[image: image34.wmf]Business Objects

Characteristics

Query Services

System Services

Event Services

Part

Manageme

nt

Document

Managemen

t

Change

Managemen

t

In Life

Service

Maintenanc

e Mgm

Identification

assignment

Classification

assignment

Property

assignment

Person

/

organization

ass

.

Date

/

Time

assignment

Document

assignment

Effectivity

assignment

Load

PLM

_

object

Search

Authenticate

Logout

Manage

Subscriber

Part Mgm

.

Events

Document

Mgm

.

Events

Change

Mgm

.

Events

In Life

Service

Events

Maintenance

Mgm

.

Events

Requiremen

ts Mgm

Requirements

Mgm

.

Events

Types

.

xsd

Filters

.

xsd

Headers

.

xsd

QueryManagement

.

WSDL

SystemManagement

.

WSDL

PartMgm

.

WSDL

QueryMsg

.

xsd

SystemMsg

.

xsd

Common definitions

...

WSDL

DocumentMgm

.

WSDL

...

WSDL

...

WSDL

...

Msg

.

xsd

...

Msg

.

xsd

PartMsg

.

xsd

PartEvent

.

WSDL

...

WSDL

ChangeEvent

.

WSDL

...

WSDL

...

WSDL

...

Msg

.

xsd

...

Msg

.

xsd

PartEventMsg

.

xsd

[image: image35.wmf]Business Objects

Characteristics

Query Services

System Services

Event Services

Part Management

Document Management

Change Management

In Life Service

Maintenance Mgm

Identification assignment

Classification assignment

Property assignment

Person

/

organization ass

.

Date

/

Time assignment

Document assignment

Effectivity assignment

Load PLM

_

object

Search

Authenticate

Logout

Manage Subscriber

Part Mgm

.

Events

Document Mgm

.

Events

Change Mgm

.

Events

In Life Service Events

Maintenance Mgm

.

Events

Requirements Mgm

Requirements Mgm

.

Events

OASIS White Paper

An OASIS White Paper

PLCS PLM Web Services Definitions

V1.1, 2006-06-27
[image: image36.jpg]

By Jonas Rosén, Eurostep
For OASIS

OASIS (Organization for the Advancement of Structured Information Standards) is a not-for-profit, international consortium that drives the development, convergence, and adoption of e-business standards. Members themselves set the OASIS technical agenda, using a lightweight, open process expressly designed to promote industry consensus and unite disparate efforts. The consortium produces open standards for Web services, security, e-business, and standardization efforts in the public sector and for application-specific markets. OASIS was founded in 1993. More information can be found on the OASIS website at http://www.oasis-open.org.

The work on which this document is based has mainly been carried out under contract from VIVACE - Value Improvement through a Virtual Aeronautical Collaborative Enterprise. VIVACE is a four-year EC project, which now is half way through. One goal is to develop collaboration environments for the European aeronautical industry.

The VIVACE project number is 502917, and the link to the VIVACE web pages is www.vivaceproject.com

Abstract

This document provides an initial draft of the PLCS PLM Web services. The document is being circulated for comment and consideration as the basis for development into a PLCS OASIS standard.
The work on which this document is based has mainly been carried out under contract from VIVACE - Value Improvement through a Virtual Aeronautical Collaborative Enterprise. VIVACE is a four-year EC project, which now is half way through. One goal is to develop collaboration environments for the European aeronautical industry. The VIVACE project number is 502917, and the link to the VIVACE web pages is www.vivaceproject.com.
This document describes the technical content of the PLCS PLM Services and serves as a reference usage guide. The Web Service specification is documented and explained in terms of use cases and diagrams. A separate document, “PLCS PLM Web Services Specifications”, describes the accompanying XML Schemas for all the types used in the WSDL specifications. All the specified Web Services in the WSDL specifications are not yet described in this definition document. They are marked <TBD>.
This document describes the technical aspects of online PLM integration. The main objective has been to establish a specification for a Service-Oriented API for Collaborative Engineering and Product Development throughout the life cycle of the product-in-focus. The first phase verifies the needs and requirements for Sharing Product Life Cycle Management (PLM) information that is controlled and managed by Product Data Management (PDM) systems, either utilized by commercial solutions, or in-house developed systems.

This document delivers a solution that uses ISO 10303-239, also known as PLCS, to define the semantics being implemented by the use of the Web Services Description Language (WSDL) together with usage guides.

Table of Contents

51.
Abstract

102.
Reading instructions

102.1.
Referenced standards

113.
Introduction

113.1.
Initial requirements

123.2.
Functional overview

133.3.
Organization and structure of the specification

164.
PLCS PLM SERVICES: REFERENCE AND USAGE

175.
Manage a user session (SystemManagement.wsdl)

175.1.
Get Projects (SystemManagement::GetProjects)

195.2.
Initialize a session (SystemManagement::Authenticate)

195.3.
Override a session (SystemManagement::OverrideSession)

205.4.
Logout a session

226.
Search for Business Objects (QueryManagement.wsdl)

236.1.
Search (QueryManagement::Search)

286.2.
Load PLM instance (QueryManagement::LoadPLM_object)

326.3.
Retrieve Reference Data and general purpose data

357.
Common Business Object characteristics

357.1.
Identification (Identification_assignment)

377.2.
Properties (Assigned_property)

407.3.
Document assignments (Document_assignment)

427.4.
Date and time assignments (DateTime_assignment)

427.5.
Person and organization assignments (Organization_or_person_in_organization_assignment)

437.6.
Classification assignments (Classification_assignment)

437.7.
Effectivity assignments (Effectivity_assignment)

458.
Functional modules, working with Business Objects

479.
Working with Parts (PartManagement.wsdl)

479.1.
Create Part (CreatePart)

499.2.
Update Part (UpdatePart)

499.3.
Create Part version (CreatePart_version)

539.4.
Update Part version (UpdatePart_version)

539.5.
Get Assembly Structure (GetAssemblyStructure)

569.6.
Where Used (WhereUsed)

589.7.
Create Next assembly usage (CreateNext_assembly_usage)

599.8.
Update Next assembly usage (UpdateNext_assembly_usage)

599.9.
Remove Next assembly usage (RemoveNext_assembly_usage)

6110.
Working with Documents (DocumentManagement.wsdl)

6110.1.
Create Document (CreateDocument)

6310.2.
Create Document version (CreateDocument_version)

6510.3.
Update Document (UpdateDocument)

6610.4.
Update Document version (UpdateDocument_version)

6610.5.
Create Digital File (CreateDigital_file)

6810.6.
Download Digital File (DownloadFile)

6910.7.
CheckInDocument version (CheckInDocument_version)

6910.8.
CheckOutDocument version (CheckOutDocument_version)

6910.9.
GetCheckedOutDocument versions (GetCheckedOutDocument_versions)

6910.10.
GetCheckedInDocument versions (GetCheckedInDocument_versions)

7111.
Working with serialized products (InLifeManagement.wsdl)

7111.1.
Create Product As individual (CreateProduct_as_individual)

7311.2.
Create Product As Realized (CreateProduct_as_realized)

7711.3.
Update Product As Realized (UpdateProduct_as_realized)

7711.4.
Get Top Parent (GetTopParent)

7711.5.
Where Used (WhereUsed)

7711.6.
Get Assembly Structure (GetAssemblyStructure)

7711.7.
CreateResource as realized resource_item (CreateResource_as_realized_resource_item)

7711.8.
UpdateResource as realized resource item (UpdateResource_as_realized_resource_item)

7811.9.
CreateRequired resource by specification (CreateRequired_resource_by_specification)

7811.10.
UpdateRequired resource by specification (UpdateRequired_resource_by_specification)

7811.11.
CreateRequired resource by resource item (CreateRequired_resource_by_resource_item)

7811.12.
UpdateRequired resource by resource item (UpdateRequired_resource_by_resource_item)

7912.
Working with Information collection (InformationCollectionManagement.wsdl)

7912.1.
Create Information Collection (CreateInformation_collection)

8112.2.
Update Information Collection (UpdateInformation_collection)

8112.3.
Create Information Collection Version (CreateInformation_collection_version)

8412.4.
Update Information Collection Version (UpdateInformation_collection_version)

8412.5.
CheckInInformation collection version (CheckInInformation_collection_version)

8412.6.
CheckOutInformation collection version (CheckOutInformation_collection_version)

8412.7.
GetCheckedOutInformation collection versions (GetCheckedOutInformation_collection_versions)

8412.8.
GetCheckedInInformation collection versions (GetCheckedInInformation_collection_versions)

8613.
Working with Change Management (ChangeManagement.wsdl)

8613.1.
Create Activity (CreateActivity)

9013.2.
Create Directed activity (CreateDirected_activity)

9213.3.
Create Activity actual (CreateActivity_actual)

9513.4.
Create Work request (CreateWork_request)

9713.5.
Create Work order (CreateWork_order)

10013.6.
Promote Planned engineering change (PromotePlannedEngineeringChange)

10013.7.
CreatePlannedEngineeringChange (CreatePlannedEngineeringChange)

10013.8.
CreateEngineeringChangeOrder (CreateEngineeringChangeOrder)

10013.9.
UpdateWork request (UpdateWork_request)

10013.10.
UpdateWork order (UpdateWork_order)

10013.11.
UpdateActivity (UpdateActivity)

10013.12.
UpdateActivity actual (UpdateActivity_actual)

10013.13.
UpdateDirected activity (UpdateDirected_activity)

10314.
Working with Maintenance Management (MaintenanceManagement.wsdl)

10314.1.
Create State definition (CreateState_definition)

10414.2.
Update State definition (UpdateState_definition)

10514.3.
Create State observed (CreateState_observed)

10614.4.
Update State observed (UpdateState_observed)

10714.5.
Create Task method (CreateTask_method)

10814.6.
Update task method (UpdateTask_method)

10814.7.
Create Task method version (CreateTask_method_version)

11014.8.
Update Task method version (UpdateTask_method_version)

11014.9.
Create Scheme (CreateScheme)

11114.10.
Update Scheme (UpdateScheme)

11114.11.
Create Scheme version (CreateScheme_version)

11314.12.
Update Scheme version (UpdateScheme_version)

11314.13.
Create Scheme entry (CreateScheme_entry)

11514.14.
Update Scheme entry (UpdateScheme_entry)

Reading instructions

The first part of this document gives an overview of the PLCS PLM Service specification together with some background information. The next sections are organized into functional blocks that match the steps necessary for a developer to take, i.e. acquire a user session to a PLM System, retrieve a set of Business Objects, navigate and get into more details with a number of Business Objects of different types, and finally create and edit Business Objects.

The actual service is provided as a number of Web Service Description Language (WSDL) files and XML Schema files.

Throughout this document a number of different representations will be used to illustrate definitions and usage of the API, i.e. UML, XML Schema, XML, WSDL and code snippets.

Referenced standards

A number of standards are used and referenced to throughout this document:

	(Organization)Standard
	Description
	Usage

	ISO 10303-239 (PLCS)
	A Data exchange standard governed by ISO
	The types defined in the XML Schema (Types.xsd) are generated from the PLCS standard

	OASIS PLCS DEX/Capabilities
	Defines how to populate and use the ISO 10303-239 representation
	Used to provide a layer on top of the generated Types.xsd, influencing the BusinessObjectRepresentation.xsd.

Also, drives some of the organization and structuring of the functional modules and the services design.

	W3C WSDL
	The representation of a web service API, the resulting format is WSDL files, which are xml files governed by a WSDL XML Schema
	The API is represented by WSDL (and XML Schema)

Introduction

This document describes the technical aspects of online PLM integration. The main objective has been to establish a specification for a Service-Oriented API for Collaborative Engineering and Product Development throughout the life cycle of the product-in-focus. The first phase verifies the needs and requirements for sharing Product Life Cycle Management (PLM) information that is controlled and managed by Product Data Management (PDM) systems, either utilized by commercial solutions, or in-house developed systems.

The state-of-the-art of collaborative PLM reveals that standards such as those found within ISO STEP covers the need in terms of Product Data semantics. However, these ISO STEP standards need to be implemented using contemporary software standards for collaboration on the Internet.

This document delivers a solution that uses ISO 10303-239, also known as PLCS, to define the semantics being implemented by the use of the Web Services Description Language (WSDL).

The document is being circulated for comment and consideration as the basis for development into a PLCS OASIS standard.
The work on which this document is based has mainly been carried out under contract from VIVACE - Value Improvement through a Virtual Aeronautical Collaborative Enterprise. VIVACE is a four-year EC project, which now is half way through. One goal is to develop collaboration environments for the European aeronautical industry. The VIVACE project number is 502917, and the link to the VIVACE web pages is www.vivaceproject.com.
Initial requirements

The scope, in terms of product data, covers early to late phases of product design and product support, shared in a collaborative context. Thus, sharing product data in a collaborative context implies that different business processes are involved to create, manipulate and analyze the shared information. This means that the product data needs to be represented independently of the business processes that consume and produce the information.

Though targeting the early through late design and support phases, the actual product data being worked on, from an information representation perspective, overlaps with traditional PDM data such as: (a) part definitions and part management, (b) part structure and structure management, (c) approval and life cycle management, (d) document and document management with associated drawings, (e) person and organization assignment, and (f) change management. Hence, the purpose of the PLM Services is to provide sharing capabilities for business process independent PDM/PLM data. This does not necessarily cover all aspects of the information that comprise the product-in-focus when being used within a design process at a certain partner, but make sure that sufficient information can be exchanged and shared to the common and agreed collaboration repository.

From an implementation system perspective, the Internet serves as the infrastructure that facilitates global connectivity between commercial and in-house developed systems. Thus, ubiquitous standards using http and XML should be used as the common denominator.

Functional overview

The PLCS PLM Web Services specification should be used to provide online integration between existing PLM systems and clients. Thus, existing systems can use the PLCS PLM Web Service specification to extend their existing API to allow access by desktop clients that also implement the PLCS PLM Web Services specification. Such clients will not then be dependent on the native API of the underlying PLM system.

System to system integration can also take use of the PLCS PLM Web Services specification, using a call API to invoke access to the PLM information in another system, and also use a callback API in order to be updated upon changes in another system by subscribing to those changes.

The specification is organized into a number of functional modules, each targeting a specific area of PLM information. One module is the System Management module, which takes care of login/logout and other system specific functions. A general Query Management module provides services to search for PLM business objects and load information objects with information. Specialized queries can be found in the functional modules.

All modules share a common set of information classes, found in the Types.xsd. These common types are defined by the ISO 10303-239 (PLCS) standard, but implemented by a customized XML Schema binding being similar to the ISO 10303-28 part 2 standard. Each information entity found in the ISO 10303-239 EXPRESS schema has been automatically mapped to XML Schema definitions. Further, each information entity has an extension that is defined in a separate XML Schema definition file, the RepresentingBusinessObjects.xsd. These extend the EXPRESS definitions with additional attributes to simplify navigation from an entity that is being pointed to from another entity. The extensions do not violate the ISO 10303-239 semantics in any way, since it is only used to simplify navigation to transitive relationship entities. Each significant information entity also has a corresponding characterization defined in the RepresentingBusinessObjects.xsd.. This is a list of Boolean values for each transitive relation that is relevant for the information entity. These characterization classes are used when using the service QueryManagement::LoadPLM_object in order to define how much information should be loaded into the PLM instance.

