1 Introduction

2 Concepts

3 Protocol

3.1 Request/Response Model

3.2 Profiles

3.3 Identifiers

3.4 Operations

3.4.1 Core Operations

3.4.2 Async Capability

Schema syntax for SPMLv2 Async Capability is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:SPML:2:0:async

A provider that supports asynchronous execution of requested operations for a target SHOULD declare that the target supports the Async Capability. A provider that does not support asynchronous execution of requested operations MUST NOT declare that the target supports the Async Capability.

IMPORTANT: The Async Capability does NOT define an operation to request asynchronous execution.

A provider that supports the Async Capability (for a schema entity of which each object that the requestor desires to manipulate is an instance):

1) MUST allow a requestor to specify “execution=’asynchronous’”.
The provider MUST NOT fail such a request with “error=’unsupportedExecutionType’”.
The provider MUST execute the requested operation asynchronously
(if the provider executes the requested operation at all).
See the section entitled “Requestor specifies asynchronous execution (normative)”.

2) MAY choose to execute a requested operation aynchronously
when the request does not specify the execution attribute.
See the section entitled “Provider chooses asynchronous execution (normative)”.

The Async Capability also defines two operations that a requestor may use to manage another operation that a provider is executing asynchronously:
- A status operation allows a requestor to check the status (and possibly results) of an operation.
- A cancel operation asks the provider to stop executing an operation.

Status. When a provider is executing SPML operations asynchronously, the requestor needs a way to check the status of requests. The status operation allows a requestor to determine whether an asynchronous operation has succeeded, has failed or is still pending. The status operation also allows a requestor to obtain the output of an asynchronous operation.

Cancel. A requestor may also need to cancel an asynchronous operation. The cancel operation allows a requestor to ask a provider to stop executing an ansynchronous operation.

3.4.2.1 cancel

	
<complexType name="CancelRequestType">

<complexContent>

<extension base="spml:SpmlRequestType">

<attribute name="requestID" type="xsd:ID" use="required"/>

</extension>

</complexContent>

</complexType>

<simpleType name="CancelResultsType">

<restriction base="string">

<enumeration value="noSuchRequest"/>

<enumeration value="canceled"/>

<enumeration value="couldNotCancel"/>

</restriction>

</simpleType>

<complexType name="CancelResponseType">

<complexContent>

<extension base="spml:SpmlResponseType">

<attribute name="cancelResult" type="async:CancelResultsType" use="required"/>

</extension>

</complexContent>

</complexType>

<element name="cancelRequest" type="async:CancelRequestType"/>

<element name="cancelResponse" type="async:CancelResponseType"/>

3.4.2.1.1 Request (normative)

A requestor MUST send a <cancelRequest> to a provider in order to (ask the provider to) cancel a requested operation that the provider is executing asynchronously.

Execution. A <cancelRequest> MUST NOT specify “execution=’asynchronous’”. A requestor MUST specify “execution=’synchronous’” or (a requestor MUST) omit the execution attribute of the <cancelRequest>. See Determining execution type.
[Ed. Do we need to give a reason why cancel must be synchronous?]

requestID. A <cancelRequest> MUST have a requestId attribute that specifies the operation to cancel.
[Ed. Remove (optional) requestID from SpmlRequestType
and add (required) requestID to CancelRequestType.]

3.4.2.1.2 Response (normative)

A provider that receives a <cancelRequest> from a requestor that the provider trusts MUST examine the content of the request. If the request is valid, the provider MUST cancel the operation (that the requestID attribute of the <cancelRequest> specifies) if it is possible for the provider to do so.

Execution. The provider MUST execute the cancel operation synchronously (if the provider executes the cancel operation at all). See the section entitled “Determining execution type”.

Response. The provider must return to the requestor a <cancelResponse>.

Result. A <cancelResponse> must have a result attribute that indicates whether the provider successfully processed the request to cancel the specified operation. See ResultCode for values of this attribute.

