Recommendations to DEX documentation
1Recommendations to DEX documentation

1DEX objectives

2Conformance/compliance to DEX

3Rules

3Objectives with rules

3Three levels of rules

3Rule categories

3Rule specification

3Requirements to DEX architecture

6Issues to capabilities

DEX objectives

Assumption:

It is required that data be openly and automatically exchanged between configured data systems (large and small applications) without point to point data exchange agreements.
This implies that

· there shall be no need to tailor import or export translators for new data exchange partners,

· translators may claim compliance to a DEX, if need be, with exemptions for import or export,

· a DEX shall precisely identify the scope of the required and actual exchange population,

· the exchange population shall identify the DEX.

It is foreseen that data exchange agreements may need to exist, which will result in the need for point to point translators.
Business case implementation requirements to be fulfilled by a standardized DEX:
	
	Business purpose
	Business case
	Required stability
	DEX requirements

	1.
	Open request for data
	Request for, e.g. information, quotation, work, resource
	High (consequence of DEX changes on data exchange community)
	Open (no, or minor exchange agreement), wide implementation needed, precise definition of business data

	2.
	Exchange in an open user community
	In bids and contracts, define data exchange requirements by lists of DEXes
	High (consequence of DEX changes on translators inside a defined business context)
	

	3.
	Exchange in confined user community
	Among contracted parties, resolve data exchange needs by DEXes with data exchange agreements
	Medium (limited exchange community)
	Powerful, flexible, tailoring enabled

	4.
	Exchange inside a large enterprise
	
	
	

Business case implementation requirements 1 and 2 require DEX specifications with no room for interpretation, where business data to be exchanged are precisely identified and defined. These business case implementation requirements fulfil all the DEX objectives defined above.

Issues and rules discussed below are solely related to requirement types 1 and 2.

The meaning of precise: All categories of variants shall be defined so that no misunderstandings are possible.

Example: A Part number shall be assigned to a Part. The part may have any length. The part may exist in any structure. These three categories are precisely defined in the examples shown in this document.
Conformance/compliance to DEX

Clarity is needed for what shall be the requirements to be met when a translator shall receive or send a populated DEX and the related reference data. Conformance and compliance may be confused.
· Claim conformance to a DEX

· Conformance means that the target system "understands" the data being sent. A translator conforms if it can input and output.
· Satisfy population constraints (normative) given in the DEX

· Conforming/conformance: The fulfilment by an implementation of all requirements specified (Source: 10303-31).
AP239 requirements are stated in

· ISO10303-239

· Implementation method P21 (i.e. handle populations according to P21 schema)

· Normative references contained in AP239

(This is not specific enough to ensure unambiguous data transfer because the information content is larger than commonly used applications.

(This level should be defined in the specific DEXes.

· Claim compliance to a DEX
· Compliance means that the target system can handle and make sense of the data, but not necessarily "understand".

· The fulfilment by an implementation of all requirements specified for the DEX. Two elements of DEX requirement representation

· Express and the XML schema

· Formal rule specification is required for unambiguous interpretation

· Textual specification of population constraints (normative)

· Graphical specification of population constraints using instantiation diagrams

· Compliance shall be documented, if necessary with exceptions

· Full compliance implies that all mandatory and optional data requirements in the DEX shall be populated (export) and translated (import)

· Exceptions shall be contained in the message part of the exchange population

· Applications with export and import translators may claim circle test compliance

Conformance/compliance to a DEX means also that the set of mandatory reference data that are specified in the DEX are supported.

Rules
Objectives with rules

1. Define what is asked for when requesting a DEX, and ensure that the data received are what is expected

2. Sufficient and necessary precision for a translator specification (to claim compliance to a DEX)

3. Identify the specific business concepts for exchange within the DEX specification

4. Reduce needs for point-to-point data exchange agreements

5. Provide a common specification for validation of DEX populations

6. Facilitate the use of DEX specifications for commonly used legacy systems (allow local exceptions from the DEX specification)

Three levels of rules

· AP239 schema will have no (global) rules
· DEX specific rules will include local schema rules, and are needed instead of global rules
· There will be rules inside capabilities to make these precise and explicit

· Company / exchange agreement rules will apply as required
Rule categories

· Existence rules

· Example: Require <Part_version> for <Part>

· Reference data values/ids

· Example: <External_class.id> = ‘standard_id.mission_criticality_code’ in OWL

· Values

· Example: <Numerical_item_with_unit.value_component> = ‘3’

· Type check
· Example: <Date_or_date_time_assignment.assigned_date> shall be of type <Calendar_date>
Rule specification

The same rule shall be described in three different ways;
· Understandable by domain experts