The ISO 10303-239 standard does not define functional aspects, i.e. how to populate and which methods, or services, that should operate on the information. However, the Data Exchange Sets (DEX) that is found within the standard organization body OASIS PLCS Technical Committee, does define (to some extent) how ISO 10303-239 should be used in terms of population. Thus, the Web Service API reflects the DEX approach where applicable.

NOTE: ISO 10303-239 is intended to support data exchange between different systems. The fact that an API is used imposes some fundamental information access differences; such as for example, the PLM system that governs the information is (implicitly) part of the context for the information. Thus, in some aspects some of the context information, as found in the PLCS DEX/Capability recommendations, are not used to the same extent as in the case of data exchange.

Organization and structure of the specification
Non-functional and functional modules comprise the PLCS PLM Web Service specification. A functional module manipulates and operates specifically with PLCS information entities in accordance with the DEX and Capabilities recommendations. A non-functional module manages system specific services, or general services not constrained by the DEX and capability recommendations.

Amongst the non-functional modules the System Management WSDL is the most important, which must always be used in order to establish and manage a connection to another PLM system. Another non-functional module, which serves as one of the foundation modules, is the Query Management WSDL. This module provides services to access high-level business objects via a general search service. The Query Management WSDL also provides a general service to load a specific PLM business object with a defined set of information according to certain characteristics-templates for each PLM business object.

The functional modules are categorized according to different areas of PLM functionality and information entities, such as Part Management, Document Management, In-Life Management, Maintenance Management (design and operation), and Change Management, etc.
[image: image37.jpg]

Figure 0‑1 Functional overview, the left side reflects the categories of information entities used, based on the STEP modules used by the PLCS standard. The right side shows the functional services framework categories. Note: each business object category on the left side also has a corresponding service category (not depicted).

From a technical architecture viewpoint the PLCS PLM Web Service specification is modularized. The modules are developed according to a general framework that reflects the functional architecture. Each functional service module is implemented as a self-contained WSDL. The information entity definitions are represented in XML Schema, which are referenced/imported by each WSDL.

[image: image38.png]JOASIS

Figure 0‑2 The PLCS PLM Web Services specification contains a number of self-contained APIs, the WSDL files. Each WSDL file defines a number of services. Each service operates on input and output parameters, which are defined in a separate xsd file, which in turn reference/imports common PLCS definitions (the Types.xsd) and the WSDL also references/imports configuration files (the Filter.xsd and Header.xsd), which contains additional definitions to be used to extend the behaviour of the services.
PLCS PLM SERVICES: REFERENCE AND USAGE

The PLCS PLM Webservices delivers two specifications, one for direct calls that is implemented by the interfaced PLM system, and the Event specification that is called by the interfaced PLM system and implemented by other subscribing systems. The following chapters address the direct call specification.

Manage a user session (SystemManagement.wsdl)

In order to start a conversation between a client and the PLM system, the client needs to (successfully) authenticate. The authentication is performed by calling the SystemManagement::Authenticate, providing a username, a password and a project name. Upon successful login, the client retrieves a session token through the use of an AuthHeader instance, which is implemented as a SOAP-header. This session token needs to be managed by the client and submitted as a SOAP-header in each subsequent call. The lifetime of this session is managed by the invoked PLM system. Services are provided to override a user session (SystemManagement:.Override) and logout the session (Systemmanagement::Logout).

If the user needs to lookup available projects, there is a services, SystemManagement::GetProjects, which returns a list of ProjectInfo.

Get Projects (SystemManagement::GetProjects)

This function accommodates the function provided by many PLM systems to support project-like environments.

This is optional; if a client dynamically wants to know which the available projects are, then use this service. Note, a PLM Server might choose not to implement this in order to hide projects from unwanted access! However, other security mechanisms should deal with this, such as controlling accessing client by IP-addresses, or similar, but this is not covered by the PLCS PLM Services specification.

Some PLM systems can have projects that reference other projects, this can be implemented in the ProjectInfo class.

[image: image1.wmf]Client

PLM System

GetProjects

GetProjectsResponse

[image: image2.png]Projectinfo

‘ncinonal nformton shoit
the projec that migh b=
ity

0.0
A prjec miht have
et o e e
. rcarces fourd nove
rojec might be nked o

rojecs, barce, thre’s 2
relasonship between the two
ncis scorshs
by hat one project
ight conain oher 5
or pariors.

Figure 0‑1 The ProjectInfo class.

Initialize a session (SystemManagement::Authenticate)

[image: image3.wmf]PLM : Service1

User : System

1 : Authenticate (user , pwd ,

project)

2 : SearchForParts (id , name)

If login is OK then a new session

is acquired, the session is

returned as a SOAP header

Request

Response

Override a session (SystemManagement::OverrideSession)

This service is used to override an existing session. The service might be needed if the current session is lost, or when a client, for some reasons, wants to refresh the session, i.e. create a new session and terminate the existing one. Some PLM systems can only have one session for each user. In that case this service can be used when the user has been hijacked, which can happen if the same user is using multiple clients to interact with the PLM server.

[image: image4.wmf]Client

PLM System

OverrideSession(user,pwd,project)

OverrideSessioResponse

request

response

Logout a session

This service terminates the working session at the PLM server, i.e. clean up instances being used by the user at the PLM server and other resource de-allocation.

[image: image5.wmf]PLM : Service1

User : System

1 : Authenticate (user , pwd ,

project)

2 : Logout ()

If login is OK then a new session

is acquired, the session is

returned as a SOAP header

Request

Response

Search for Business Objects (QueryManagement.wsdl)

The QueryManagement services module provides a general Search service that returns any number of Business Objects that match a given search criteria. The different types of Business Objects depend on the implementing PLM Server.

The Search functionality is general, searching different types of Business Objects matching identifiers, names, or description text, in addition to (optional) relationships to other Business Objects, e.g. search all Part (versions) that are classified by the Class “xx”, and having definitions with the Assigned property “yy”.

For the resulting set of PLM_objects, each instance is loaded with a default set of information, e.g. identifiers. Since each type of PLM_object is defined with an implicit and explicit set of information, the client needs to explicitly define and invoke the QueryManagement::LoadPLM_object in order to retrieve additional information for a PLM_object instance.

[image: image6.wmf]Client

PLM System

#1:Set SearchTypes

#2:<optional>Set Search Objects

#3:Search(id,name,description)

SearchResponse

Parse Filter(SearchTypes,SearchObjects)

#0:Set AuthHeader

#4:Select PLM_objects

#6:<for each PLM_object>LoadPLM_object

LoadPLM_objectResponse

#5:<for each PLM_object>Set Characteristics

#0 and #1:

Set the

AuthHeadervalue

with a valid session

Select which Types

to return, e.g.

Part,

Product_as_realized,

Document

 etc.

#4, #5 and #6:

Set the

AuthHeadervalue

with a valid session

For each type of

PLM_object, set

Characteristics, e.g.

PartCharacterization

,

this defines which things

to load.

#2:

Set the

SearchObjects

in the

FilterHeaderValue

, e.g.

use a given

Class

 to

filter out PLM_objects

that are assigned to this

Class

Figure 0‑1 Invoking search and then loading each element in the result set with a defined information set.

More specific search functionality can be found in the other functional modules, e.g. querying assembly structure relationships for Part_versions, or Product_as_realized (upwards- where used, and downwards- breakdowns) are found in the Part Management and the In-LIfe Management modules respectively.

In addition to the general search service, the QueryManagement module has a service that Loads a given PLM_object with a defined set of information.

In addition to the general search service, there are a number of functions that access reference data, i.e. classifications (codes), base properties, application contexts, and organizations, etc.

Search (QueryManagement::Search)

In order to search, the client must submit a valid AuthHeader as a SOAP-header. The search uses a filter to select which types of PLM_objects that should be returned, in addition to other search criteria. The explicit search criteria can be identifier value, and/or name value, and/or description text. That is, the given set of PLM_objects to include in the search is matched by their identifier values (PLCS identification assignment).

Normally a client starts out a session by searching for a number of Business Objects to work with, then using those to further investigate other Business Objects that are related to the initial set returned by the search. Hence the Search service is used as the entry point to access high-level Business Objects in a PLM system.

In more detail, the Search input argument is composed by filter (FilterHeader), which is applied in the matching search result. The search criteria combine the filter with the given identifier, name and description values. Each of the identifier, name and description values are optional. Depending on the implementing system, different syntax can be used for wildcards, etc.

On versioned objects, i.e. Part/Part_version, Product_as_individual/Product_as_realized, Document/Document_version, Task_method/Task_method_version and Scheme/Scheme_version etc, the id, name and description searches on the master, e.g. for a Part the search will search for id, name and description values that are assigned to Part instances. Whereas the filter would be applied on the version.

The filter contains a number of sections, and since the filter is used by other services, not all sections are used by the search service. The following filter sections are used by the Search service to create the search criteria: searchTypes, searchObjects, and MaxNoOfHits.

[image: image7.wmf]Set which Types to get in the

search result

(optional) Set number max of hits

[Optional]

Set which objects should filter out the search

result, can be classification_assignment, a type of

property, a type of property and a given value

Set identifier, name and

description, these can be empty

Figure 0‑2 Client process flow when building up the Query/Search.

[image: image8.wmf]Either define just a

type of property, or a

Property and a given

value, can be of

different ValueType

Classification, use a

given classification

name(identifier)

Figure 0‑3 The FilterHeader, the searchObjects contains PropertyType and Classification and createdTo and createdFrom. These can be defined in order to further filter out which PLM_objects to return.

The result is returned as a set of PLM_objects typed into the actual class. For versioned instances, e.g. Part, Document etc, the master will be returned with the version (or versions) contained in the master. The returned instances are only loaded with a minimum set of information, but always with the identification_assignments loaded.

Code sample

// C# code snippet (similar in Java, replace foreach statement)

// import wsdl, in this example, using namespace Types for the generated WSDL code

Types.PLM_object[]
instances

= null;

Types.Information_collection

info_coll

= null;

Types.Document

document

= null;

Types.Information_collection_version info_coll_version

= null;

Types.State_definition

state_definiton

= null;

Types.Task_method

task_method

= null;

Types.Part

part

= null;

Types.Part_version

part_version

= null;

Types.Product_as_realized
par_version

= null;

Types.Product_as_individual
par

= null;

Types.Activity

activity

= null;

Types.Activity

sub_activity

= null;

Types.Digital_file

digital_file

= null;

Types.Query

query

= new Types.Query();

Types.AuthHeader

auth

= new Types.AuthHeader();

auth.Id = session; // Get the session from an earlier successful login

Types.FilterHeader
filter
= new Types.FilterHeader();

filter.searchTypes

= new Types.SearchTypes();

filter.MaxNoOfHitsnSpecified
= true;

filter.MaxNoOfHits

= 100;

// the max number of hits to be returned

//------------------- which types to search for --------------------

filter.searchTypes.Information_collection = true;

filter.searchTypes.Part

 = true;

filter.searchTypes.Task_method

= true;

filter.searchTypes.Document

= true;

filter.searchTypes.State_definition

= true;

filter.searchTypes.Information_collection
= true;

filter.searchTypes.EngineeringChangeOrder
= true;

filter.searchTypes.Product_as_realized

= true;

filter.searchTypes.Digital_file

= true;

//------ the actual search --

query.FilterHeaderValue = filter;

query.AuthHeaderValue = auth;

query.Url = "http://www.acme.com/PLCSPLMServices/Querymanagement.asmx";//fictious URL!

instances = query.Search("","","");

//---- samples of how to execute the search ------------------------

//instances = query.Search("","%1119%","");

//instances = query.Search("%_i_1121%","","");

//instances = query.Search("ID","NAME","DESCRIPTION");

if (instances != null)

{

foreach(Types.PLM_object instance in instances)

{

//Digital_file stuff

if (instance is Types.Digital_file)

{

digital_file = instance as Types.Digital_file;

}

//Product_as_realized stuff

if (instance is Types.Product_as_individual)

{

par = instance as Types.Product_as_individual ;

}

//Activity stuff

if (instance is Types.Activity)

{

activity = instance as Types. Activity;

}

//State_definition stuff

if (instance is Types.Task_method)

{

task_method = instance as Types. Task_method;

}

//State_definition stuff

if (instance is Types.State_definition)

{

state_definiton = instance as Types.State_definition;

}

//Info coll stuff

if (instance is Types.Information_collection)

{

info_coll = instance as Types. Information_collection;

}

//Document stuff

if (instance is Types.Document)

{

document = instance as Types. Document;

}

//Part stuff

if (instance is Types.Part)

{

part = instance as Types.Part;

}

}

}

Figure 0‑4 Code snippet, assuming a session ID is retrieved via a SystemManagement::Authenticate()

Load PLM instance (QueryManagement::LoadPLM_object)

A Business Object instance, (a class inheriting from PLM_object) is defined by the explicit attributes found in the ISO 10303-239 EXPRESS model, i.e. direct relations to other Business Objects, or simple types. However, a Business Object is in many cases being indirectly referred to by relational entities, i.e. implicit, or transitive. For example, a Product_version can navigate to its next version via a Product_version_relationship instance, but in ISO 10303-239 there are no attributes defined for the Product_version to navigate to the Product_version_relationship where it is used.

[image: image9.wmf]Product_version_relationship

+ relation_type : string

+ description : string

Product_version

+ id : string

+ description : string

+ relating_version

+ related_version

Figure 0‑5 Relationship entity that have attributes for the relating and related entity (UML representation of the Product_version_relationship, PLCS Module 1020).

[image: image10.wmf]Product_version_relationship

Product_version

- inv_relating

0..*

+ related

1

Figure 0‑6 A composition association is explicitly adding business semantics to the EXPRESS-based class such that the relationships where the entity is the relating entity can be navigated to from the relating entity. Note: in practice this means that there will be an attribute “inv_relating” for the relating entity containing 0, or more Product_version_relationships.

In order to easily navigate from a Business Object to other, transitive, Business Objects there is defined a CharacterizationImpl that serves as an extension that defines additional attributes for the type of the Business Object.

[image: image11.png]ProductCharacterizationimpl

CommonCharacterizatonimg)

ProduiCharscerzatonl B

| rossasrareraon EH)

date_time_sssignments

Figure 0‑7 The Product extension, all entities inheriting from Product also have their own extensions that further extend the inherited extension.

Upon retrieval of a Business Object, e.g. via a search, or via an attribute from another Business Object, the retrieved Business Object is either loaded with a certain amount of information, or is empty and only contains its system identifier (proxy). If the BusinessObject is a proxy it can be loaded via the QueryManagement::LoadPLM_object() service. If the Business Object has a defined CharacterizationImpl then such an object can explicitly be loaded with the extended attributes via the LoadPLM_object service.

