The following document summarizes the discussion to date on modeling relationships in SPML 2.0. It is intended to record common understanding, to promote discussion and to be a contribution artifact for the generation of the 2.0 specification. It is in no way binding or concrete.

Objectives for Relationships in SPML 2.0

1. To provide within the protocol explicit support for expressing relationships between Provisioning Service Objects (PSOs). (NOTE: We will not explicitly support expressing relationships between any other protocol or model elements. This would have to be done at the attribute level in target schema.)

2. To provide extensible support for the mechanics of expressing relationships without specifying definitive concrete models for specific relationships. That is to say, we will not define what a role, group, or hierarchy actually means, although we should not do anything that prevents cooperation at this level via some form of optional binding or interface.

3. To allow the following types of relationships to be expressed:

a. Containment (i.e., hierarchy) at the point of PSO creation and as an optional interface. For example, an organizational unit must be created beneath an organization or an organizational unit. After creation, an organizational unit can be moved beneath another organization or organizational unit.

b. Reference (i.e., connections) at the point of PSO creation and as an optional interface. For example, a Group object may refer to Account objects as its members. Each Account may also refer to any Groups to which it belongs.

Statements about Relationships in SPML 2.0

1. Containment and reference relationships are not concrete objects. An instance of such a relationship is not a PSO and does not have an ID. Instead, an instance of a reference relationship is represented as an XML element or attribute that connects two PSOs, each of which has an ID.

It is possible (but is not part of the specification) to express more complex relationships using the building blocks exposed by this simple model. For example, a relationship that is “stateful” and persistent could be represented as a PSO that refers to two connected objects. One might also represent such a relationship as a PSO that is bound beneath one object (its parent by containment) and that refers to another object (its referent by a reference relationship).
2. A PSO can participate in only a single containment relationship. That is to say, any object has at most one parent.
3. A PSO can participate in any number of reference relationships. For example, an Account can refer to any number of Groups.
4. A PSO can participate in multiple types of reference relationships. For example, an Account might refer to Groups by means of a “memberOf” relationship and to Roles by means of a “hasRole” relationship.
5. Any type of reference relationship is optional and multi-valued. For example, an Account might refer to no Group by means of a “memberOf” relationship.

6. An optional interface defines Containment operations. Containment operations include:

a. createChild(parentID, …)

// creates an object beneath a specified parent.
b. setParent(childID, parentID)

// moves an object beneath a specified parent.
c. getParent(childID)

// returns the parent of a specified object.
d. listChildren(parentID)

// returns the ids of objects beneath a specified parent.
// could have a ‘oneLevel’ or ‘allLevels’ parameter.
7. Each Target advertises Containment Rules. In much the same way as a Target exposes its capabilities, a target may also expose containment rules. These rules would specify what types of objects each type of object may contain. For example, suppose that an OrganizationalUnit can be bound only beneath an Organization or an OrganizationalUnit. There are many ways to do this, but one can imagine XML as simple as the following:
<Target id='' >
 ...
 <ObjectType name='Organization'>
 <MayContainObjectType name='OrganizationalUnit'/>
 </ObjectType>
 <ObjectType name='OrganizationalUnit'>
 <MayContainObjectType name='OrganizationalUnit'/>
 </ObjectType>
 ...
</Target>

8. An optional interface defines Connection operations (for reference relationships). Connection operations include:

a. connect (fromID, toID, connectionType)

// creates an object beneath a specified parent.

b. disconnect(fromID, toID, connectionType)

// moves an object beneath a specified parent.
// ‘toID’ and ‘connectionType’ could be optional.
c. listConnected(fromID, connectionType, objectType)
// returns the ids of objects beneath a specified parent.
// could have a ‘oneLevel’ or ‘allLevels’ parameter.

Other Issues:

1. Should the core ‘create’ operation specify containment?
We talked at one point about adding a ‘parentID’ argument to the ‘create’ operation. If no parent were specified, the created object would be bound directly beneath the target.

I think it is asymmetric to have a core operation specify containment on initial object creation when no other core operation allows one to modify or to query containment. However, this must be balanced against the inelegance of either: a) defining a new ‘createChild’ operation (that is largely redundant with the core ‘create’ operation) for an optional Containment interface; or
b) adding new ‘getParent’, ‘setParent’ and ‘listChildren’ operations to the core interface.
2. Must we enforce cardinality for connection types?
Do we need to support required relationships? Do we need to support reference relationships with a specific number of objects? If so, then it seems we must allow reference relationship types to be defined, so that the definer may specify the cardinality of the relationship (see Issue#3 below).

For example, we might allow the cardinality of a relationship type to be specified as one of the following:
0+
// an optional relationship to any number of referents
1?
// an optional relationship to exactly one referent
1
// a required relationship to exactly one referent
1+
// a required relationship to at least one referent
N
// a required relationship to exactly N referents
N?
// an optional relationship to exactly N referents

Personally, I hope that we do not. It seems to me that the benefit does not justify complicating both the protocol specification and its implementation.

3. Must connection (reference relationship) types be defined?
 If not, how do we know the direction of a relationship? If not, how do we know for what types of objects each connection type is valid?

It may be possible for the target to define (in a manner similar to the way that target capabilities define which optional interfaces are supported for each type of object) which types of connections to which types of objects are valid for each object type. One might imagine XML like the following:
<Target id='' >
 ...
 <ObjectType name='Account' schemaRef=’<XPATHorQNAME>’>
 <ConnectionType name='memberOf' toObjectType=’Group’/>
 <ConnectionType name='hasRole' toObjectType=’Role’/>
 </ObjectType>
 <ObjectType name='Group' schemaRef=’<XPATHorQNAME>’/>
 ...
</Target>