· Sufficient to program the translator

· EXPRESS – formality

Requirements to DEX architecture
1. Specify constraints at lowest possible level, i.e. in capabilities

a. Justification: Hold constraints only in one place

i. Example 1: Each identification requires an organization (‘Id owner’)

ii. Example 2: Classify the <Organization_or_person_in_organization_assignment> entity related to an <Identification_assignment> as ‘Id owner’
2. Distinguish optional constraints and mandatory constraints

a. Justification: Rules Objective #5 (Provide a common specification for validation of DEX populations)
i. Example of Mandatory Constraint: Each part shall be identified by its preferred identifier
ii. Example 1 of Optional Constraint: Each preferred identifier shall be classified by assigning the cage code to the organization that has given the part its preferred identifier
iii. Example 2 of Optional Constraint: Each <Identification_assignment> shall be assigned an <Organization_or_person_in_organization_assignment> as ‘Id owner’

b. Mandatory constraints in the capability shall be applied in all DEXes using the capability

c. Optional constraints in the capability may be defined in the DEX as mandatory

d. A translator may decide to support or not to support optional constraints

i. Such translators may claim compliance to a DEX with exemptions

ii. Exemptions shall be identified in the message part of the exported DEX

3. Identify constraints

a. Justification: Identify those constraints in a capability that are out of scope in an exchange contract

i. Example: Eliminate the need to provide ‘Id owner’

4. Constraints specification requirements

a. Provide documentation for business users

i. Justification 1: Identify the DEX needed to satisfy a specific exchange requirement

ii. Justification 2: Enable assessment of a systems ability to fulfil a DEX specification

1. Example: Each identifier shall be accompanied by the name of the organization that assigned the identifier

b. Provide documentation for translator development

i. Justification 1: Understand the implications of a constraint in the context of translator development

ii. Justification 2: Explain the algorithms of the formal constraints validation codes

1. Example: Each <Identification_assignment> shall be assigned an <Organization_or_person_in_organization_assignment> as ‘Id owner’

c. Specify constraints in DEX or capability in a formal language (express)

i. Justification 1: Provide unambiguous interpretation for DEX implementers

ii. Justification 2: Provide a common basis for automatic validation of DEX populations

1. Example: Each identification requires an organization (‘Id owner’) =
Each identification requires an organization as Identifier assignee.

RULE identification_assignment_requires_identifier_assignee FOR
 (identification_assignment);
LOCAL
 bag_of_referencing : BAG OF GENERIC := [];
 no_bag_of_referencing : INTEGER := 0;
 no_found : INTEGER := 0;
 not_violated : BOOLEAN := true;
END_LOCAL;
 REPEAT i:=1 TO SIZEOF(identification_assignment);
 bag_of_referencing := USEDIN (identification_assignment[i] ,
 'AP239_PRODUCT_LIFE_CYCLE_SUPPORT_ARM_LF.'+ 'ORGANIZATION_OR_PERSON_IN_ORGANIZATION_ASSIGNMENT.'+
 'ITEMS');
 no_bag_of_referencing := SIZEOF(bag_of_referencing);
 IF no_bag_of_referencing > 0 THEN
 no_found := 0;
 REPEAT j:=1 TO no_bag_of_referencing;
 (* To simplify the rule, the use of the role attribute assumed! *)
 IF bag_of_referencing.role = ' Id owner' THEN
 no_found := 1;
 ESCAPE;
 END_IF;
 END_REPEAT;
 IF no_found = 0 THEN
 not_violated := false;
 ESCAPE;
 END_IF;
 ELSE
 not_violated := false;
 ESCAPE;
 END_IF;
 END_REPEAT;
WHERE
 WR1: not_violated;
END_RULE;

5. A DEX shall be allowed to include only a subset of a capability
a. Justification: Precisely limit the data contents of a business concept to be exchanged

i. Example: C001 Assigning identifier requires the use of id assignee for each id assignment. A legacy system may not hold name or id of the assigning organization.

6. A smaller DEX should include reference to larger DEXes it is a subset of
a. Justification 1: Help translator developers to reuse previously implemented DEX functions

b. Justification 2: Ease navigation and archiving of existing DEXes for reuse

7. Define new DEXes to represent new specific business concepts as opposed to integrating these in the larger OASIS DEXes
a. Justification 1: Documentation of smaller DEXes are more user friendly than larger integrated DEXes

b. Justification 2: It is more manageable to develop a new and specific DEX than to maintain the larger DEX with many smaller concepts integrated.

i. Example 1: Concurrent editing of the larger DEX causes configuration issues

ii. Example 2: A standardized DEX requires new balloting for each change

iii. Example 3: Applications need to confirm compliance following each new ballot

iv. Example 4: Documentation of rules for new business concepts may be done individually as opposed to integrated with existing rules in a larger and more complex DEX

8. Applications shall only claim compliance to entire DEXes except for documented exemptions
a. Justification: Smaller document size, more user friendly, and easier to edit

i. Exemption example: The OEM organization is known only by name, not by cage code. Exemption to cage code existence rule, and require organization name existence rule instead (require existence of <Identification_assignment> for type ‘organization name’ for the OEM organization).
Issues to capabilities
Capabilities are resources for DEX specifications.

The current granularity of capabilities is too coarse as mapping targets from legacy systems.

· A configured legacy system has a limited scope that is less than as specified in a capability

· Example: C001 Assigning_identifiers requires the use of id assignee for each id assignment. A legacy system may not hold name or id of the assigning organization.
Referencing Part or Slot vs Representing Part and Representing Slot

· Referencing capability should be split in the same two parts as the Representing capabilities

· Which are the minimum data needed to represent a part and to represent a slot? The current capability appear to be too rich on resource for this limited need

· Representing capability should reuse the referencing capability rather than restate the same requirements