Each Business Object type that have extended attributes (defined by the CharacterizationImpl) also have a corresponding class Characterization that defines which additional attributes that can be explicitly loaded.
<!-- ___

Product

___ -->

<xs:element name="ProductCharacterization" type="ProductCharacterization" abstract="true"/>

<xs:complexType name="ProductCharacterization" mixed="false">

<xs:annotation>

<xs:documentation/>

</xs:annotation>

<xs:complexContent mixed="false">

<xs:extension base="RepresentingBusinessObject">

<xs:attribute name="IdentificationAssignment" type="xs:boolean"/>

<xs:attribute name="ClassificationAssignment" type="xs:boolean"/>

<xs:attribute name="OrganizationOrPersonOrganizationAssignment" type="xs:boolean"/>

<xs:attribute name="DocumentAssignment" type="xs:boolean"/>

<xs:attribute name="Versions" type="xs:boolean"/>

<xs:attribute name="ProductVersionRelationship" type="xs:boolean"/>

<xs:attribute name="ViewDefinitionAssignment" type="xs:boolean"/>

<xs:attribute name="PropertyAssignment" type="xs:boolean"/>

<xs:attribute name="ViewDefinitionRelationship" type="xs:boolean"/>

<xs:attribute name="EffectivityAssignment" type="xs:boolean"/>

<xs:attribute name="TaskMethodVersionAssignment" type="xs:boolean"/>

<xs:attribute name="ApplyForVersions" type="ApplyForVersions"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>
Figure 0‑8 The ProductCharacterization defines which attributes that can be loaded upon demand.

<xs:element name="PartCharacterization" type="PartCharacterization"/>

<xs:complexType name="PartCharacterization" mixed="false">

<xs:annotation>

<xs:documentation/>

</xs:annotation>

<xs:complexContent mixed="false">

<xs:extension base="ProductCharacterization">

<xs:attribute name="StateDefinitionAssignments" type="xs:boolean"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>
Figure 0‑9 The PartCharacterization inherits the ProductCharacterization and adds its own extension(s).

Note, the reason for not having all Business Object instances loaded with all transitive attributes is simply because of performance reasons. Some Business Object instances might be pointed to by many other Business Object instances. Thus following references risks retrieving a large amount of the PLM System information. Moreover, in line with WS-I (Web Service Interoperability organization) it is recommended practice to not pass instances as graphs (i.e. when an instance might reoccur further down via indirect attributes, or direct attributes of another Business Object instance). Thus each Business Object instance that is retrieved via an attribute from another Business Object instance is a proxy (only having its PLM_object.key.boid (System Business Object identifier) defined), or in some cases, with a minimum of information.

The definitions for CharacterizationImpl and Characterization are found in the http://…./PLCSPLMServices/ws/xsd/RepresentingBusinessObjects.xsd file.

Code sample

// C# code snippet (similar in Java, replace foreach statement)

// import wsdl, in this example, using namespace Types for the generated WSDL code

Types.PLM_object[]
instances

= null;

Types.Part

part

= null;

Types.Part_version

part_version

= null;

Types.Product_view_definition[]

definitions

= null;

Types.BusinessObjectFilter

reprBO = new Types.BusinessObjectFilter ();
Types.Query

query

= new Types.Query();

Types.AuthHeader

auth

= new Types.AuthHeader();

auth.Id = session; // Get the session from an earlier successful login

//Part filter

Types.PartCharacterization boFilter = new Types.PartCharacterization();

boFilter.ApplyForVersionsSpecified = true;

boFilter.ApplyForVersions

 = Types.ApplyForVersions.LOAD_LATEST_VERSIONS_APPLY_ON_LATEST; // Load only the last

 //version, assigns

 // properties etc

 // to that version.

boFilter.VersionsSpecified

 = true;

boFilter.Versions

 = true;

boFilter.PropertyAssignmentSpecified = true;

boFilter.PropertyAssignment
 = true;

reprBO.characterization

= boFilter; // the reprBO contains the filter

//------ LoadPLM_object --

query.BusinessObjectFilterValue = reprBO;

query.AuthHeaderValue = auth;

query.Url = "http://www.acme.com/PLCSPLMServices/Querymanagement.asmx";//fictious URL!

instance = query.LoadPLM_object(instance.key);//the instance must have been fetched

//Part stuff

if (instance is Types.Part)

{

part = instance as Types.Part;

//Now we have a part instance that is loaded with things, documents, properties

// and things that define the Part is assigned to the View_definition, which is

// contained in the Part_versions for the Part instance

//Get the last version, should only have one version set according to the

//ApplyVersion filter attribute

part_version = part.versions[part.versions.length-1] as Part_version;//Get the last

 //version

definitions = part_version.view_definitions;

if (definitions != null){

foreach(Types.Product_view_definition definition in definitions){

//do things with the definition, get properties, documents etc.

//NOTE: each assignment business object, points to a proxy, so wee need to

// load each respective document, in order to get identifiers, attached files

// etc.

//definition.document_assignments

//NOTE: the property (Types.Assigned_property, will be loaded with sufficient

//information in order to get the property value, unit etc.

//definition.property_assignments

}

}

}

Figure 0‑10 Code snippet, assuming the instance is already fetched and contains a valid key, for example via a pervious QueryManagment::Search.

Some Business Objects must provide a reference to some other parent Business Object in order to reduce LoadPLM_object calls. These Business Objects are currently identified as the following:

· Product_version (including those inheriting), the Proxy should also load the the of_product attribute to a proxy of the owning Product (Part, Document, Product_as_individual, Information_collection, Requirement, etc.)

· Product_view_definition (including those inheriting), the proxy should be loaded with the defined_version attribute, which is a proxy of the Product_version, which in turn contains the proxy to the of_product.

· View_definition_usage (including those inheriting), the proxy should also load the relating_definition and related_definition with proxies, according to the above.

The Product, Product_version, Product_view_definition and View_definition_usage are significant Business Objects and used in all functional modules.

Retrieve Reference Data and general purpose data

In a PLM system there is a number of information entities that are referred to as Reference Data. For example, property types, units, classification (codes), View definitions, etc. The QueryManagement WSDL provides services to obtain those, in order to use them when creating/editing Business Objects, e.g. creating a new property value for a Part_version definition, or assigning a general classification for a Document_version.

GetAllClassifications (QueryManagement.wsdl)

The Querymanagement service GetAllClassifications returns all general classifications being used by the PLM System. For example, PDM Business Objects usually have a set of classifications, or codes that are assigned to Part, Document such as “Drawing document 3D”, “Drawing document 2D”, “Tool”, “Assembly” etc. In PLCS DEX the concept of classification is wider than just classification codes, the concept of class means that there exists a definition of the class that defines the semantics. Therefore, PLM Systems that use this wider view of classifications might use the Reference Data Library Web Service API to further expose, query and manage the Reference Data itself.

Each returned class contains at least the default (explicit) attributes such that it can be used directly without a call to Query::LoadPLM_object.

GetAllOrganizations (QueryManagement.wsdl)

The service GetAllOrganizations returns all organizations being used (and referred to) by the PLM System.

Each returned organization should at least be loaded with identification_assignments.

GetAllPersons (QueryManagement.wsdl)

The service GetAllPersons returns all persons being used (and referred to) in the PLM System. Many attributes are using person classes in one way, or another. The person_in_organization is comprised of the person and an organization. The accompanying organization can be omitted, or otherwise it is set to the organization where the person is assigned (employed, or similar).

Each returned person_in_organization contains a proxy to the organization, and person.

GetAllProperties (QueryManagement.wsdl)

The service GetAllProperties returns a list with Class (External_class) for each type of property being used by the PLM System. The External_class attribute name and/or id can be used to map an internal PLM System property type name/id. Such an External_class can be used when creating/updating a property value. In PLCS DEX this reflects the use of External_class assignment to the entity Assigned_property.

Each returned Class/External_class contains at least the default (explicit) attributes such that it can be used directly without a call to Query::LoadPLM_object.

GetAllUnits

The service GetAllUnits returns all units being used by (and referred to) by the PLM System.

At least the name (acronym) should be loaded for each unit, such that it can be used directly without further calls to LoadPLM_object.
GetAllViewDefinitionContexts (QueryManagement.wsdl)

The QueryManagement service GetAllViewDefinitionContexts returns all the view_definition_contexts that are used in the PLM system. A view_definition_context is used by a Product_view_definition via the attribute initial_context.

Each returned view_definition_context contains at least the default (explicit) attributes such that it can be used directly without a call to Query::LoadPLM_object.

These view_definition_context instances are used as input arguments when filtering Product related information, for example when querying Product structures for breakdowns in different views.

Some PLM Systems might not internally use the concept of Product_view_definition/View_definition_context, in which case they should at least provide with a default Product_view_definition/View_definition_context.

Code sample

//C#

//

// Sample working with PLCS PLM Reference Data and general purpose data

<TBD>
Common Business Object characteristics

Most of the PLCS Business Objects (e.g. Part/Part_version/Part_view_definition, Document/Document_version/Digital_document_definition, Activity, Work_order, Work_request etc.) are characterized by documents, properties, classification and other Business Objects via assignment relationships. The following chapters describes these.

Common characteristics are:

· Identification_assignment (PLCS Capability C001: assigning_identifiers)
· Assigned_property (PLCS Capability C079:representing_properties_numerically, C080: representing_properties_textually, C084: representing_property_value_ranges
· Document_assignment (PLCS Capability C037: referencing_documents)
· DateTime_assignment (PLCS Capability C036: assigning_date_time)
· Organization_or_person_in_organization_assignment (PLCS Capability C074: referencing_person_organization)
· Classification_assignment (PLCS Capability ??)
· Effectivity_assignment (PLCS Capability (C006): assigning_effectivity)
Identification (Identification_assignment)

All significant Business Objects have an Identification_assignment attribute (a set of Identification_assignment). An identifier is not only a value, but also has an owning organization, a classification that tells what kind of identifier it is and a Date/Time assignment.

PLM systems may have more than one identifier for a Business Object. Such additional identifiers are often referred to as aliases. In PLCS such aliases should be represented as Identification_assignment.

Note: when presenting identifiers of a Business Object in a client GUI, normally the identifier value is used in addition to the owning organization. The owning organization is the context for which the identifier is valid.

Code sample

//C#

// Sample working with common Business Object characteristics,

// Identification_assignment

// Refers to DEX Capability C001(as of December 2005)

//Significant Business Objects

Types.Part

part

= null;

Types.Part_version

part_version
= null;

//Characterization

Types.Identification_assignment[]

id_assignments

 = null;

Types.Identification_assignment

id_assignment

 = null;

Types.Organization_or_person_in_organization_assignment owning_org_pers_assignment = null;

Types.organization_or_person_in_organization_select

org_pers_sel

 = null;

Types.Organization

organization

 = null;

Types.Classification_assignment

class_assignment

 = null;

Types.External_class

ext_class

 = null;

Types.External_class_library

rdl

 = null;

string

identifier

= "";

string

type_of_identifier_id
= "";

string

type_of_identifier_name
= "";

string

type_of_identifier_description
= "";

//We have acquired a valid Part earlier, via a LoadPLM_object, or Search

//Get the identification_assignments

id_assignments = part.identification_assignments;

//If any, then loop

if (id_assignments != null)

{

for(int iID = 0 ; iID < id_assignments.Length ; iID++)

{

id_assignment = id_assignments[iID];

//Ok, lets investigate the identifier information

//#0: The identifer value, normally what is printed in a GUI

identifier = id_assignment.identifier;

//#1: The Organization that owns the identifier

owning_org_pers_assignment = id_assignment.owning_organization;

org_pers_sel = owning_org_pers_assignment.assigned_entity;

//Cast the select, it should be an organization, but the select definition

//allows for other classes

//The owning organization might be of interest to print out in a GUI

organization = (Organization)org_pers_sel.Item;

//If we need more detailed information about the owning organization

//then we need to invoke LoadPLM_object

//#2: Check which type of identifier, according to the Reference Data Library

//there could be other types of identifiers, the type of identifier can

//define a certain behaviour depending on which business process is using

//the information

class_assignment = id_assignment.type_of_identifier;

//We know that the assigned class is an External_class

ext_class

 = (External_class)class_assignment.assigned_class;

type_of_identifier_id

= ext_class.id;

type_of_identifier_name

= ext_class.name;

type_of_identifier_description
= ext_class.description;

//#2.1: Investigate the Reference Data Library (RDL)

//normally the default is the PLCS rdl

//other RDLs can be used

rdl

 = ext_class.external_source;

}

}
Figure 0‑1 Code snippet, illustrating how to work with Identification_assignment.

Properties (Assigned_property)

Many Business Objects, both significant and those that are contained by significant ones and related Business Objects can have properties assigned to them (i.e. those Business Object classes that have an attribute “property_assignments”.

An Assigned_property is the entry point for finding the property name, the value and, if applicable, the unit.

An Assigned_property contains a name of the property via the Assigned_property::Class_assignment->External_class, according to the PLCS DEX/Capability recommendations.

The property value is retrieved through the Property_value_representation which contains a set of representation_item_or_measure_item. The set of representation_item_or_measure_item contains the actual property value, which can be of different kinds, such as a string_value, a numerical_value_with_unit, or a value_range.

Code sample

//C#

//

// Sample working with common Business Object characteristics, Assigned_property

// Refers to DEX Capability C079, C080 and C084 (as of December 2005)

//Significant Business Objects

Types.Part

part

= null;

Types.Part_version

part_version
= null;

Types.Part_view_definition definition

= null;

//Characterization

Types.Assigned_property[]

assigned_properties

 = null;

Types.Assigned_property

assigned_property

 = null;

Types.Property_value_representation
property_representation
 = null;

Types.representation_item_or_measure_item[] rep_or_meas_items = null;

object

obj

 = null;

Types.Unit

unit

 = null;

Types.String_representation_item

str_repr_item

 = null;

Types.Numerical_item_with_unit

num_item_w_unit

 = null;

Types.measure_value

measure_value

 = null;

Types.any_number_value

any_number_value

 = null;

Types.length_measure

length_measure

 = null;

Types.plane_angle_measure

plane_angle_measure
 = null;

Types.any_string_value

any_string_value

 = null;

Types.Value_range
value_range

 = null;

Types.Classification_assignment

class_assignment

 = null;

Types.External_class

ext_class

 = null;

Types.External_class_library

rdl

 = null;

string

property_id

= "";

string

property_name

= "";

string

property_description
= "";

string

property_value

= "";

string

nameValueUnit

= "";//For GUI

string

lowerValueUnit

= "";

string

upperValueUnit

= "";

//We have acquired a valid Part earlier, via a LoadPLM_object, or Search

//Get the identification_assignments

assigned_properties = definition.property_assignments;

//If any, then loop

if (assigned_properties != null)

{

for(int iProperty = 0 ; iProperty < assigned_properties.Length ; iProperty++)

{

assigned_property = assigned_properties[iProperty];

//#0: Get the property name, normally the property ID, and/or name,

//is presented in a GUI

//Name of the property is contained as a Reference Data Library entry

// (External_class)

// This is according to the PLCS DEX/Capabilities

class_assignment
= assigned_property.classification_assignment;

ext_class

= (Types.External_class)class_assignment.assigned_class;

property_id

= ext_class.id;

property_name

= ext_class.name;

property_description= ext_class.description;

//#1: Get the property value representation

property_representation = assigned_property.property_representation;

//#2: Check which kind of property value

//The property_representation contains a set of representation_or_measure_items

// so assuming we only work with one property value, get the first element

// and check the underlying property value for:

// numerical_value_with_unit, string_representation_item, or value_range

rep_or_meas_items = property_representation.items;

if (rep_or_meas_items != null)

{

obj = rep_or_meas_items[0].Item;

//#2.1: string value

if (obj is Types.String_representation_item)

{

str_repr_item = obj as Types.String_representation_item;

//get the actual value, this is what should be presented in a GUI

property_value = str_repr_item.string_value;

//Present the property name, value and unit

nameValueUnit = property_name + " = " + property_value;

}

//#2.2: numerical value (with unit)

else if(obj is Types.Numerical_item_with_unit)

{

num_item_w_unit
 = obj as Types.Numerical_item_with_unit;

measure_value
 = num_item_w_unit.value_component;

//The measure_value can be either a:

//- any_number_value
(simple values, i.e. double, int etc.)

