
 1

This document is a proposed revision 1
of Section 8.2 of ebRS v1.1 2

Submitted by Len Gallagher, Sept 27, 2001 3

8. Object(?) Query Management Service 4
 5
NOTE to EDITOR: Some changes will be needed to this introduction to reflect the current status of 6
Section 8.1, Browse and Drill Down Query Support”, and Section 8.3, “SQL Query Support”. This 7
proposal deals only with Section 8.2, “Filter Query Support”. 8
 9

8.1 Browse and Drill Down Query Support 10
 11
NOTE to EDITOR: May be deleted in favor of Filter Query. That proposed action is independent of this 12
proposal. 13

8.2 Filter Query Support 14
FilterQuery is an XML syntax that provides simple query capabilities for any ebXML conforming Registry 15
implementation. Each query alternative is directed against a single class defined by the ebXML Registry 16
Information Model (ebRIM). The result of such a query is a set of instances of that class. A FilterQuery 17
may be a stand-alone query or it may be the initial action of a ReturnRegistryEntry query or a 18
ReturnRepositoryItem query. 19
A client submits a FilterQuery, a ReturnRegistryEntry query, or a ReturnRepositoryItem query to the 20
ObjectQueryManager as part of an AdhocQueryRequest. The ObjectQueryManager sends an 21
AdhocQueryResponse back to the client, enclosing the appropriate FilterQueryResponse, 22
ReturnRegistryEntryResponse, or ReturnRepositoryItemResponse specified herein. The sequence 23
diagrams for AdhocQueryRequest and AdhocQueryResponse are specified in Section Error! Reference 24
source not found.. 25
Each FilterQuery alternative is associated with an ebRIM Binding that identifies a hierarchy of classes 26
derived from a single class and its associations with other classes as defined by ebRIM. Each choice of a 27
class pre-determines a virtual XML document that can be queried as a tree. For example, let C be a 28
class, let Y and Z be classes that have direct associations to C, and let V be a class that is associated 29
with Z. The ebRIM Binding for C might be as in Figure 1. 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47

Figure 1: Example ebRIM Binding 48

C

Y Z

V

Label1 Label2

Label3

 2

 49
Label1 identifies an association from C to Y, Label2 identifies an association from C to Z, and Label3 50
identifies an association from Z to V. Labels can be omitted if there is no ambiguity as to which ebRIM 51
association is intended. The name of the query is determined by the root class, i.e. this is an ebRIM 52
Binding for a CQuery. The Y node in the tree is limited to the set of Y instances that are linked to C by the 53
association identified by Label1. Similarly, the Z and V nodes are limited to instances that are linked to 54
their parent node by the identified association. 55
Each FilterQuery alternative depends upon one or more class filters, where a class filter is a restricted 56
predicate clause over the attributes of a single class. The supported class filters are specified in Section 57
8.2.9 and the supported predicate clauses are defined in Section Error! Reference source not found.. 58
A FilterQuery will be composed of elements that traverse the tree to determine which branches satisfy the 59
designated class filters, and the query result will be the set of root node instances that support such a 60
branch. 61
In the above example, the CQuery element will have three subelements, one a CFilter on the C class to 62
eliminate C instances that do not satisfy the predicate of the CFilter, another a YFilter on the Y class to 63
eliminate branches from C to Y where the target of the association does not satisfy the YFilter, and a 64
third to eliminate branches along a path from C through Z to V. The third element is called a branch 65
element because it allows class filters on each class along the path from X to V. In general, a branch 66
element will have subelements that are themselves class filters, other branch elements, or a full-blown 67
query on the terminal class in the path. 68
If an association from a class C to a class Y is one-to-zero or one-to-one, then at most one branch or filter 69
element on Y is allowed. However, if the association is one-to-many, then multiple filter or branch 70
elements are allowed. This allows one to specify that an instance of C must have associations with 71
multiple instances of Y before the instance of C is said to satisfy the branch element. 72
The FilterQuery syntax is tied to the structures defined in ebRIM. Since ebRIM is intended to be stable, 73
the FilterQuery syntax is stable. However, if new structures are added to the ebRIM, then the FilterQuery 74
syntax and semantics can be extended at the same time. 75
Support for FilterQuery is required of every conforming ebXML Registry implementation, but other query 76
options are possible. The Registry will hold a self-describing CPP that identifies all supported 77
AdhocQuery options. This profile is described in Section Error! Reference source not found.. 78
The ebRIM Binding paragraphs in Sections 8.2.2 through 8.2.6 below identify the virtual hierarchy for 79
each FilterQuery alternative. The Semantic Rules for each query alternative specify the effect of that 80
binding on query semantics. 81
The ReturnRegistryEntry and ReturnRepositoryItem services defined below provide a way to structure an 82
XML document as an expansion of the result of a RegistryEntryQuery. The ReturnRegistryEntry element 83
specified in Section 8.2.7 allows one to specify what metadata one wants returned with each registry 84
entry identified in the result of a RegistryEntryQuery. The ReturnRepositoryItem specified in Section 85
8.2.8 allows one to specify what repository items one wants returned based on their relationships to the 86
registry entries identified by the result of a RegistryEntryQuery. 87