Since the provider must execute a cancel operation synchronously, the <cancelResponse> MUST NOT specify “result=’pending’”. The <cancelResponse> MUST specify “result=’success’” or (the <cancelResponse> MUST specify) “result=’failure’”.

If the provider successfully canceled the specified operation, the <cancelResponse> MUST specify “result=’success’”. If the provider failed to cancel the specified operation, the <cancelResponse> MUST specify “result=’failure’”.

cancelResult. A <cancelResponse> MUST contain a cancelResult attribute that indicates whether the provider successfully canceled the specified operation. See CancelResultsType for values of this attribute.
[Ed. I think that cancelResult is redundant.
- ErrorCode already contains ‘noSuchRequest’
- result=’success’ implies cancelResult=’canceled’
- result=’failure’ implies cancelResult=’couldNotCancel’
The only question is what value to use for “error=?” when the provider simply could not cancel. We could just omit “error” if there is no specific failure.]

Error. If the provider cannot cancel the specified operation, the <cancelResponse> MUST contain an error attribute that characterizes the failure. See ErrorCode for values of this attribute.
[Ed. What if the provider simply ‘couldNotCancel’?
Should the result specify error=’customError’?
Or should we we simply omit the optional “error” attribute?]

The provider MUST return an error if any of the following is true:

· The requestID attribute of the <cancelRequest> has no value. In this case, the <cancelResponse> SHOULD specify “error=’malformedRequest’”.

· The requestID attribute of the <cancelRequest> does not specify an operation that exists. In this case the provider SHOULD return “error=’noSuchRequest’”.

3.4.2.1.3 Examples (non-normative)

In order to illustrate the cancel operation, we must first execute an operation asynchronously. In the following example, a requestor first asks a provider to delete a Person asynchronously.

	<deleteRequest>

<identifier ID=”2244”><target>target2</target></identifier>

</deleteRequest>

The provider returns a <deleteResponse> element. The result attribute of the <deleteResponse> element indicates that the provider will execute the delete operation asynchronously. The <deleteResponse> also returns a requestID.

	<deleteResponse result=“pending" requestID=”8488”/>

Next, the same requestor asks the provider to cancel the delete operation.

	<cancelRequest requestID=”8488”/>

The provider returns a <cancelResponse>. The result attribute of the <cancelResponse> indicates that the provider successfully canceled the delete operation.
[Ed. I think that cancelResult is redundant. See above.]

	<cancelResponse result=”success” cancelResult=”canceled” />

3.4.2.2 status

	
<complexType name="SpmlResponseType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="capabilityParameter" type="spml:CapabilityParameterType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="result" type="spml:ResultCode" use="required"/>

[

<attribute name="requestID" type="xsd:ID" use="optional"/>]

<attribute name="error" type="spml:ErrorCode" use="optional"/>

</extension>

</complexContent>

</complexType>

<simpleType name="StatusReturnsType">

<restriction base="string">

<enumeration value="status "/>

<enumeration value="result"/>

</restriction>

</simpleType>

<complexType name="StatusRequestType">

<complexContent>

<extension base="spml:SpmlRequestType">

<attribute name="requestID" type="xsd:ID" use="required"/>

[

<xsd:attribute name="statusReturns" type="async:StatusReturnsType" use="optional" default="result" />]

<xsd:attribute name="returnOutput" type="xsd:boolean" use="optional" default="false" />

</extension>

</complexContent>

</complexType>

<xsd:complexType name="StatusResponseType">

<xsd:complexContent>

<xsd:extension base="spml:SpmlResponseType">

<xsd:sequence>

<element name="currentResponse" type="spml:SpmlResponseType" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<element name="statusRequest" type="async:StatusRequestType"/>

<element name="statusResponse" type="async:StatusResponseType"/>

3.4.2.2.1 Request (normative)

A requestor MUST send a <statusRequest> to a provider in order to obtain the status or results of a requested operation that the provider is executing asynchronously.