//- any_string_value
(a string value)

//- length_measure

(a length measure)

//- plane_angle_measure (an angle)

if (measure_value.Item is Types.any_number_value)

{

any_number_value = measure_value.Item as Types.any_number_value;

property_value = any_number_value.Value.ToString();

}

else if (measure_value.Item is Types.any_string_value)

{

any_string_value = measure_value.Item as Types.any_string_value;

property_value = any_string_value.Value.ToString();

}

else if (measure_value.Item is Types.length_measure)

{

length_measure = measure_value.Item as Types.length_measure;

property_value = length_measure.Value.ToString();

}

else if (measure_value.Item is Types.plane_angle_measure)

{

plane_angle_measure = measure_value.Item as Types.plane_angle_measure;

property_value = plane_angle_measure.Value.ToString();

}

//Get the unit

unit = num_item_w_unit.unit;

//Present the property name, value and unit

nameValueUnit = property_name + " = " + property_value + " (" + unit.name + ")";

}

//#2.3: value range

else if(obj is Types.Value_range)

{

value_range = obj as Types.Value_range;

//#2.3.1: Get the lower limit

num_item_w_unit
 = value_range.lower_limit;

measure_value
 = num_item_w_unit.value_component;

//The measure_value can be either a:

//- any_number_value
(simple values, i.e. double, int etc.)

//- any_string_value
(a string value)

//- length_measure

(a length measure)

//- plane_angle_measure (an angle)

if (measure_value.Item is Types.any_number_value)

{

any_number_value = measure_value.Item as Types.any_number_value;

property_value = any_number_value.Value.ToString();

}

else if (measure_value.Item is Types.any_string_value)

{

any_string_value = measure_value.Item as Types.any_string_value;

property_value = any_string_value.Value.ToString();

}

else if (measure_value.Item is Types.length_measure)

{

length_measure = measure_value.Item as Types.length_measure;

property_value = length_measure.Value.ToString();

}

else if (measure_value.Item is Types.plane_angle_measure)

{

plane_angle_measure = measure_value.Item as Types.plane_angle_measure;

property_value = plane_angle_measure.Value.ToString();

}

//Get the unit

unit = num_item_w_unit.unit;

//Present the property name, value and unit

lowerValueUnit = property_value + " (" + unit.name + ")";

//#2.3.1: Get the upper limit

num_item_w_unit
 = value_range.upper_limit;

measure_value
 = num_item_w_unit.value_component;

//The measure_value can be either a:

//- any_number_value
(simple values, i.e. double, int etc.)

//- any_string_value
(a string value)

//- length_measure

(a length measure)

//- plane_angle_measure (an angle)

if (measure_value.Item is Types.any_number_value)

{

any_number_value = measure_value.Item as Types.any_number_value;

property_value = any_number_value.Value.ToString();

}

else if (measure_value.Item is Types.any_string_value)

{

any_string_value = measure_value.Item as Types.any_string_value;

property_value = any_string_value.Value.ToString();

}

else if (measure_value.Item is Types.length_measure)

{

length_measure = measure_value.Item as Types.length_measure;

property_value = length_measure.Value.ToString();

}

else if (measure_value.Item is Types.plane_angle_measure)

{

plane_angle_measure = measure_value.Item as Types.plane_angle_measure;

property_value = plane_angle_measure.Value.ToString();

}

//Get the unit

unit = num_item_w_unit.unit;

//Present the property name, value and unit

upperValueUnit = property_value + " (" + unit.name + ")";

//Present lower and upper limits

nameValueUnit = property_name + " [from:] " + lowerValueUnit + " [to:] " + upperValueUnit;

}

}

}

}
Figure 0‑2 Code snippet, getting the property name, value and unit from an Assigned_property.

Document assignments (Document_assignment)

Documents (Document_versions) can be assigned to Business Objects. For Business Objects inheriting from the Product class, Document_Versions are assigned to a Product_view_definition instance assigned to the Product_version. Otherwise a Document_version can be assigned via the attribute document_assignments ([BusinessObjectClass].document_assignments).

The assignment itself contains further information specific to the relation between the Business Object that is “documented” and the Document_version. Usually a Document_assignment instance means that the assigned_document is a description, or a link containing information for the documented Business Object.

Code sample

//C#

//

// Sample working with common Business Object characteristics, Document_assignment

// Refers to DEX Capability C037 (as of December 2005)

//Significant Business Objects

Types.Part

part

= null;

Types.Part_version

part_version
= null;

Types.Part_view_definition definition

= null;

//Characterization

Types.Document_assignment[]

document_assignments
 = null;

Types.Document_assignment

document_assignment

 = null;

Types.Document

 document

 = null;

Types.Document_version

document_version

 = null;

Types.assigned_document_select

assigned_document_sel
 = null;

Types.Identification_assignment

id_assignment

 = null;

string

masterID

 = "";

string

masterName

 = "";

string

versionID

 = "";

string

docAssignmentIDNameRev = "";

//We have acquired a valid Part earlier, via a LoadPLM_object, or Search

//Get the Document_assignments

document_assignments = definition.document_assignments;

//If any, then loop

if (document_assignments != null)

{

for(int iDoc = 0 ; iDoc < document_assignments.Length ; iDoc++)

{

document_assignment = document_assignments[iDoc];

//#0: Get the Document_version

//document_assignment.

//#1: Load more information for the Document_version instance

//NOTE: the client might use a local cache that manage loaded instances

// thus, reducing LoadPLM_object calls, if having such a cache then

// the client could fetch the loaded Document_version instance from the

// cache given the proxy key from the retreived

// instance of document_assignment->document_version

assigned_document_sel = document_assignment.assigned_document;

//We assume that the describing thing is a Document_version

if (assigned_document_sel.Item is Types.Document_version)

{

document_version = assigned_document_sel.Item as Types.Document_version;

//We need some information, since the contained Document_version instance

// is only a Proxy, for presentation purposes we also would like to

// present the Identifiers and name for the actual instance of the Document

// that is the master of the

// Document_verson instance. NOTE: by not defining any BusinessRepresentation

// filter when LoadPLM_object, we will get a default set of information,

//which always should include at least the identifiers

//(which are the only ones we're interested in here)

document = query.LoadPLM_object(document_version.of_product.key);

document_version = query.LoadPLM_object(document_version.key);

//The master id (document)

id_assignment = document.identification_assignments[0];

masterID
 = id_assignment.identifier;

masterName
 = document.name;

//The version id (document_version)

id_assignment = document_version.identification_assignments[0];

versionID
 = id_assignment.identifier;

//Compose the presentation string for the client GUI

docAssignmentIDNameRev = "Role: " + document_assignment.role +

" Document: " + masterID + ", " + masterName + " (rev: " + versionID + ")";

}

}

}
Figure 0‑3 Code snippet, getting assigned documents.

Date and time assignments (DateTime_assignment)

A Business Object can have general date, or time assignments, for example “when created”, etc. The meaning of a DateTime assignment is determined by a classification assignment which contains an External_class.

Code sample

//C#

//

// Sample working with common Business Object characteristics, DateTime_assignment

// Refers to DEX Capability (as of December 2005)

Figure 0‑4 Code snippet, getting Date/Time assignments.

Person and organization assignments (Organization_or_person_in_organization_assignment)

A Business Object can hava organizations, or persons assigned via a set of Organization_or_person_in_organization_assignments.

Code sample

//C#

//

// Sample working with common Business Object characteristics,

//

Organization_or_person_in_organization_assignment

// Refers to DEX Capability (as of December 2005)

Figure 0‑5 Code snippet, getting person/Organization assignments.

Classification assignments (Classification_assignment)

A Business Object can be assigned to one, or more, classifications via Classification_assignment instances. Such a Classification assignment either contains a Class instances (representing classifications in the PLM system), or External_class instances (representing Classifications that are defined in a Reference Data Library.

Code sample

//C#

//

// Sample working with common Business Object characteristics, Classification

// Refers to DEX Capability (as of December 2005)

Figure 0‑6 Code snippet, getting classification assignments.

Effectivity assignments (Effectivity_assignment)

A Business Object can be assigned with Effectivity instances via Effectivity_assignment instances. An Effectivity_assignment defines when a Business Object is valid in time given a certain Effectivity mode, e.g. “actual”, or “planned”.

Code sample

//C#

//

// Sample working with common Business Object characteristics, Effectivity

// Refers to DEX Capability (as of December 2005)

Figure 0‑7 Code snippet, getting effectivity assignments.

Functional modules, working with Business Objects

Significant Business Objects can be created, updated and queried for specific attributes and relationships. Each significant Business Object services for: create, update and queries, are defined as a functional module. For example, the Business Objects Part and Part_version have services for create, update and some additional queries defined in the functional module “PartManagement.wsdl”.

In general each functional module addresses a set of Business Objects (nouns) and a number of services (verbs) that operate on these. The standard verbs are: Create, Remove and Update. Other more specific verbs (only used for few Business Objects) are for example: GetAssemblyStructure and WhereUsed.

The verbs Create, Remove and Update are used in conjunction with the defined characteristics for a noun (Business Object), e.g. CreatePart is defined by which attributes are defining the Part, but with some limitations. Some of the verbs require a header(s) which define specific behavior of a verb in combination with a noun. For example the Update verb needs to have a specific header for each type of noun used, UpdatePart_version requires an Updatepart_versionHeader.

[image: image12.wmf]Header(s)

Verb

Noun

AuthHeader,

UpdatePartVersionHeader

Update

Part_version

AuthHeader

Create

Part_version

<Partmanagement.wsdl>

CreatePart_version

<Partmanagement.wsdl>

UpdatePart_version

Figure 0‑1 The anatomy and general composition of services found in the functional modules: Business Objects in combination with verbs constitute various services.

The following chapters describe the functional modules.

Working with Parts (PartManagement.wsdl)

The functional module PartManagement.wsdl contains explicit services for creating, updating and querying Part information.

The concept of a “Part” is comprised by “Part_version” and “Part_view_definition”. In PLCS, properties, documents and other significant Business Objects that define and characterize a “Part” are assigned to a Part_view_definition, which in turn is assigned to a specific Part_version of a Part. The Part (the Part master) is assigned with identification, via identification_assignment, and a name, via the explicit attribute “name”. The set of part_versions that constitutes the Part, each of them have identification_assignments that denote the Part_version identification.

The basic functionality that the PartManagement.wsdl provides, is:

· CreatePart, creates the first version

· UpdatePart, add characteristics on the Part instance

· CreatePartVersion, create a new Part_version

· UpdatePartVersion, add characteristics on the Part_version instance

· GetAssemblyStructure, get a breakdown structure

· WhereUsed, get the Next_assembly_usage instances where a given Part_version is a child

· CreateNext_assembly_usage, create a new assembly_relationship (parent, child)

· UpdateNext_assembly_usage, change effectivity and other characteristics for a Next_assembly_usage

· RemoveNext_assembly_usage, removes (deactivate) a Next_assembly_usage instance (but not removing the child and parent Part_versions)

Create Part (CreatePart)

Creating a Part also creates the first Part_version. A Part must have at least one Part_version.

[image: image13.png]Product

Identification, name and description

There must be an Identification_assignment submitted for the Part instance (Part::identification_assignments). The identification_assignment instance should have the identifier value set (Identification_assignment::identifier). The owning organization must also be set (Identification_assignment::owning_organization::organization_or_person_in_organization_assignment::item) in order to define in which (organizational) context the identifier is defined.

The name is set using the explicit attribute name (Part.name).

The description is set using the explicit attribute description (Part.description).

Classification

Not used. Classification should be assigned to the Part_version.

Version

The Part instance must have one Part_version instance submitted (Part.versions). The version is created using the explicit attribute id (Part_version.id).

Additional characterization can be submitted, c.f. 0 Create Part version. When creating a new version all submitted characterization information is considered being new, in contrast to Updating a Part_version in which case the PLM System needs to consolidate existing information with the information that is submitted.

Code sample

//C#

//

// Sample working with Parts, CreatePart

// Refers to DEX Capability (as of December 2005)

Figure 0‑1 Code snippet, creating a Part and its first version.

Update Part (UpdatePart)

A Part can be updated according to the UpdatePartHeader definition.

Code sample

//C#

//

// Sample working with Parts, UpdatePart

// Refers to DEX Capability (as of December 2005)

<TBD>
Create Part version (CreatePart_version)

A new Part_version instance is created with the CreatePart_version service, which adds the new version as the last Part_version. The version must submit an identifier. The version identifier will implicitly be defined in the context of the Part master identifier. The new version can have characteristics, which will then be added to the new version. If no characteristics, other than the version identifier, are submitted, then the new version will not contain any characteristics.

[image: image14.png]Product version

— eV —F

Identification

The new version will be created using the explicit attribute id (Part_version.id).

If any Identification_assignment instance are submitted, these will be ignored. Use the service UpdatePart_version for adding Identification_assignments.

Part (master)

The explicit attribute of_product (Part_version.of_product) must be set with an instance of Part, which must have its key set to a value that corresponds to an instance managed in the PLM system (Part.key.Boid (System Business Object identifier)).

Classification

A Part_version instance can be assigned with one or more classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Date/time assignments

A Part_version instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Organization/Person assignments

A Part_version instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Product_version_relationship

Not used.

Part view definition

A Part_version use a Part_view_definition for assigning defining characteristics, such as Document (version) that represents/describes the Part_version. The submitted Part_view_definition will be created, any number of Part_view_definitions can be assigned to a Part_version, each representing a specific application domain and life-cycle stage.

The explicit attribute Part_view_definition.initial_context must be set with an existing View_definition_context instance.

Properties

Properties that define a Part_version should be submitted as Assigned_property with the Part_view_definition. An Assigned_property instance must be set with the attribute Assigned_property.classification_assignment which should contain a Class instance being loaded with the key/Boid (System Business Object identifier) to an existing Property_type, which can be found by using the service QueryManagement.GetAllBaseProperties. The actual property value can be either a numerical_value_with_unit, a string_representation, or a value_range. If using a numerical_value_with_unit, or a value_range, then a unit must be submitted which exists in the PLM system. All used units can be found using the service QueryManagement.GetAllUnits.

Document assignments

Document_versions that represent, or describe, a Part_version are assigned to a Part_view_definition instance via the attribute part_view_definition.document_assignments. The submitted Document_assignment must have its attribute Document_assignment.assigned_document set with an assigned_document_select that is loaded with a Document_version instance which have its key/Boid (System Business Object identifier) set to an existing Document_version.

Task method version assignments

Not used, creating a relation (Task_method_version_relationship) is done when creating the Task_method_version via the MaintenanceManagement.CreateTask_method_version service.

View definition relationship

Not used.

Information collection versions

Not used. Creating a relation is done when creating the Information_collection_version via the InformationCollectionManagement.CreateInformation_collection_version service.

