.


The objective of the inference approach is to be able to combine multiple criterion results from the set {Yes, No, Maybe} and decide whether the classification gives a definite answer, a tentative answer, a probable failure, or a contradiction.


Three approaches suggest themselves: a variant on the Logic of Partial Functions (cf. ref 4), Fuzzy Logic, or a probabilistic approach, of which Bayesian Belief Networks (BBNs) seems the most appropriate. Given the time available, BBN's were not investigated, but should be considered in future studies.


Computation geometry suffers from numerical errors, which makes it difficult to distinguish certainly where geometrical boundaries lie, and is an analogous problem to the one being considered here. In one study, the boundary was described by a fuzzy set, however to make the problem computationally tractable, this was quantized to a three valued classification of {In, Out, On}, the logic of which is isomorphic to the Logic of Partial Functions (LPF). LPF is a monotonic extension of classical logic, using the terms {True, *, False}, in which the terms are ordered False is weaker than * is weaker than True. Any logical operation which involve * will give the same result if * is consistently strengthened to True or weakened to False. For example, * and True results in *; if * was strengthened to True, this would give True and True results in True, as expected.


Since LPF is easy to compute manually, and fuzzy logic is not so easy, the inference here is based on LPF. Further, to be useful, the fuzzy logic approach would should also elicit a "strength" of maybe, which would also need further investigation and complicate manual processing.


Since, particularly in the functional tree, we need to distinguish multiple terms in parallel, each statement generates a token mapping to the ontology concept it results in (we assume here that each statement generates a single token - the problem of statements generating multiple concept tokens in considered under the task discussion). Further, each statement is either definitive or indicative. Definitive statements generate an undecorated token, indicative statements a starred token, for example, slot or slot*.


The task structure requires that the collection of tokens be "added" together. The rules for TOKEN_ADD are

	
	t
	t*
	p

	t
	t
	t
	FAIL

	t*
	t
	t*
	FAIL

	p
	FAIL
	FAIL


 where t is the token for the concept T, t* is the starred token for T and p is the token for any other concept.


The table can be read as

· definitive t and definitive t give a definitive t

· indicative t and indicative t give indicative t

· definitive t and indicative t give definitive t

· any t and any other not t give FAIL

where FAIL means that the protocol identifies a potential conflict between the ontology of the standard and the business concept being classified. Note that the token "FAIL" is in addition to the concept tokens, but is generated by a task, rather than an individual user statement. 

5.5 Tasks

5.5.1 Basic Weak Classification Task Structure


The aim of the task is to classify a user concept against the ontology. It uses the LPF token inference on the domain knowledge triples described above. It is called weak classification since its primary objective is to classify only if there are no contra-indications.


The basic task offers the user a set of statements, each of which is true for a single concept. The user then asserts as "always applies to the concept" for the statements that apply, with the rubric that any statements that do not apply, or do not always apply should be left un-asserted. From an implementation viewpoint, this could appear as a series of statements, each with a single checkbox, initially unchecked, which the user would check to assert the statement.


Since the user need not respond to all the questions, they need to indicate that they have finished, in order to start the adding process.


The task then collects the asserted statements, and generates the tokens, possibly starred. These are then added together, to produce one of four results:

· The user concept is an X;

· The user concept is probably an X;

· There is a potential conflict;

· Failure to classify.

where X is the concept calculated from adding the tokens. If no statement is checked, that is, there are no tokens to process, the result is "Failure to classify" and the task generates a FAIL token.



For example, in the protocol for telling swifts from swallow the statements are:

1. [The bird has a pale underside, swallow, indicative]

2. [The bird's chest is the same colour as the rest of the bird, swift, indicative]

3. [The bird has a white throat, swift, indicative]

4. [The bird has a chestnut-red throat, swallow, definitive]

5. [The bird has scimitar shaped wings, swift, inductive]

The user may check only 1, since it is difficult to make out the colour of such birds, and the task would give the result "the bird is probably a swallow". If the user checked 1 and 5, then the task would generate swallow* and swift* and conclude it could not classify the bird. [note, since the wider protocol would also have to classify younger birds and martins, features 1, 2 and 3 were marked indicative.]


In formulating the task, it is necessary that every concept in the ontology is referenced as a result of some statement, otherwise it is not being checked for. Ideally, every concept should generate a definitive identification, however that may not always be possible or practical.

5.5.2 Compound Weak Classification Task Structure


The compound weak classification task structure is used when a statement could indicate two or more concepts, rather than a single concept (such a statement is referred to below as a "compound statement"). In the case where a compound statement is checked, the task then introduces a further task to reduce the number of concepts applicable. This may be either a basic task or another "compound" task. Note, this structure is recursive, however since the new task must reduce the number of concepts and since the set of concepts is finite, the recursion is bound to finish in a basic task.


If a compound task invokes a basic task, this is because the user statement that invokes it is asserted as being true. Should the basic task fail to classify, then it generates a FAIL token, indicating a potential conflict. In this case, the conflict is between the compound task (for which some statement applies) and the basic task (for which no statement applies). A compound task can only fail to classify if none of its statements is asserted.


Note that the set of tasks forms a hierarchy, rather than a strict tree structure, in the sense that the same set of user statements can be used to resolve two different compound statements. In this case, the second application of the statements could, by default, inherit the previous set of answers.