Execution. A <statusRequest> MUST NOT specify “execution=’asynchronous’”. A requestor MUST specify “execution=’synchronous’” or (a requestor MUST) omit the execution attribute of the <statusRequest>. See Determining execution type.
[Ed. Do we need to give a reason why status must be synchronous?]

requestID. A <statusRequest> MUST have a requestId attribute that specifies the operation for which to return status or results.
[Ed. Remove (optional) requestID from SpmlRequestType
and add (required) requestID to StatusRequestType.]

statusReturns. A <statusRequest> MAY have a statusReturns attribute that specifies whether the requestor wants the provider to return the state of the operation that is executing asynchronously or (whether the requestor wants the provider to return) any result of the operation that is executing asynchronously. If the <statusRequest> does not specify a value for statusReturns, the requestor has implicitly asked that the provider return any result of the operation that is executing asynchronously.
[Ed. The most confusing thing about this is that if you want the actual state of the asynchronous operation, you’re getting the result attribute. (If you want the results of the specified operation, you’re getting the state of the operation thus far.)

Since SpmlResponseType requires the “result” attribute, the currentResponse will always have a “result” attribute. That means we need a flag only when we also want output.

Why not replace ‘statusReturns’ with a Boolean attribute ‘returnOutput’]

3.4.2.2.2 Response (normative)

A provider that receives a <statusRequest> from a requestor that the provider trusts MUST examine the content of the request. If the request is valid, the provider MUST cancel the operation (that the requestID attribute of the <statusRequest> specifies) if it is possible for the provider to do so.

Execution. The provider MUST execute the status operation synchronously (if the provider executes the status operation at all). See the section entitled “Determining execution type”.

returnOutput. If the statusRequest specifies “returnOutput=’true’”, then the provider must also return in the <statusResponse> any output of the specified operation.

Response. The provider must return to the requestor a <statusResponse>.

Result. A <statusResponse> must have a result attribute that indicates whether the provider successfully obtained the status of the specified operation (and any output of the specified operation if the statusRequest specifies “returnOutput=’true’”). See ResultCode for values of this attribute.

Since the provider must execute a status operation synchronously, the <statusResponse> MUST NOT specify “result=’pending’”. The <statusResponse> MUST specify “result=’success’” or (the <statusResponse> MUST specify) “result=’failure’”.

· If the provider successfully obtained the status of the specified operation (and successfully obtained any output of the specified operation if the statusRequest specifies “returnOutput=’true’”), the <statusResponse> MUST specify “result=’success’”.

· If the provider failed to obtain the status of the specified operation (or failed to obtain any output of the specified operation if the <statusRequest> specifies “returnOutput=’true’”), the <statusResponse> MUST specify “result=’failure’”.

statusReturns. A <statusRequest> MAY have a statusReturns attribute that specifies whether the requestor wants the provider to return the state of the operation that is executing asynchronously or (whether the requestor wants the provider to return) any result of the operation that is executing asynchronously.

If the <statusRequest> does not specify a value for statusReturns, the provider MUST assume that the requestor wants any result of the operation that is executing asynchronously.
[Ed. I think status must always return ‘result’. We need to flag when to ‘returnOutput’.]

currentResult. A <statusResponse> MUST contain a <currentResult> unless the <statusRequest> specifies “result=’failure’”. The <currentResult> element MUST have a result attribute that specifies the current state of the operation that is executing asynchronously.

If the <statusRequest> specifies “returnOutput=’true’”, then the <currentResult> element MUST contain any output thus far produced by the operation that is executing asynchronously.

· A <currentResult> that specifies “result=’success’” MUST contain all the output that would have been contained in a synchronous response for the operation if the provider had executed the specified operation synchronously.

· A <currentResult> that specifies “result=’pending’” MUST contain a subset of the output that would have been contained in a synchronous response for the operation if the provider had executed the specified operation synchronously.

Error. If the provider cannot cancel the specified operation, the <statusResponse> MUST contain an error attribute that characterizes the failure. See ErrorCode for values of this attribute.