Applied state definition assignments

Not used, creating a relation is done when creating the State_definition via the MaintenanceManagement.CreateState_definition service.
Code sample

//C#

//

// Sample working with Parts, CreatePart_version

// Refers to DEX Capability (as of December 2005)

<TBD>
Update Part version (UpdatePart_version)

<TBD>
Code sample

//C#

//

// Sample working with Parts, UpdatePart_version

// Refers to DEX Capability (as of December 2005)

<TBD>
Get Assembly Structure (GetAssemblyStructure)

The service GetAssemblyStructure retrieves a breakdown structure given a certain view and effectivity date/time for a given Part_version instance. The returned assembly structure is represented by a set of Next_assembly_usage instances. If the given level of breakdown is set to above 1. Each of the Next_assembly_usage instances are loaded with the explicit attribute Next_assembly_usage.related_view which represents the child part (via its Part_view_definition). Each of the child Part_view_definitions are loaded as proxy instances, but also loaded with a proxy to the Part_version via the Part_view_definition.defined_version (which in turn is loaded with the Part via the Part_version.of_product). However, if the number of breakdown is set to above 1 and a related_view is itself an assembly with child part(s) then the related_view instance will have a set of Next_assembly_usage instances set in the attribute Part_view_definition.view_definition_relationships.

The Next_assembly_usage class is a Business Object that can be further loaded with additional characteristics using the QueryManagement::LoadPLM_object. A Next_assembly_usage instance can be assigned with properties, documents, effectivity and other Business Object instances defined in other functional modules.

[image: image15.wmf]Parent Part

Child Part

Child Part

Child Part

Version

Def

Version

Def

Version

Def

Version

Def

Next_assembly_usage

Next_assembly_usage

Next_assembly_usage

Parent Part

Child Part

Child Part

Child Part

Version

Def

Version

Def

Version

Def

Version

Def

Next_assembly_usage

Next_assembly_usage

Next_assembly_usage

Child Part

Child Part

Version

Def

Version

Def

Version

Def

Next_assembly_usage

Next_assembly_usage

Next_assembly_usage

One level breakdown

structure

Two level breakdown

structure

Figure 0‑2 Assembly structure, if more than one level of breakdown is defined each child part will (recursively) breakdown.

Setting up the GetAssemblyStructure call

An assembly structure relates a parent Part with a child Part via a Part_view_definition instance and a part_version for the parent and child Part. Each assembly structure relationship is represented by a Next_assembly_usage instance.

Since a Part_version might have more than one Part_view_definition the service invocation must define which Part_view_definition should be used. This is done by submitting the FilterHeader with the lifecycle domain and lifecycle stage attributes. The number of breakdown is defined by setting the attribute FilterHeadervallue.numberOfBreakdown. Further, the FilterHeaderValue.effectivityDate and effectivityMode are used to define the timeframe for which the resulting assembly structure should be valid. Note: both effectivtyDate and effectivityMode are optional. If they are not defined the default values are the current date/time, and actual.

Each returned Next_assembly_usage instance is by default loaded with the explicit attribute Next_assembly_usage.location_indicator that denotes an occurrence identifier.

Code sample

//C#

//

// Sample working with Parts, GetAssemblyStructure

// Refers to DEX Capability C003 (as of December 2005)

//

//Significant Business Objects

Types.Part

part

= null;

Types.Part_version

part_version

= null;

Types.Part_view_definition

definition

= null;

Types.Part

child_part

= null;

Types.Part_version

child_part_version = null;

Types.Part_view_definition

child_definition
= null;

Types.Next_assembly_usage[]

components

= null;

Types.Next_assembly_usage[]

sub_assembly

= null;

Types.FilterHeader

filter

= null;

string

itemOccurenceID

= "";

Types.PartManagement

PartMgm

 = null;

Types.AuthHeader

 auth

 = new Types.AuthHeader();

auth.Id = session; // Get the session from an earlier successful login

//Set the filter

filter

 = new Types.FilterHeader();

filter.NoOfBreakdownSpecified = true;

filter.NoOfBreakdown

 = 2; //We go for two levels, if there are.

//Create the Web Service connection

PartMgm = new Types.PartManagement();

PartMgm.AuthHeaderValue = auth;

PartMgm.FilterHeaderValue = filter;

//Fictious URL

PartMgm.Url = http://www.acme.com/PLCSPLMServices/DocumentManagement/DocumentManagement.asmx;
// We assme there is a domain and lifecycle stage with this name, otherwise

// we could investige the Part_view_definitions for a Part_version

// ,or we could fetch View_definition_centext via

// QueryManagement.GetAllApplication_contexts

filter.ApplicationDomain
 = "Mechanical Design";

filter.LifecycleStage

 = "Design";

filter.effectivityDate
 = DateTime.Now; //this can be any date

filter.effectivityMode
 = Types.EffectivityMode.emActual;

components

 = PartMgm.GetAssemblyStructure(part_version);

if (components != null)

{

foreach(Types.Next_assembly_usage component in components)

{

//The inital/default set of information for the component

// is location (the occurens id)

itemOccurenceID = component.location_indicator;

//Present the itemOccurenceID in the GUI

//The component instance can be loaded in order to present

// useful information, such as properties, documents etc.

// i.e. LoadPLM_object(component), then

// component.identification_assignments etc.

child_definition = (Part_view_definition)component.related_view;

//Get the child part, part_version, via the (related) definition

child_part_version = (Types.Part_version)child_definition.defined_version;

child_part

 = (Types.Part)child_part_version.of_product;

//Get more information about each child Part/Part_version

// depending on what to be presented, use a client cache

// if the Part/part_version have already been used in order

// to reduce number of LoadPLM_object calls

// for eaxmple Cache.GetLoadedInstance(part_version), then present identifiers etc.

//Check if the child contains a sub structure

// Can be a recursive call, this is only for demonstrating purposes

if (child_definition.view_definition_relationships != null)

{

foreach(Types.Next_assembly_usage sub_structure in child_definition.view_definition_relationships)

{

//Do things with the sub_strucure

}

}

}

Figure 0‑3 Code snippet, retrieving two levels of assembly structure, assuming that the part_version is fetched earlier.

Where Used (WhereUsed)

The service WhereUsed retreives a set of Next_assembly_usage instances if the given Part (Part_version) related to other Parts (Part_versions) as a related_view given the submitted effectivty, effectivityMode and application_context.

The returned set of Next_assembly_usage instances are populated as described in chapter 0, except that the submitted Part (via the Part_version.Part_view_definition) is set as the related_view for all returned Next_assembly_usage instances.

Code sample

//C#

//

// Sample working with Parts, WhereUsed

// Refers to DEX Capability C003 (as of December 2005)

//Significant Business Objects

Types.Part

part

= null;

Types.Part_version

part_version

= null;

Types.Part_view_definition

definition

= null;

Types.Part

child_part

= null;

Types.Part_version

child_part_version = null;

Types.Part_view_definition

child_definition
= null;

Types.Next_assembly_usage[]

components

= null;

Types.Next_assembly_usage[]

sub_assembly

= null;

Types.FilterHeader

filter

= null;

string

itemOccurenceID
= "";

Types.PartManagement

PartMgm

= null;

Types.AuthHeader

auth

= new Types.AuthHeader();

auth.Id = session; // Get the session from an earlier successful login

//Set the filter

filter

= new Types.FilterHeader();

filter.NoOfBreakdownSpecified = true;

filter.NoOfBreakdown

 = 2; //We go for two levels, if there are.

//Create the Web Service connection

PartMgm

 = new Types.PartManagement();

PartMgm.AuthHeaderValue = auth;

PartMgm.FilterHeaderValue = filter;

//Fictious URL

PartMgm.Url =http://www.acme.com/PLCSPLMServices/DocumentManagement/DocumentManagement.asmx;

// We assme there is a domain and lifecycle stage with this name, otherwise

// we could investige the Part_view_definitions for a Part_version

// ,or we could fetch View_definition_centext via

// QueryManagement.GetAllApplication_contexts

filter.ApplicationDomain
 = "Mechanical Design";

filter.LifecycleStage

 = "Design";

filter.effectivityDate

 = DateTime.Now; //this can be any date

filter.effectivityMode

 = Types.EffectivityMode.emActual;

components

 = PartMgm.WhereUsed(child_part_version);

if (components != null)

{

foreach(Types.Next_assembly_usage component in components)

{

//The inital/default set of information for the component

// is location (the occurens id)

itemOccurenceID = component.location_indicator;

//Present the itemOccurenceID in the GUI

//The component instance can be loaded in order to present

// useful information, such as properties, documents etc.

// i.e. LoadPLM_object(component), then

// component.identification_assignments etc.

definition = (Part_view_definition)component.relating_view;

//Get the child part, part_version, via the (related) definition

part_version = (Types.Part_version)definition.defined_version;

part

 = (Types.Part)part_version.of_product;

//Get more information about each child Part/Part_version

// depending on what to be presented, use a client cache

// if the Part/part_version have already been used in order

// to reduce number of LoadPLM_object calls

// for eaxmple Cache.GetLoadedInstance(part_version),

// then present identifiers etc.

}

}
Figure 0‑4 Code snippet, getting the parent assembly structure relationships, assuming the child_part_version is fetched earlier.

Create Next assembly usage (CreateNext_assembly_usage)

The CreateNext_assembly_usage service creates a Next_assembly_usage instance given the parent and child Parts via the attributes Next_assembly_usage.relating_view (the parent) and Next_assembly_usage.related_view (the child).

The Next_assembly_usage instance will be created with an effectivty that is defined with a start date set to the timestamp at the moment of creation and no end date.

The attribute Next_assembly_usage.location_indicator is used to create the occurrence identifier.

The attribute Next_assembly_usage.quantity (optional) is used when the created Next_assembly_usage instance should represent a quantified instance/occurrence, for example “3.4 metre”, or “3 pieces”. If submitting a quantity, the unit must exist in the PLM system.

[image: image16.png]Assembly_component_relationship

Code sample

//C#

//

// Sample working with Parts, CreateNext_assembly_usage

// Refers to DEX Capability (as of December 2005)

Figure 0‑5 Code snippet, creating a Next_assembly_usage instance, assuming the child and parent Part_view_definitions have been retrieved earlier.

Update Next assembly usage (UpdateNext_assembly_usage)

The UpdateNext_assembly_usage service is used to add additional information that characterize a Next_assembly_usage instance, e.g. with Properties, document and other Business Object assignments according to the defined characterization definition of Next_assembly_usage.

Code sample

//C#

//

// Sample working with Parts, UpdateNext_assembly_usage

// Refers to DEX Capability (as of December 2005)

Figure 0‑6 Code snippet, updating an existing Next_assembly_usage instance.

Remove Next assembly usage (RemoveNext_assembly_usage)

The RemoveNext_assembly_usage service is used to deactivate an assembly structure relationship between a child and parent Part. The submitted Next_assembly_usage instance must exist in the PLM system.

Code sample

//C#

//

// Sample working with Parts, RemoveNext_assembly_usage

// Refers to DEX Capability (as of December 2005)

Figure 0‑7 Code snippet, removing a Next_assembly_usage instance.

Working with Documents (DocumentManagement.wsdl)

The Document Management module provides services that create, edit/update Document/Document_version and Digital_file instances and those Business Objects that are related by these.

Other Business Objects usually relates to Document_versions and not directly to the Document instance. For example, document assignments relates a Business Object, e.g. Part_view_definition to a Document_version.

A Document contains meta-data such as Identification_assignments that identifies the Document(master). A Document has one or more Document_versions that are characterized by the version identifiers, properties, classifications, organization/person assignments and date/time assignments. A Document_version can be represented/described with digital files that are assigned to the Digital_document_definition of a Document_version.

A Document_version can be checked-in and checked-out. Different business processes can govern which rules operate on a Document/Document_version during check-in/out activities. For example, a PLM system might impose a rule that creates a new Document_version when being checked-out (copying some characteristics from the previous version to the new). However, independent of what rules are implemented, a checked-out Document_version instance should only be allowed to be updated by the user who checked-out the Document_version. Also, in order to update a Document_version, a user needs to explicitly check-out the Document_version instance.

Create Document (CreateDocument)

Creating a Document also creates the first Document_version. A Document must have at least one Document_version.

Identification, name and description

There must be an Identification_assignment submitted for the Document instance (Document::identification_assignments). The identification_assignment instance should have the identifier value set (Identification_assignment::identifier). The owning organization must also be set (Identification_assignment::owning_organization::organization_or_person_in_organization_assignment::item) in order to define in which (organizational) context the identifier is defined.

The name is set using the explicit attribute name (Document.name).

The description is set using the explicit attribute description (Document.description).

[image: image17.png]Product

Classification

Not used. Classification should be assigned to the Document_version.

Version

The Document instance must have one Document_version instance submitted (Document.versions). The version is created using the explicit attribute id (Document_version.id).

Additional characterization can be submitted, c.f. 0 Create Document version. When creating a new version all submitted characterization information is considered being new, in contrast to Updating a Document_version in which case the PLM System needs to consolidate existing information with the information that is submitted.

Code sample

//C#

//

// Sample working with Documents, CreateDocument

// Refers to DEX Capability (as of December 2005)

Figure 0‑1 Code snippet, creating a Document and the first version with characterization information submitted. All Business Objects being referred to in the different relationships/assignments already exists and must have been retrieved such that the key/Boid (System Business Object identifier) is corresponding to the internal instance at the PLM system.

Create Document version (CreateDocument_version)

A new Document_version instance is created with the CreateDocument_version service, which adds the new version as the last Document_version. The version must submit an identifier. The version identifier will implicitly be defined in the context of the Document master identifier. The new version can have characteristics, which will then be added to the new version. If no characteristics, other then the version identifier, are submitted, then the new version will not contain any characteristics.

[image: image18.png]Product version

Identification

The new version will be created using the explicit attribute id (Document_version.id).

If any Identification_assignment instance are submitted, these will be ignored, -use the service UpdateDocument_version for adding Identification_assignments.

Document (master)

The explicit attribute of_product (Document_version.of_product) must be set with an instance of Document, which must have its key set to a value that corresponds to an instance managed in the PLM system (Document.key.Boid (System Business Object identifier)).

Classification

A Document_version instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Date/time assignments

A Document_version instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Organization/Person assignments

A Document_version instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Product_version_relationship

Not used.

Digital document definition

A Document_version use a Digital_document_definition for assigning defining characteristics, such as digital files that represents/describes the Product_version. The submitted Digital_document_definition will be created. Normally a Product_version will only have one such definition. PLM systems that do not have an explicit representation of definitions for a Document_version can provide a default Digital_document_definition.

Properties

Properties that defines a Document_version should be submitted as Assigned_property with the Digital_document_definition.

Files

Not used, files (Digital_file) instances are created using the DocumentManagement.CreateDigital_file service.

Code sample

//C#

//

// Sample working with Documents, CreateDocument_version

// Refers to DEX Capability (as of December 2005)

Figure 0‑2 Code snippet, updating an existing Document with a new version that will be attached as the latest version.

Update Document (UpdateDocument)

An existing Document, can be updated using the service UpdateDocument, for example, when needing to add Identification_assignments (aliases). However, creating new versions is done using the CreateDocument_version service.

Update Document version (UpdateDocument_version)

An existing Document_version can be updated with additional characteristics using the service UpdateDocument_version. The service behaves in a similar way to that described in the CreateDocument_version service, except that special consideration needs to be taken by the PLM system concerning the information that is submitted and already exists in terms of consolidation. Normally information that is submitted and is not already related in the PLM system should be created. However, when it comes to match submitted information to the existing information in the PLM system there might be different rules for what to do, e.g. if a submitted version in the PLM system has a number of relations/assignments that are not found in the submitted version, should those then be deleted/removed?