88

 3

8.2.1 FilterQuery 88

Purpose 89
To identify a set of registry instances from a specific registry class. Each alternative assumes a specific 90
binding to ebRIM. The query result for each query alternative is a set of references to instances of the 91
root class specified by the binding. The status is a success indication or a collection of warnings and/or 92
exceptions. 93

Definition 94
 95
<!ELEMENT FilterQuery 96
 (RegistryEntryQuery 97
 | AuditableEventQuery 98
 | ClassificationNodeQuery 99
 | RegistryPackageQuery 100
 | OrganizationQuery)> 101
 102
<!ELEMENT FilterQueryResult 103
 (RegistryEntryQueryResult 104
 | AuditableEventQueryResult 105
 | ClassificationNodeQueryResult 106
 | RegistryPackageQueryResult 107
 | OrganizationQueryResult)> 108
 109
<!ELEMENT RegistryEntryQueryResult (RegistryEntryView*)> 110
 111
<!ELEMENT RegistryEntryView EMPTY > 112
<!ATTLIST RegistryEntryView 113
 id CDATA #REQUIRED 114
 name CDATA #REQUIRED 115
 contentURI CDATA #IMPLIED > 116
 117
<!ELEMENT AuditableEventQueryResult (AuditableEventView*)> 118
 119
<!ELEMENT AuditableEventView EMPTY > 120
<!ATTLIST AuditableEventView 121
 id CDATA #REQUIRED 122
 name CDATA #REQUIRED 123
 timestamp CDATA #REQUIRED > 124
 125
<!ELEMENT ClassificationNodeQueryResult (ClassificationNodeView*)> 126
 127
<!ELEMENT ClassificationNodeView EMPTY > 128
<!ATTLIST ClassificationNodeView 129
 id CDATA #REQUIRED 130
 name CDATA #REQUIRED 131
 code CDATA #REQUIRED > 132
 133
<!ELEMENT RegistryPackageQueryResult (RegistryPackageView*)> 134
 135
<!ELEMENT RegistryPackageView EMPTY > 136
<!ATTLIST RegistryPackageView 137
 id CDATA #REQUIRED 138
 name CDATA #REQUIRED > 139
 140
<!ELEMENT OrganizationQueryResult (OrganizationView*)> 141

 4

 142
<!ELEMENT OrganizationView EMPTY > 143
<!ATTLIST OrganizationView 144
 id CDATA #REQUIRED 145
 name CDATA #REQUIRED > 146
 147
 148

Semantic Rules 149
1. The semantic rules for each FilterQuery alternative are specified in subsequent subsections. 150
2. Each FilterQueryResult is a set of XML elements to identify each instance of the result set. Each XML 151

attribute carries a value derived from the value of an attribute specified in the Registry Information 152
Model as follows: 153
a) id carries the value of the id attribute of the RegistryObject class, 154
b) name carries the value of the name attribute of the RegistryObjectClass, 155
c) contentURI, if present, carries the value of the contentURI attribute of the ExtrinsicObject class, 156
d) timestamp carries a character string literal value to represent the value of the timestamp attribute 157

of the AuditableEvent class, 158
e) code carries the value of the code attribute of the ClassificationNode class. 159

3. If an error condition is raised during any part of the execution of a FilterQuery, then the status 160
attribute of the XML RegistryResult is set to “failure” and no query result element is returned; instead, 161
a RegistryErrorList element must be returned with its highestSeverity element set to “error”. At least 162
one of the RegistryError elements in the RegistryErrorList will have its severity attribute set to “error”. 163