The provider MUST return an error if any of the following is true:

· The requestID attribute of the <statusRequest> has no value. In this case, the <statusResponse> SHOULD specify “error=’malformedRequest’”.

· The requestID attribute of the <statusRequest> does not specify an operation that exists. In this case the provider SHOULD return “error=’noSuchRequest’”.

3.4.2.2.3 Examples (non-normative)

In order to illustrate the status operation, we must first execute an operation asynchronously. In this example, a requestor first asks a provider to add a Person asynchronously.

	<addRequest execution=”asynchronous”>

<container ID=”ou=Development, org=Example”>

<target>target2</target>

</container>

<parameters>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</parameters>

</addRequest>

The provider returns an <addResponse> element. The result attribute of the <addResponse> element indicates that provider will execute the delete operation asynchronously. The <addResponse> also has a requestID attribute.

	<addResponse result=“pending" requestID=”8489”/>

The same requestor then asks the provider to obtain the status of the add operation. The requestor does not ask the provider to include any output of the add operation.

	<statusRequest requestID=”8489”/>

The provider returns a <statusResponse>. The result attribute of the <statusResponse> indicates that the provider successfully obtained the status of the add operation.

The <statusResponse> also contains a <currentResult> that represents the add operation. The <currentResult> specifies “result=’pending’”, which indicates that the add operation has not completed executing.
	<statusResponse result=”success”>

<currentResult result=”pending” requestID=”8489”/>

</statusResponse>

Next, the same requestor asks the provider to obtain the status of the add operation. This time the requestor asks the provider to include any output of the add operation.

	<statusRequest requestID=”8489” returnOutput=”true”/>

The provider again returns a <statusResponse>. The result attribute of the <statusResponse> again indicates that the provider successfully obtained the status of the add operation.

The <statusResponse> again contains a <currentResult> that represents the add operation. The <currentResult> specifies “result=’pending’”, which indicates that the add operation still has not completed executing.

Because the statusRequest specified “returnOutput=’true’”, the <currentResult> contains a subset of the output that the add operation will eventually produce if the add operation successfully completes. The <pso> element already contains the <Person> data that was supplied in the <addRequest> but the <pso> element does not yet contain the <id> element that will be generated when the add operation is complete.
[Ed. <currentResult> is of type SpmlResponseType (not AddResponseType).
Is it legal for currentResult to contain a <pso> element?]

	<statusResponse result=”success”>

<currentResult result=”pending” requestID=”8489”>

<pso>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</pso>

</currentResult>

</statusResponse>

Finally, the same requestor asks the provider to obtain the status of the add operation. The requestor again asks the provider to include any output of the add operation.

	<statusRequest requestID=”8489” returnOutput=”true”/>

The provider again returns a <statusResponse>. The result attribute of the <statusResponse> again indicates that the provider successfully obtained the status of the add operation.

The <statusResponse> again contains a <currentResult> that represents the add operation. The <currentResult> specifies “result=’success’”, which indicates that the add operation completed successfully.

Because the statusRequest specified “returnOutput=’true’” and because the <currentResult> specifies “result=’success’”, the <currentResult> now contains all of the output of the add operation. The <pso> element contains the <Person> data that was supplied in the <addRequest> and the <pso> element also contains the <id> element that was missing earlier.
[Ed. <currentResult> is of type SpmlResponseType (not AddResponseType).
Is it legal for currentResult to contain a <pso> element?]

	<statusResponse result=”success”>

<currentResult result=”pending” requestID=”8489”>

<pso>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</pso>

<id ID=”2244”><target>target2</target></id>

</currentResult>

</statusResponse>

3.4.3 Batch Capability

3.4.4 Bulk Capability

3.4.5 Password Capability

3.4.6 Reference Capability

3.4.7 Search Capability

3.4.8 Suspend Capability

3.5 Custom Capabilities

4 Schema

5 Security and privacy considerations (non-normative)

6 Conformance (normative)

draft-pstc-spml2-core-01.doc

Page 1 of 10
Page 3 of 10
draft-pstc-spml2-core-01.doc