Create Digital File (CreateDigital_file)

A Document_version instance can be assigned with a Digital_file using the service CreateDigital_file. A Digital_file is always created in the context of an existing Document_version instance.

[image: image19.png]

Identification

The file name is set using the Digital_file.file_location_identifications attribute. Only one file_location_identification is used using an External_item_identification instance. The file name is the set using the External_item_identification.external_id.

Defined Document_version

The CreateDigital_file service use the input parameter definition to assign the Digital_file instance with a Document_version instance. The definition parameter must have the attribute Digital_document_definition.defined_version set to an existing Document_version instance.

File content

The actual file is set using the input parameter the_file, which is an array of Bytes. The Digital_file instance contains the metadata for the actual file and the actual file is managed by the PLM System file-vault.

Code sample

//C#

//

// Sample working with Documents, CreateDigital_file

// Refers to DEX Capability C005 (as of December 2005)

//Significant Business Objects

Types.Document

document

= null;

Types.Document_version

document_version
= null;

Types.Digital_document_definition definition

 = null;

Types.Digital_file

digital_file

= null;

Byte[]

content

= null;

System.IO.FileStream

fs

= null;

Types.DocumentManagement

DocumentMgm

= null;

string

fileName

= "";

string

fileLocation

= "";

Types.AuthHeader

auth

= new Types.AuthHeader();

auth.Id = session; // Get the session from an earlier successful login

//Create the Web Service connection

DocumentMgm = new Types.DocumentManagement();

DocumentMgm.AuthHeaderValue = auth;

//Fictious URL

DocumentMgm.Url = http://www.acme.com/PLCSPLMServices/DocumentManagement/DocumentManagement.asmx;
//We have acquired a valid Document_version earlier, via a LoadPLM_object,

//CreateDocument, or Search

//Create the definition instance

definition = new Types.Digital_document_definition();

definition.defined_version = document_version;

//The acual file is known, i.e. a file on the client disc space

//The fileLocation is the path to the directory where the file resides, e.g. c:\tmp\cache\drawings

//The fileName e.g. drawing.stp

fs = new FileStream(Path.Combine(fileLocation,fileName),FileMode.Open,FileAccess.Read);

content

= new Byte[fs.Length];

fs.Read(content,0,(int)fs.Length);

//Create the Digital_file, only need to set the file name

digital_file = new Types.Digital_file();

digital_file.file_location_identifications = new Types.External_item_identification[1];

digital_file.file_location_identifications[0] = new Types.External_item_identification();

digital_file.file_location_identifications[0].external_id = file_name;

DocumentMgm.CreateDigital_file(ref digital_file,definition,content);

//The digital_file is now containing a valid Key/Boid (System Business Object identifier), and the file size.
Figure 0‑3 Code snippet, creating a Digital_file that is assigned to an existing Document_version instance.

Download Digital File (DownloadFile)

The service DownloadFile retrieves the actual file content for an existing Digital_file instance. The service returns an array of Bytes, which can be stored as a file on the client disc space.

The input parameter digital_file needs to have the key/Boid (System Business Object identifier) set to a digital_file instance that exists in the PLM system.

Code sample

//C#

//

// Sample working with Documents, DownloadFile

// Refers to DEX Capability C005 (as of December 2005)

//Significant Business Objects

Types.Document

document

= null;

Types.Document_version

document_version= null;

Types.Digital_document_definition definition
 = null;

Types.Digital_file

digital_file

= null;

Byte[]

 content

= null;

System.IO.FileStream

fs

= null;

string

fileName

= "";

string

fileLocation

= "";

Types.DocumentManagement

DocumentMgm

= null;

Types.AuthHeader

auth

= new Types.AuthHeader();

auth.Id = session; // Get the session from an earlier successful login

//Create the Web Service connection

DocumentMgm = new Types.DocumentManagement();

DocumentMgm.AuthHeaderValue = auth;

//Fictious URL

DocumentMgm.Url = http://www.acme.com/PLCSPLMServices/DocumentManagement/DocumentManagement.asmx;

//We have acquired a valid Document_version earlier, via a LoadPLM_object,

// CreateDocument, or Search

// The digital_file that we want to get is assigned to the

// Digital_document_definition of

// the Document_version instance.

if (document_version.view_definitions != null)

{

//Assumption: only one definition is used

definition = (Types.Digital_document_definition)document_version.view_definitions[0];

//Get the first file (any number of files can be attached to the definition)

if (definition.files != null)

{

digital_file = definition.files[0];

content = DocumentMgm.DownloadFile(digital_file);

//The fileLocation is the path to the directory where the file will reside,

// e.g. c:\tmp\cache\drawings

// The fileName e.g. drawing.stp, which is defined in the Digital_file instance.

fileName

= digital_file.file_location_identifications[0].external_id;

fileLocation
= "c:\\tmp\\cache\\drawings"; //the client disc space

fs = new FileStream(Path.Combine(fileLocation,fileName),FileMode.Create,FileAccess.Write);

//Now we get the file to the client disc space

fs.Write(content,0,(int)content.Length);

}

}
Figure 0‑4 Code snippet, retrieving the file content to the client disc space.

CheckInDocument version (CheckInDocument_version)

<TBD>

CheckOutDocument version (CheckOutDocument_version)
<TBD>
GetCheckedOutDocument versions (GetCheckedOutDocument_versions)
<TBD>
GetCheckedInDocument versions (GetCheckedInDocument_versions)
<TBD>
Working with serialized products (InLifeManagement.wsdl)

The functional module InLifeManagement contains services that can be used to work with individual definitions (Product_As_individual, Product_as_realized, Product_as_individual_definition), for example serialized things that have been manufactured (as-built, as-maintained, as-supported). These individuals can be related to design items (Part, Part_version, Part_view_definition, Next_assembly_usage), which means that the individual is then defined by, or based on, a certain design artifact.

Individuals use the same information constructs as those Business Objects that inherit Product, which means that an individual can be identified, using identification_assignment, have common characteristics and have some of its own explicit characteristis, e.g. relations to design artifacts. Individuals can be related to other individuals using assembly structure relationships the same way that Part/part_version/part_view_definition are using the Next_assembly_usage information entity.

Other significant Business Objects that are covered by the InLifemanagement module are: Location and Resource information entities.

Create Product As individual (CreateProduct_as_individual)

The service CreateProduct_as_individual is used to create a Product_as_individual instance and its first version (Product_as_realized).

[image: image20.png]Product

—

Identification, name and description

There must be an Identification_assignment submitted for the Product_as_individual instance (Product_as_individual::identification_assignments). The identification_assignment instance should have the identifier value set (Identification_assignment::identifier). The owning organization must also be set (Identification_assignment::owning_organization::organization_or_person_in_organization_assignment::item) in order to define in which (organizational) context the identifier is defined.

The name is set using the explicit attribute name (Product_as_individual.name).

The description is set using the explicit attribute description (Product_as_individual.description).

Classification

Not used. Classification should be assigned to the Product_as_realized.

Version

The Product_as_individual instance must have one Product_as_realized instance submitted (Product_as_individual.versions). The version is created using the explicit attribute id (Product_as_individual.id).

Additional characterization can be submitted, c.f. 0 Create Product as realized. When creating a new version all submitted characterization information is considered being new, in contrast to Updating a Product as realized in which case the PLM System needs to consolidate existing information with the information that is submitted.

Code sample

//C#

//

// Sample working with serialized Products, CreateProduct_as_individual

// Refers to DEX Capability (as of December 2005)

Figure 0‑1 Code snippet, creating a Product_as_individual and the first version with characterization information submitted. All Business Objects being referred to in the different relationships/assignments already exists and must have been retrieved such that the key/Boid (System Business Object identifier) is corresponding to the internal instance at the PLM system.

Create Product As Realized (CreateProduct_as_realized)

The service CreateProduct_as_realized is used to create a Product_as_realized instance for a certain Product_as_individual instance (for which it is a version). The Product_as_realized instance will be created as the last version for the accompanying Product_as_individual instance.

[image: image21.png]Product_as_individual version

date_time_assignments

CommonCharacterizatonimpl
Product_as_realized [}

e S = (e S ¥ e

(- e)
S S G o

Identification

The new version will be created using the explicit attribute id (Product_as_realized.id).

If any Identification_assignment instance are submitted, these will be ignored, -use the service UpdatePart_version for adding Identification_assignments.

Product as individual (master)

The explicit attribute of_product (Product_as_realized.of_product) must be set with an instance of Product_as_individual, which must have its key set to a value that corresponds to an instance managed in the PLM system (Product_as_realized.key.Boid (System Business Object identifier)).

Classification

A Product_as_realized instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Date/time assignments

A Product_as_realized instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Organization/Person assignments

A Product_as_realized instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Product_version_relationship

Not used.

Product design version to individuals

A Product_as_realized can use the attribute Product_design_version_to_individuals when relating design artifacts, which the created Product_as_realized instance is based on. A Product_design_version_to_individual can be created if being attached with effectivity_assignments. The attribute Product_design_version_to_individual. product_design_version must be set with an existing Part_version instance, thus having set a valid key/boid (System Business Object identifier).
Product as individual view

A Product_as_realized use a Product_as_individual_view for assigning defining characteristics, such as Document (version) that represents/describes the Part_version. The submitted Product_as_individual_view will be created, any number of Product_as_individual_views can be assigned to a Product_as_realized, each representing a specific application domain and life-cycle stage.

Properties

Properties that defines a Product_as_realized should be submitted as Assigned_property with the Product_as_individual_view. An Assigned_property instance must be set with the attribute Assigned_property.classification_assignment which should contain a Class instance being loaded with the key/Boid (System Business Object identifier) to an existing Property_type, which can be found by using the service QueryManagement.GetAllBaseProperties. The actual property value can be either a numerical_value_with_unit, a string_representation, or a value_range. If using a numerical_value_with_unit, or a value_range, then a unit must be submitted which exist in the PLM system. All used units can be found using the service QueryManagement.GetAllUnits.

Document assignments

Document_versions that represents, or describes a Product_as_realized are assigned to a Product_as_individual_view instance via the attribute Product_as_individual_view.document_assignments the submitted Document_assignment must have its attribute Document_assignment.assigned_document set with an assigned_document_select that is loaded with a Document_version instance which have its key/Boid (System Business Object identifier) set to an existing Document_version.

Task method version assignments

Not used, creating a relation (Task_method_version_relationship) is done when creating the Task_method_version via the MaintenanceManagement.CreateTask_method_version service.

View definition relationship

Not used.

Information collection versions

Not used, creating a relation is done when creating the Information_collection_version via the InformationCollectionManagement.CreateInformation_collection_version service.

Applied state assignments

Not used, creating relations (Applied_state_assignment) is done when creating a State_observed instance via the MaintenanceManagement.CreateState_observed service.

Code sample

//C#

//

// Sample working with serialized Products, CreateProduct_as_realized

// Refers to DEX Capability (as of December 2005)

Figure 0‑2 Code snippet, creating a new version (Product_as_realized) for a Product_as_individual.

Update Product As Realized (UpdateProduct_as_realized)

The service UdateProduct_as_realized is used to update a Product_as_realized instance.

Get Top Parent (GetTopParent)

The service getTopParent is used to retrieve the uppermost parent (the root) of a certain version of a Product_as_individual version instance (Product_as_realized) if the given individual is used in an assembly structure.

Where Used (WhereUsed)

The service Whereused is used to retrieve the parent individual instances of the given individual.

Get Assembly Structure (GetAssemblyStructure)

The service GetAssemblyStructure is used (recursively) to get the child individuals that are related to the given individual.
CreateResource as realized resource_item (CreateResource_as_realized_resource_item)

<TBD>

UpdateResource as realized resource item (UpdateResource_as_realized_resource_item)

<TBD>

CreateRequired resource by specification (CreateRequired_resource_by_specification)

<TBD>

UpdateRequired resource by specification (UpdateRequired_resource_by_specification)

<TBD>

CreateRequired resource by resource item (CreateRequired_resource_by_resource_item)

<TBD>

UpdateRequired resource by resource item (UpdateRequired_resource_by_resource_item)

<TBD>
Working with Information collection (InformationCollectionManagement.wsdl)

The functional module InformationCollectionManagement contains services that create, edit and update Information_collection/Information_collection_version and other Business Objects relating to these. The Information_collection and Information_collection_version information entities are not found in the ISO 10303-239, however, the concepts of “Configurable items” and similar are used, but implemented implicitly in various ways. The Information_collection and Information_collection_version classes are here defined in order to have an explicit representation of things that needs to be grouped and managed, where the collection as such is being managed (versioned etc.). The Information_collection and Information_collection_version information entities inherit Product and Product_version.

An Information_collection is used to collect things. The Business Objects that are collected are accessed via the explicit attribute Information_collection_version.collection_items. An Information_collection_version can itself be a collection_item governed by another Information_collection_version instance.

Baseline and other similar concepts can be implemented and represented with the Information_collection and Information_collection_version information entities. Other types of concepts, such as configuration items and product family can also use the Information_collection as an implementation.

The Information_collection and Information_collection_version inherit Document and Document_version, thus using the same information constructs but having different semantics.

 Create Information Collection (CreateInformation_collection)

The service CreateInformation_collection is used to create an (master) Information_collection and the first version (Information_collection_version).

[image: image22.png]Document

—

Identification, name and description

There must be an Identification_assignment submitted for the Information_collection instance (Information_collection::identification_assignments). The identification_assignment instance should have the identifier value set (Identification_assignment::identifier). The owning organization must also be set (Identification_assignment::owning_organization::organization_or_person_in_organization_assignment::item) in order to define in which (organizational) context the identifier is defined.

The name is set using the explicit attribute name (Information_collection.name).

The description is set using the explicit attribute description (Information_collection.description).

Classification

Not used. Classification should be assigned to the Information_collection_version.

Version

The Information_collection instance must have one Information_collection_version instance submitted (Information_collection.versions). The version is created using the explicit attribute id (Information_collection_version.id).

Additional characterization can be submitted, c.f. 0 Create Information_collection version. When creating a new version all submitted characterization information is considered being new, in contrast to Updating a Information_collection_version in which case the PLM System needs to consolidate existing information with the information that is submitted.

Code sample

//C#

//

// Sample working with Documents, CreateInformation_collection

// Refers to DEX Capability (as of December 2005)

Figure 0‑1 Code snippet, creating a Information_collection and the first version with characterization information submitted. All Business Objects being referred to in the different relationships/assignments already exists and must have been retrieved such that the key/Boid (System Business Object identifier) is corresponding to the internal instance at the PLM system.

 Update Information Collection (UpdateInformation_collection)

The service UpdateInformation_collection is used to update metadata for an Information_collection instance. The main characteristics that can be updated are Identification_assignment, e.g. creating new aliases.

 Create Information Collection Version (CreateInformation_collection_version)

The service CreateInformation_collection_version is used to create a new version for an Information_collection instance. The created version will be the last existing version. When creating an Information_collection_version additional characterization can be submitted, such as property assignment, classification assignment and document assignment.

[image: image23.png]Document_version

CommonCharacterizatonimpl

e S = (e S ¥ e

rrp———

L {tmmton cotecton sersntrars (=) {(orirtrmaten cteio vernt_J-(=—

Identification

The new version will be created using the explicit attribute id Information_collection_version.id).