5.5.3 Control Task Structure


The control task provides the overall control of the task system. The pre-filter task phase is built as a series of guarded weak classification tasks. The guards for a task consist of the ontology concepts they are valid for. The function of the guards is to ensure that only relevant domain knowledge is applied at each stage. The final task of the pre-filter phase provides the response "Out of scope", meaning that the concept has been classified as out of scope for the main phase. In some cases, the tasks provide additional information to the user.


The focus phase consists of a series of guarded weak classification tasks, one for each taxonomy tree of the ontology. The aim of the tasks is not only to find the correct level in the classification tree, but also to confirm the classification is appropriate. A final task in the series can be inserted to check the consistency of the answers if needed.


This structure is chosen in order to be extensible. For example, if in the pre-focus phase, a concept is identifies as a "resource", at a later date a resource classification task, with the guard "resource" could be added to the task list. Since it would be the only task activated by the resource token, it need not perturb the rest of the structure.


The subsequent modelling tasks would also be guarded, but the structure of this part of the protocol has not been considered in any detail.


Tasks are posed in the order which is thought least likely to confuse the user, that is, where the domain level statements are unambiguous in the given context because alternative concepts have already been ruled out. It could be argued that this control task uses strategic level knowledge.

6 Analysis and Conclusions

6.1 Characterization of the Problem


A semantic data exchange standard is one which is concerned with the meaning of its terms rather than the format of the exchanged information. The latter is provided by a syntactic standard. STEP provides both a semantic standard and a syntactic standard. For comparison, XML provides only a syntactic standard, and while XML schemas provide semantic standards, they do so by virtue of them being schemas, rather than from any relation to XML.


An ontology, in the AI sense, is a formal system of definitions, from which facts about the terms can be deduced from the relations within the system. It provides more than a simple taxonomy. A semantic standard provides an informal set of definitions from which an ontology can be inferred.


Terms in both an ontology and in a semantic standard gain their meaning not from the objective world of computer processing, but from the particular subjective socio-technical environment in which they are used. The problem of interpreting a standard is essentially one of communication between different business environments, but in which the standard is the proxy for one side of the exchange.


The problem of mapping business terminology to a data exchange standard can be considered as a special case of the general problem of ontology alignment. It poses three additional difficulties:

· The ontology of the standard needs to be inferred;

· The implied ontology of the business environment is unlikely to be explicitly represented or defined;

· It is necessary to detect structural clashes between these two ontologies while being insensitive to different and even contradictory terminology

6.2 The Solution Considered


The solution considered is based on a KBS approach. This has the advantage of making explicit the domain knowledge needed, the way inferences could be made, and the way the classification task should be performed.


In terms of domain knowledge, the required expertise for the interpretation of the data exchange standard is found primarily in the exchange modellers, and consists of:

· Knowledge of the engineering environment;

· Knowledge of industrial data standards;

· Knowledge of the rationale for the standard.

A substantial element of the rationale is the reasons why the user requirements - which drove the standard development - were modelled in the way they were.


The inference approach used was designed to be sensitive to differences between the two ontologies, and so did not use a classical logic. For simplicity, an algorithm based on the Logic of Partial Functions was used. It is believed that this is a new algorithm, though this is yet to be confirmed. Fuzzy Logic and Bayesian Belief Networks were identified as potential alternatives.

6.3 The PLCS Example


The example chosen from the PLCS standard was the Product type hierarchy, since this seemed to pose a well bounded problem of business relevance. The hierarchy consists of some forty subtypes, and finding the correct subtype for a concept will be the first stage in many exchange scenarios.


The type hierarchy itself is not well structured, as it has grown incrementally over some twenty years, and considerations of backward compatibility limit the choices available. An ontology was reverse engineered from the hierarchy, and this exhibits four systems of concepts, each with their own taxonomy tree. The clarity of the ontology over the type hierarchy is in itself useful.


The problem found was that the Product subtypes cover a wide range of very different concepts, and that the meaning of the terms could be context sensitive. This created some initial difficulties when formulating differential criteria. In one sense, this was a poor choice, in that it made the classification task considerably more complex than had been expected. In another, it was a good choice, since it brought out issues about the importance of context, and has identified the need to separate out different contexts within the protocol.

6.4 Conclusions and Future Work

The study has had three major results:

· It has clarified the relationship between data exchange standards and ontologies, allowing a more precise formulation of project goals, expectations and costs;

· It has demonstrated the value of using ontologies to understand the relationship between business terminology and standards, and should help to develop clearer standards
;

· It has developed a knowledge-based approach to mapping business terminology to a standard. This should provide a route to better and more pervasive exploitation of the standards. Ultimately, these will drive down costs and increase competitiveness.

In doing this, it has developed a new inference method. It has also identified additional inference methods that may be applicable.


In the immediate future, separately funded work will field test the mapping protocol, both to validate it, and to extend the domain knowledge that it used.


Further work falls into three general classes:

· Deeper investigation - examine the alternative inference techniques and apply them

· Extend the scope to cover more of the PLCS and STEP standards

· Integrate the work with the ontology negotiation and pattern mapping aspects of OFFA to develop a semi-automated exchange demonstrator.
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� Product Data Management (PDM) is used in the design phase to control the design standard for a part. Enterprise Resource Planning (ERP) is used by manufacturing to plan production and order materials.


� The prefix * indicates that the entity named is not part of STEP. STEP entities referenced are italicised and follow the usual STEP naming conventions.


� The explicit use of ontologies has already been exploited by the author in the development of EN-9300 "LOTAR".
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