Joseph M. Chiusano

February 4, 2002

UN/CEFACT Core Components Realisation At-A-Glance

Please Note

· The purpose of this document is solely to present selected concepts from the Core Components Realisation specification for the purpose of providing a reader with a high-level introduction to the concepts

· The non-inclusion of a concept from Core Components Realisation specification in this document does not imply that the concept is either unimportant or less important than those concepts that are included - it simply means that it was not selected by the author for inclusion

· If there is a discrepancy (real or perceived) between the information in this document and the Core Components Realisation specification it is an unintended error by the author, and the Core Components Realisation specification shall take precedence

Introduction

· This specification initially defines three needs:

(1) The need to allow data components and their associated meta information to be loaded and extracted from an ebXML Registry in a format that maintains the full set of metadata that expresses the semantics of those data components

(2) The need for ebXML-based processes to utilize default assembly mappings from this extract format into useful e-business interchange payload definitions

(3) The need to explain the process of how existing industry component libraries can be enhanced to become candidates for adoption into UN/CEFACT Core Component libraries and then potentially promoted as wider cross-industry Core Components in their own right

· Core Component Realisation (CCR) group will define the Import and Export format and default mappings into XML for exported components

· This format detail and its interaction with the Registry constitute the Component Registry Interface (CRI)

· The CRI is in a position to act as a transition point between the UML Tools world and the XML-only world

· Core Components must be changed to CRI format to be loaded into the Registry

· A UID (Unique ID) is associated with each Core Component - this allows it to be precisely addressed and versioned

· The CCR group will need to work with the UML-to-XML and Core Components groups within ebTWG, and in broader context with the ebXML Registry TC

· Deliverables:

(1) Definition of Component Registry Interface (CRI) - contained in this document

(2) Definition of mappings from CRI to useful payload assembly definitions - referred to

as Registry to Payload, or R2P; this will be documented in a separate document. Initial thoughts are to use XMI version 2 as the basis for this format.

(3) Process for converting existing component libraries to allow them to be loaded into the Registry and also be elevated to UN Component Status. Once loaded, these components can be enhanced to refer to Core Components, or established as actual UN Certified Core Components (UNCC).

· The distinction between Core Components in the Registry and UNCC is that the UNCC have reached a semantic quality that allows them to be used interoperably

· This approach also ensures that Core Component semantics are being captured and stored in a neutral simple XML instance structure that is not specific to any one rendering or dialect for business documents

· The document formats required for business interactions themselves are rendered as either XML, or any other convenient format needed by the business process implementation and trading partner requirements, such as EDI

· This rendering is done by assembly services
· These format assembly instructions are also stored in the Registry associated with the assembly Core Component definitions and can be provided and accessed by vendors and implementers as needed

Adopting and Implementing ebXML-Based Systems
· Once Core Components have been established and made available, then the CCR is designed to facilitate business organizations migrating their existing systems to ebXML and creating business artifacts in a systematic and deliberate series of steps

· Four phases are described:

(1) Relate existing legacy transaction formats to structural definitions containing UID

references, and load and enhance the definitions of the UID items and structures into the ebXML Registry to complete as much of the CRI information as applicable

· In summary, this addresses adding a UID to each element in a transaction structure - ex: CAT10103
· Each UID reference points to an entry in the ebXML Registry using the CRI XML instance containing the semantic definition of that individual item

· Format of transaction may be DTD, XML Schema, RELAX, or other machine-parable structure syntax

(2) Validate and migrate existing transactions and/or new transactions to conform to the

best practices and XML representation guidelines and rules established by the ebXML specifications

(3) Participate in alignment efforts to relate the industry-specific components to the broader UNCC definitions and related industry group work, including interoperability and alignment across industry;

· Use of UMM can facilitate this process
(4) Migrate existing interchange documents to reference and use UNCC UID references as substitutions for older proprietary components. Also migrate them to UN-approved business process definitions and associated document payloads and ebXML-enabled transportation and routing.

XML Representation
· XML representation - the actual instance of the Core Component exposed in an XML structure

· Designed to facilitate application software mechanisms and use of Core Components throughout the ebXML technical architecture - i.e. have the ability to store the Core Component within an ebXML Registry and effectively manage and access it there

· p.16 Figure 5 - Core Component Instance Information Model

Implementation Diagrams
· p.19 Figure 5.1.0 - Core Component XML Schema Model (DTD Representation)

· Shows the complete hierarchy of the XML Core Component instance

· A Core Component has a Default Assembly and zero or more alternate Assemblies

· The Default Assembly ensures that there is always a primary set of information with which the Core Component can be referenced, regardless of whether the Core Component has an additional Assembly or not

· A Default Assembly is always provided, so that consistent access can be made against reliable content for all types and aspects of Core Components themselves

· Default Assembly contains items such as:

· Element name
· The XML name of the Core Component; this is a default name to be used for an XML tag

· Attributes

· Constraints
· Default value, permitted values, etc.

· Associations

· List of components and other items that this component is associated with; direction is included for modeling tools

· Dependencies

· Processes
· i.e. in the case of a business document for exchanging in a business process; can be used to provide a linkage to BPSS

· Schemas
· An XML or other schema describing the component

· Context rules

· Object class/property term/representation term

· Support for Core Component model definitions

· etc.

A Addendum
· p.52 - Sample Core Component XML instances

PAGE
2