If any Identification_assignment instance are submitted, these will be ignored, -use the service Update Information_collection _version for adding Identification_assignments.

Information_collection (master)

The explicit attribute of_product (Information_collection_version.of_product) must be set with an instance of Information_collection, which must have its key set to a value that corresponds to an instance managed in the PLM system (Information_collection.key.Boid (System Business Object identifier)).

Collection items

An Information_collection_version instance can be assigned with a number of Business Object instances using the explicit attribute collection_items (Information_collection_version.collection_items). Business Objects (including Information_collection_versions) being assigned as a collection_item can access the governing Information_collection_version via the attribute collection_items (<BusinessObject>.collection_items).

Where_used_as_collection_item

When creating an Information_collection_version instance, that instance can be assigned as a collection_item for other existing Information_collection_versions.

Classification

An Information_collection_version instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Date/time assignments

A Information_collection_version instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Organization/Person assignments

A Information_collection_version instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Digital document definition

A Information_collection_version use a Digital_document_definition for assigning defining characteristics, such as digital files that represents/describes the Information_collection_version. The submitted Digital_document_definition will be created, normally a Information_collection_version only have one such definition. PLM systems that does not have an explicit representation of definitions for a Information_collection_version can provide a default Digital_document_definition.

Document assignments

An Information_collection_version instance can be represented/described with Documents (Document_versions) using the attribute document_assignments.

Properties

Properties that defines an Information_collection_version should be submitted as Assigned_property with the Digital_document_definition.

Code sample

//C#

//

// Sample working with Documents, CreateDocument_version

// Refers to DEX Capability (as of December 2005)

Figure 0‑2 Code snippet, updating an existing Information_collection with a new version that will be attached as the latest version.

Update Information Collection Version (UpdateInformation_collection_version)

The service UpdateInformation_collection_version is used when creating additional characterization for an Information_collection_version instance, such as properties, documents, identifications (aliases) and collection items.

CheckInInformation collection version (CheckInInformation_collection_version)

<TBD>

CheckOutInformation collection version (CheckOutInformation_collection_version)

<TBD>

GetCheckedOutInformation collection versions (GetCheckedOutInformation_collection_versions)

<TBD>

GetCheckedInInformation collection versions (GetCheckedInInformation_collection_versions)
<TBD>
Working with Change Management (ChangeManagement.wsdl)

The functional module ChangeManagement contains services that operates and access Business Objects that are used to manage change (planned/proposed, and order), change requests/change notifications (work request) and work orders.

Create Activity (CreateActivity)

An Activity instance represents an activity of some sort; the implicit meaning in terms of PDM/PLM is normally an activity that results in a change. Thus, the concepts of Engineering Change can be represented by the Activity information entity. Different naming conventions are used to denote a Change activity, for example Engineering Change Order (ECO), Planned (, or proposed) Engineering Change (ECP). A change activity (ECO, or ECP) is normally related to a (or raised by, or created as an result of) change request, or issue, which can be represented by the Work_request information entity.

[image: image24.png]R

date_time_sssignments

CommonCharacterizatonimpl

information_collection_versions

e = e ¥ (e SH o SU R oot

Identification, name and description

There must be an Identification_assignment submitted for the Activity instance (Activity.identification_assignments). The identification_assignment instance should have the identifier value set (Identification_assignment::identifier). The owning organization must also be set (Identification_assignment::owning_organization::organization_or_person_in_organization_assignment::item) in order to define in which (organizational) context the identifier is defined.

The name is set using the explicit attribute name (Activity.name).

The description is set using the explicit attribute description (Activity.description).

Classification

An Activity instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Specifically, an Activity can be classified as an Engineering Change Order, or a Planned/Proposed Engineering Change.

Date/time assignments

An Activity instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Specifically, an Activity instance can use Date/time assignment to represent the “actual start date”, “actual end date” (for Activity instances which are classified as Engineering Change Order (ECO)), or “planned start date” and “planned end date” (for Activity instances that are classified as Planned/Proposed Engineering Change (ECP)). The type of Date/time assignment are defined by the External Class which is related via the classification_assignment of the Date/time assignment.

Organization/Person assignments

An Activity instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Specifically, an Activity must submit a Organization_or_person_in_organization_assignment instance that defines the “requestor”. The requestor instance must be loaded with an existing person. The requestor assignment must have set the explicit attribute role (Organization_or_person_in_organization_assignment.role) set with “requestor”.

Document assignments

An Activity instance can be represented/described with Documents (Document_versions) using the attribute document_assignments.

Chosen method

An Activity instance can be assigned with an instance of Task_method_version. If a Task_method_version instance is submitted then it must exist in the PLM system, thus submitting a valid key/Boid (System Business Object identifier).

Resolved request

An Activity instance is normally created as a result of a change request, or issue (Work_request). The attribute Activity.resolved_request contains the Work_request instances that the Activity instance solves. Each submitted Work_request instance must exist in the PLM system, thus the Work_request.key/Boid (System Business Object identifier) must be set.

Activity elements

An Activity instance can use the attribute Activity.activity_elements to define which Business Objects that are affected by the Activity instance. The attribute Activity.activity_elements use Applied_activity_assignment instances, each of those have a role which defines the type e.g. “input”, “output”, and a set of Business Objects (Applied_activity_assignment.items). The Applied_activity_assignment.items must be set with Business Objects that exist, thus the key/boid (System Business Object identifier) must exist in the PLM system.

Activity relationship

An Activity instance can be decomposed into ”change packages” where each change package is represented by an Activity instance. Each of these change packages specifically contains the things being affected by the Activity instance. If an Activity instance contains change packages, then each change package can be used to pair things being affected by the change in terms of which output thing should be matched with which input thing.

A change package Activity instance is related to the Activity instance via the attribute Activity.activity_relationship (the change package should be set as the Activity_relationship.related_activity attribute).

Required resource assignment

An Activity instance can be assigned with Resources that are required using the attribute Activity.required_resource_assignment. A submitted resource assignment must contain an existing resource (via the attribute Required_resource_assignment.assigned_resource), thus the key/Boid (System Business Object identifier) must exist in the PLM system.

Code sample

//C#

//

// Sample working with Change Management, CreateActivity

// Refers to DEX Capability (as of December 2005)

Figure 0‑1 Code snippet, creating an Activity and populating it with a number of change packages, each being an Actvity instance.

Create Directed activity (CreateDirected_activity)

A Directed_activity instance represents an activity that should be executed (kind of a planned activity), which can be used to define an activity that should apply for a design artifact, or a serialized individual. The actual work that is being done based on a Directed_activity is represented by an Actual_activity instance, which reports what was done and when it was completed.

[image: image25.png]Directed_activity [}

Activity

e

CommonCharacterizatonimpl

e = e ¥ (e S e

date_time_assignments

directive

i s | || rprieicd sy)

Identification, name and description

There must be an Identification_assignment submitted for the Directed_activity instance (Directed _activity.identification_assignments). The identification_assignment instance should have the identifier value set (Identification_assignment::identifier). The owning organization must also be set (Identification_assignment::owning_organization::organization_or_person_in_organization_assignment::item) in order to define in which (organizational) context the identifier is defined.

The name is set using the explicit attribute name (Directed _activity.name).

The description is set using the explicit attribute description (Directed _activity.description).

Classification

A Directed_activity instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Date/time assignments

A Directed_activity instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Specifically, an Directed_activity instance can use Date/time assignment to represent the “planned start date” and “planned end date”. The type of Date/time assignment are defined by the External Class which is related via the classification_assignment of the Date/time assignment.

Organization/Person assignments

A Directed_activity instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Document assignments

A Directed_activity instance can be represented/described with Documents (Document_versions) using the attribute document_assignments.

Directive

A Directed_activity instance is normally created as a result of a Work_order. The attribute Directed_activity.directive contains the Work_order instance. The submitted Work_order instance must exist in the PLM system, thus the Work_order.key/Boid (System Business Object identifier) must be set.

Activity elements

A Directed_activity instance can use the attribute Activity.activity_elements to define which Business Objects that are affected by the Activity instance. The attribute Activity.activity_elements use Applied_activity_assignment instances, each of those have a role which defines the type e.g. “input”, “output”, “control”, “chosen method”, “resolved state”, and a set of Business Objects (Applied_activity_assignment.items). The Applied_activity_assignment.items must be set with Business Objects that exist, thus the key/boid (System Business Object identifier) must exist in the PLM system.

Activity relationship

A Directed_activity instance should not use the Activity_relationship attribute. A Directed_activity instance is related to an Activity_actual instance when creating the Activity_actual instance (CreateActivity_actual).

Required resource assignment

A Directed_activity instance can be assigned with Resources that are required using the attribute Activity.required_resource_assignment. A submitted resource assignment must contain an existing resource (via the attribute Required_resource_assignment.assigned_resource), thus the key/Boid (System Business Object identifier) must exist in the PLM system.

Create Activity actual (CreateActivity_actual)

An Actual_activity instance represents work that have been done and when it was done (start and end). An Activity_actual instance should reference a Directed_activity instance.

[image: image26.png]Activity

Identification, name and description

There must be an Identification_assignment submitted for the Activity_actual instance (Activity_actua.identification_assignments). The identification_assignment instance should have the identifier value set (Identification_assignment::identifier). The owning organization must also be set (Identification_assignment::owning_organization::organization_or_person_in_organization_assignment::item) in order to define in which (organizational) context the identifier is defined.

The name is set using the explicit attribute name (Activity_actua.name).

The description is set using the explicit attribute description (Activity_actua.description).

Classification

An Activity_actual instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Date/time assignments

An Activity_actual instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Specifically, an Activity_actual instance can use Date/time assignment to represent the “actual start date” and “actual end date”. The type of Date/time assignment are defined by the External Class which is related via the classification_assignment of the Date/time assignment.

Organization/Person assignments

An Activity_actual instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Document assignments

An Activity_actual instance can be represented/described with Documents (Document_versions) using the attribute document_assignments.

Activity elements

An Activity_actual instance can use the attribute Activity.activity_elements to define which Business Objects that are affected by the Activity instance. The attribute Activity.activity_elements use Applied_activity_assignment instances, each of those have a role which defines the type e.g. “input”, “output”, “control”, and a set of Business Objects (Applied_activity_assignment.items). The Applied_activity_assignment.items must be set with Business Objects that exist, thus the key/boid (System Business Object identifier) must exist in the PLM system.

Activity relationship

An Activity_actual instance should use the Activity_relationship attribute when assigning the created Activity_actual to a Directed_activity instance. The Directed_activity instance must exist in the PLM system and should be submitted as the attribute related_activity of Activity_happening (subclass of Activity_relationship).

Note, one Directed_activity instance must be submitted.

Resource as realized assignment

An Activity_actual instance can be assigned with Resources that have been used using the attribute Activity_actual.resource_as_realized_assignment. A submitted resource assignment must contain an existing resource (via the attribute Resource_as_realized_assignment.assigned_resource), thus the key/Boid (System Business Object identifier) must exist in the PLM system.

Create Work request (CreateWork_request)

A Work_request instance represents some sort of request of things that needs to be done, for example, an issue, or a feature enhancement. In a change management driven business process there will be engineering change activities created, which relates (resolves) Work_request instances.

[image: image27.png]ﬁu?,@ffi*fj

ersion_id

CommonCharacterizatonimpl

(e SE e o G Y e

Identification, name and description

There must be an Identification_assignment submitted for the Work_request instance (Work_request.identification_assignments). The identification_assignment instance should have the identifier value set (Identification_assignment::identifier). The owning organization must also be set (Identification_assignment::owning_organization::organization_or_person_in_organization_assignment::item) in order to define in which (organizational) context the identifier is defined.

The name is set using the explicit attribute name (Work_request.name).

The description is set using the explicit attribute description (Work_request.description).

Classification

A Work_request instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Date/time assignments

A Work_request instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Organization/Person assignments

An Work_request instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Specifically persons that should be notified by this created Work_request instance should be submitted with a Organization_or_person_in_organization_assignment.role value of “person_to_be_notified” (case insensitive).

Document assignments

An Work_request instance can be represented/described with Documents (Document_versions) using the attribute document_assignments.

Affected items assignment

A Work_request instance can use the attribute Work_request.affected_items_assignment to relate different Business Object that this Work_request instance concern. Note: the Work_request instance attribute affected_items_assignment describes which things that might be the reason for a change, but the Activity instance that solve the Work_request instance might result in changing other Business Objects than those being addressed by the Work_request.

Create Work order (CreateWork_order)

A Work_order instance represents work (activities) that needs to be done. The Work_order information entity is used as the “directive” for one, or more Directed_activity instances, which in turn are related to the actual work (Activity_actual instances) that is done. A Work_order instance is related to one, or more Work_request instances.

[image: image28.png]in_response_to

date_time_sssignments

CommonCharacterizatonimpl

or_orgerCharacierzaonimp = E-{repr Work_orderCharacierzatonimpl |- =

Identification, name and description

There must be an Identification_assignment submitted for the Work_order instance (Work_order.identification_assignments). The identification_assignment instance should have the identifier value set (Identification_assignment::identifier). The owning organization must also be set (Identification_assignment::owning_organization::organization_or_person_in_organization_assignment::item) in order to define in which (organizational) context the identifier is defined.

The name is set using the explicit attribute name (Work_order.name).

The description is set using the explicit attribute description (Work_order.description).

Classification

A Work_order instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Date/time assignments

A Work_order instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Organization/Person assignments

A Work_order instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Document assignments

A Work_order instance can be represented/described with Documents (Document_versions) using the attribute document_assignments.

In response to

The attribute Work_order.in_response_to is used when the given Work_order instance is related a one, or more, change requests/issues (Work_request).

Submitted Work_request instances must exist in the PLM system, thus must provide valid key/boid (System Business Object identifier).

Directive of

This is not used; a Directed_activity instance is created using an existing Work_order instance. When a Directed_activity instance is created it is updating the submitted Work_order instance.

Promote Planned engineering change (PromotePlannedEngineeringChange)

An Activity instance which represents a Planned Engineering Change (ECP) can change to become an Engineering Change Order (ECO). The PromotePlannedEngineeringChange service is an explicit method specifically targeting change management practices. Normally a Planned Engineering Change reference things that should be changed, replaced, or edited. Promoting a Planned Engineering Change should thus actively effect the status of the things being governed by the Engineering Change instance, for example, if there are Next_assembly_usage instances referenced, these should be affected in terms of effectivity_assignment based on the dates (planned start date, planned end date, actual start date and actual end date) that are defining the Engineering Change instance (Actvity).
CreatePlannedEngineeringChange (CreatePlannedEngineeringChange)
<TBD>

CreateEngineeringChangeOrder (CreateEngineeringChangeOrder)
<TBD>

UpdateWork request (UpdateWork_request)
<TBD>

UpdateWork order (UpdateWork_order)
<TBD>

UpdateActivity (UpdateActivity)
<TBD>

UpdateActivity actual (UpdateActivity_actual)
<TBD>

UpdateDirected activity (UpdateDirected_activity)
<TBD>

Working with Maintenance Management (MaintenanceManagement.wsdl)

The functional module MaintenanceManagement contains services that operates on information concerning design, monitoring and reporting of maintenance.

Create State definition (CreateState_definition)

A State_definition instance represents a kind of state, which a thing can be in, for example a kind of fault state. A State_definition instance can be assigned to a design artifact via the Applied_state_definition_assignment information entity. The State_definition information entity should only be used to represent definitions of states, not an occurrence of the state, a state that occurs is represented by the State_observed information entity.

Identification, name and description

There must be an Identification_assignment submitted for the State_definition instance (State_definition.identification_assignments). The identification_assignment instance should have the identifier value set (Identification_assignment::identifier). The owning organization must also be set (Identification_assignment::owning_organization::organization_or_person_in_organization_assignment::item) in order to define in which (organizational) context the identifier is defined.

The name is set using the explicit attribute name (State_definition.name).

The description is set using the explicit attribute description (State_definition.description).

Classification

A State_definition instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Date/time assignments

A State_definition instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Organization/Person assignments

A State_definition instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Document assignments

A State_definition instance can be represented/described with Documents (Document_versions) using the attribute document_assignments.

Applied state definition assignment

A State_definition can be assigned for, one, or more, design artifacts via the attribute State_definition.applied_state_definition_assignment. If submitted the applied_state_definition_assignment.assigned_to must contain an existing design artifact (Part_view_definition, or Next_assembly_usage), thus the key/Boid (System Business Object identifier) must exist in the PLM system. The submitted applied_state_definition_assignment can also reference a Condition_assignment, which will be created if the Condition_assignment contains a reference to a valid Condition instance.

State assessments

Not used, creating relations (State_definition.state_assessments) is done when creating a State_observed via the CreateState_observed service.

Update State definition (UpdateState_definition)

<TBD>
Create State observed (CreateState_observed)

A State_observed instance represents an occurrence of a state as observed. An observed state can be relating a defined state (State_definition). An observed state should be recorded for a physical thing, i.e. either a Product_as_individual_view, or Next_assembly_usage (only a Next_assembly_usage instance that relates Product_as_individual_view instances) instance.

Identification, name and description

There must be an Identification_assignment submitted for the State_observed instance (State_observed.identification_assignments). The identification_assignment instance should have the identifier value set (Identification_assignment::identifier). The owning organization must also be set (Identification_assignment::owning_organization::organization_or_person_in_organization_assignment::item) in order to define in which (organizational) context the identifier is defined.

The name is set using the explicit attribute name (State_observed.name).

The description is set using the explicit attribute description (State_observed.description).

Classification

A State_observed instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Date/time assignments

A State_observed instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Organization/Person assignments

A State_observed instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Document assignments

A State_observed instance can be represented/described with Documents (Document_versions) using the attribute document_assignments.

State assessment

A State_observed instance can be assigned to a State_definition instance via the State_assessment attribute. The submitted State_definition instance must exist in the PLM system, thus a valid State_definition key/Boid (System Business Object identifier) must be submitted.

Applied state assignment

A State_observed instance can be assigned to a Product_as_individual_view, or Next_assembly_usage (only a Next_assembly_usage being used to relate Product_as_realized/Product_as_individual_views i.e. serialized artifacts) via the attribute State_observed.applied_state_assignment. The submitted Product_as_individual_view, or Next_assembly_usage instance must exist in the PLM system, thus submitting a valid key/Boid (System Business Object identifier).

Update State observed (UpdateState_observed)

<TBD>
Create Task method (CreateTask_method)

[image: image29.png]date_time_sssignments

Tost_menoaCraracerzstoniol)E-(= E-{eprTasi_nevodCharacierzstonima | -(= JE

(activy_methodiasterCharacterizati

Identification, name and description

There must be an Identification_assignment submitted for the Task_method instance (Information_collection::identification_assignments). The identification_assignment instance should have the identifier value set (Identification_assignment::identifier). The owning organization must also be set (Identification_assignment::owning_organization::organization_or_person_in_organization_assignment::item) in order to define in which (organizational) context the identifier is defined.

The name is set using the explicit attribute name (Task_method.name).

The description is set using the explicit attribute description (Task_method.description).

Classification

A Task_method instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Activity method versions

Update task method (UpdateTask_method)

<TBD>
Create Task method version (CreateTask_method_version)

A Task_method_version instance defines the content for a Task_method instance.

[image: image30.png]activy_methodCharacterzationimpl

Tost_method_versinCraracirzoJE-{(—w— E-{eprTast_mehed_versoncraracter (=5

‘activy_methodversionCharacteriza.. |

Identification

The new version will be created using the explicit attribute id Task_method_version.id).

If any Identification_assignment instance are submitted, these will be ignored, -use the service Update Task_method_version for adding Identification_assignments.

Task method (master)

The explicit attribute task_method (Task_method_version.task_method) must be set with an instance of Task_method, which must have its key set to a value that corresponds to an instance managed in the PLM system (Task_method.key.Boid (System Business Object identifier)).

Classification

An Information_collection_version instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Date/time assignments

A Task_method_version instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Organization/Person assignments

A Task_method_version instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Document assignments

A Task_method_version instance can be represented/described with Documents (Document_versions) using the attribute document_assignments.

Properties

Properties that defines a Task_method_version should be submitted as Assigned_property.

Update Task method version (UpdateTask_method_version)

<TBD>

Create Scheme (CreateScheme)

A Scheme instance represents a collection of activities, their subject and possible resource being used to execute the activities. A scheme can be used to represent a schedule, or a plan. The exact semantics (being a schedule, or a plan, or a hybrid) depends on its application. The Scheme instance contains metadata about the scheme as such; the actual content is defined using the Scheme_version.

[image: image31.png]ctivity_method

Identification

<TBD>

Name and description

<TBD>

Classification

A Scheme instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Update Scheme (UpdateScheme)

<TBD>

Create Scheme version (CreateScheme_version)

A Scheme_version collects activities being managed for a design artifact, or serialized item via the Scheme_subject_assignment attribute. Business Objects can be assigned to the Scheme_version by using the Scheme_version_assignment attribute, which must then reference Business Objects that exist in the PLM system.

A Scheme_version instance contains a number of Scheme_entries that represents a collection of activities that comprise the Scheme_version instance. Note: when creating the Scheme_version there should not be any Scheme_entries provided, those should be created separate and reference to which Scheme_version instance they should be part of.

[image: image32.png]) ¥ o S e e =R e =

‘activy_methodversionCharacteriza.. |

Identification

The new version will be created using the explicit attribute id scheme_version.id).

If any Identification_assignment instance are submitted, these will be ignored, -use the service Update scheme_version for adding Identification_assignments.

Scheme (master)

The explicit attribute scheme (scheme_version.scheme) must be set with an instance of Scheme, which must have its key set to a value that corresponds to an instance managed in the PLM system (Scheme.key.Boid (System Business Object identifier)).

Classification

A scheme_version instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Date/time assignments

A scheme_version instance can be assigned with one, or more, Date/Time assignments. Each Date/Time assignment is created with the information provided by the Date/Time assignment information.

Organization/Person assignments

A scheme_version instance can be assigned with one, or more, Organization_or_person_in_organization_assignments. Each submitted Organization_or_person_in_organization_assignments must contain an existing Person, or Organization, the assignment is created using the explicit attribute role (Organization_or_person_in_organization_assignment.role).

Document assignments

A scheme_version instance can be represented/described with Documents (Document_versions) using the attribute document_assignments.

Properties

Properties that defines a scheme_version should be submitted as Assigned_property.

Update Scheme version (UpdateScheme_version)

<TBD>

Create Scheme entry (CreateScheme_entry)

A Scheme_entry instance is used to represent an activity that is part of a Scheme (version).

[image: image33.png]‘activy_methodCharacterzationimpl |}

Seheme_entyCharacerzatoninlF-{=r (e Scheme_snycharactrzatont BB

date_time_sssignments

(activy_methodiasterCharacterizati

information_collection_versions

Identification

<TBD>

Name and description

<TBD>

Classification

A Scheme_entry instance can be assigned with one, or more, classifications. Each submitted classification must be an existing classification with the Class instance key/Boid (System Business Object identifier) set such that the PLM system can find the internal classification.

Scheme entry assignment

The Scheme_entry_assignment attribute is used to assign Task_method_version, Directed_activity, or Scheme_version instances using the attribute Scheme_entry_assignment.assigned_activity_method. The submitted (Scheme_entry_assignment.assigned_activity_method) must exist in the PLM system.

Scheme entry relationship

The Scheme_entry_relationship is used to relate one Scheme_entry instance to another Scheme_entry instance, given the semantics submitted in the Scheme_entry_relationship.role, which should only be allowed to “SEQUENCE”.

Scheme_entry_relationships should only be submitted if the Scheme_entry should be created as a proceeding instance. In which case the submitted Scheme_entry_relationship.relating_method should be set to an existing Scheme_entry.

Required resource assignment

A Scheme_entry instance can be assigned with Resources that are required using the attribute Scheme_entry.required_resource_assignment. A submitted resource assignment must contain an existing resource (via the attribute Required_resource_assignment.assigned_resource), thus the key/Boid (System Business Object identifier) must exist in the PLM system.

Scheme

The attribute Scheme must be submitted referencing an existing Scheme_version for which the Scheme_entry instance should be part of.

Update Scheme entry (UpdateScheme_entry)

<TBD>

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

[image: image39.wmf]Business Objects

Characteristics

Query Services

System Services

Event Services

Part Management

Document Management

Change Management

In Life Service

Maintenance Mgm

Identification assignment

Classification assignment

Property assignment

Person

/

organization ass

.

Date

/

Time assignment

Document assignment

Effectivity assignment

Load PLM

_

object

Search

Authenticate

Logout

Manage Subscriber

Part Mgm

.

Events

Document Mgm

.

Events

Change Mgm

.

Events

In Life Service Events

Maintenance Mgm

.

Events

Requirements Mgm

Requirements Mgm

.

Events

[image: image40.wmf]Business Objects

Characteristics

Query Services

System Services

Event Services

Part

Manageme

nt

Document

Managemen

t

Change

Managemen

t

In Life

Service

Maintenanc

e Mgm

Identification

assignment

Classification

assignment

Property

assignment

Person

/

organization

ass

.

Date

/

Time

assignment

Document

assignment

Effectivity

assignment

Load

PLM

_

object

Search

Authenticate

Logout

Manage

Subscriber

Part Mgm

.

Events

Document

Mgm

.

Events

Change

Mgm

.

Events

In Life

Service

Events

Maintenance

Mgm

.

Events

Requiremen

ts Mgm

Requirements

Mgm

.

Events

Types

.

xsd

Filters

.

xsd

Headers

.

xsd

QueryManagement

.

WSDL

SystemManagement

.

WSDL

PartMgm

.

WSDL

QueryMsg

.

xsd

SystemMsg

.

xsd

Common definitions

...

WSDL

DocumentMgm

.

WSDL

...

WSDL

...

WSDL

...

Msg

.

xsd

...

Msg

.

xsd

PartMsg

.

xsd

PartEvent

.

WSDL

...

WSDL

ChangeEvent

.

WSDL

...

WSDL

...

WSDL

...

Msg

.

xsd

...

Msg

.

xsd

PartEventMsg

.

xsd

Last revision 27 June 2006
[Title of White Paper]

_1195372512.vsd
�

�

�

�

Sequence�

Client�

PLM System�

#1:Set SearchTypes�

#2:<optional>Set Search Objects�

#3:Search(id,name,description)�

SearchResponse�

Parse Filter(SearchTypes,SearchObjects)�

#0:Set AuthHeader�

#4:Select PLM_objects�

#6:<for each PLM_object>LoadPLM_object�

LoadPLM_objectResponse�

#5:<for each PLM_object>Set Characteristics�

#0 and #1:
Set the AuthHeadervalue
with a valid session
Select which Types
to return, e.g. Part,
Product_as_realized,
Document etc.�

#4, #5 and #6:
Set the AuthHeadervalue
with a valid session
For each type of PLM_object, set Characteristics, e.g.
PartCharacterization,
this defines which things to load.�

#2:
Set the SearchObjects in the FilterHeaderValue, e.g. use a given Class to filter out PLM_objects that are assigned to this Class�

_1195378914.vsd
�

Set which Types to get in the search result
(optional) Set number max of hits�

[Optional]
Set which objects should filter out the search result, can be classification_assignment, a type of property, a type of property and a given value�

Set identifier, name and description, these can be empty�

_1196081123.vsd
�

Static Structure�

Header(s)�

Verb�

Noun�

AuthHeader,
UpdatePartVersionHeader�

Update�

Part_version�

AuthHeader�

Create�

Part_version�

<Partmanagement.wsdl>
CreatePart_version�

<Partmanagement.wsdl>
UpdatePart_version�

_1212315365.vsd
Business Objects

Characteristics

Query Services

System Services

Event Services

Part Management

Document Management

Change Management

In Life Service

Maintenance Mgm

Identification assignment

Classification assignment

Property assignment

Person/organization ass.

Date/Time assignment

Document assignment

Effectivity assignment

Load PLM_object

Search

Authenticate

Logout

Manage Subscriber

Part Mgm. Events

Document Mgm. Events

Change Mgm. Events

In Life Service Events

Maintenance Mgm. Events

Requirements Mgm

Requirements Mgm. Events

Types.xsd

Filters.xsd

Headers.xsd

QueryManagement.WSDL

SystemManagement.WSDL

PartMgm.WSDL

DocumentMgm.WSDL

QueryMsg.xsd

SystemMsg.xsd

Common definitions

...WSDL

...WSDL

...WSDL

...Msg.xsd

...Msg.xsd

PartMsg.xsd

PartEvent.WSDL

...WSDL

ChangeEvent.WSDL

...WSDL

...WSDL

...Msg.xsd

...Msg.xsd

PartEventMsg.xsd

_1212315248.vsd
Load PLM_object

Business Objects

Characteristics

Query Services

System Services

Event Services

Part Management

Document Management

Change Management

In Life Service

Maintenance Mgm

Identification assignment

Classification assignment

Property assignment

Person/organization ass.

Date/Time assignment

Document assignment

Effectivity assignment

Search

Authenticate

Logout

Manage Subscriber

Part Mgm. Events

Document Mgm. Events

Change Mgm. Events

In Life Service Events

Maintenance Mgm. Events

Requirements Mgm

Requirements Mgm. Events

_1195913446.vsd
�

Static Structure�

Parent Part�

Child Part�

Child Part�

Child Part�

Version�

Def�

Version�

Def�

Version�

Def�

Version�

Def�

Next_assembly_usage�

Next_assembly_usage�

Next_assembly_usage�

Parent Part�

Child Part�

Child Part�

Child Part�

Version�

Def�

Version�

Def�

Version�

Def�

Version�

Def�

Next_assembly_usage�

Next_assembly_usage�

Next_assembly_usage�

Child Part�

Child Part�

Version�

Def�

Version�

Def�

Version�

Def�

Next_assembly_usage�

Next_assembly_usage�

Next_assembly_usage�

One level breakdown structure�

Two level breakdown structure�

_1195374894.vsd
�

Use Case�

_1195302571.vsd
�

�

�

Use Case�

Client�

PLM System�

GetProjects�

GetProjectsResponse�

_1195303553.vsd
�

�

�

Use Case�

Client�

PLM System�

OverrideSession(user,pwd,project)�

OverrideSessioResponse�

request�

response�

_1195301478.vsd
Request�

Response�

_1195301528.vsd
�

Request�

Response�

_1153761019.vsd