4. If no error conditions are raised during execution of a FilterQuery, then the status attribute of the XML 164
RegistryResult is set to “success” and an appropriate query result element must be included. If a 165
RegistryErrorList is also returned, then the highestSeverity attribute of the RegistryErrorList is set to 166
“warning” and the serverity attribute of each RegistryError is set to “warning”. 167

 168
 169

170

 5

8.2.2 RegistryEntryQuery 170

Purpose 171
To identify a set of registry entry instances as the result of a query over selected registry metadata. 172

ebRIM Binding 173
 174

 175

 176

 177

 178

 179

 180

 181

 182

 183

 184
 185

 186

Definition 187
 188
<!ELEMENT RegistryEntryQuery 189
 (RegistryEntryFilter?, 190
 SourceAssociationBranch*, 191
 TargetAssociationBranch*, 192
 HasClassificationBranch*, 193
 SubmittingOrganizationBranch?, 194
 ResponsibleOrganizationBranch?, 195
 ExternalIdentifierBranch*, 196
 ExternalLinkBranch*, 197
 HasSlotBranch*, 198
 HasAuditableEventBranch*)> 199
 200
<!ELEMENT SourceAssociationBranch 201
 (AssociationFilter?, 202
 (RegistryEntryFilter? | RegistryEntryQuery?))> 203
 204
<!ELEMENT TargetAssociationBranch 205
 (AssociationFilter?, 206
 (RegistryEntryFilter? | RegistryEntryQuery?))> 207
 208
<!ELEMENT HasClassificationBranch 209
 (ClassificationFilter?, 210

RegistryEntry

 Registry
 Entry

Association Classification Organization

Organization

Auditable
Event Association

Source

SubmittingOrganization

ResponsibleOrganization

Target

Registry
Entry

Registry
Entry

Classification
 Scheme

Target
Source

External
Link

External
Identifier

Slot

Path

Classification
 Node

Registry
 Entry

 Path
Element

 Slot
Element

 6

 FromSchemeBranch?, 211
 HasPathBranch?, 212
 LocalNodeBranch?, 213
 SubmittingOrganizationBranch?)> 214
 215
<!ELEMENT FromSchemeBranch 216
 (ClassificationSchemeFilter | RegistryEntryQuery)> 217
 218
<!ELEMENT HasPathBranch 219
 (PathFilter | XpathNodeExpression | PathElementFilter+)> 220
 221
<!ELEMENT XpathNodeExpression (TO BE DETERMINED)> 222
 223

Author’sNOTE: The HasPathBranch specifies 3 alternatives, each of which has flaws. PathFilter and 224
PathElementFilter depend upon the definition of new methods for the ClassificationNode and 225
Classification classes in ebRIM (cf Section 8.2.9 below), and the XpathNodeExpression depends upon a 226
not yet existing specification for the getPath() method from the ebRIM ClassificationNode class and on 227
specification of a subset of XPATH functionality that can be applied to the string returned from the 228
getPath() method. It is possible that one or more of these alternatives will become superfluous with 229
respect to the others, with likely deletion of the less useful alternative(s). The methods for Classification 230
will depend upon a revised XML schema specification for Classification soon to emerge from the Registry 231
external classification scheme team. 232

 233
<!ELEMENT LocalNodeBranch 234
 (ClassificationNodeFilter? | ClassificationNodeQuery?)> 235
 236
<!ELEMENT SubmittingOrganizationBranch 237
 (OrganizationFilter | OrganizationQuery)> 238
 239
<!ELEMENT ResponsibleOrganizationBranch 240
 (OrganizationFilter? | OrganizationQuery?)> 241
 242
<!ELEMENT ExternalIdentifierBranch 243
 (ExternalIdentifierFilter?, 244
 SubmittingOrganizationBranch?)> 245
 246
<!ELEMENT ExternalLinkBranch 247

 (ExternalLinkFilter)> 248
 249
<!ELEMENT HasSlotBranch 250
 (SlotFilter?, 251
 SlotElementFilter*)> 252
 253
<!ELEMENT HasAuditableEventBranch 254
 (AuditableEventFilter? | AuditableEventQuery?)> 255
 256

 257

Semantic Rules 258
1. Let RE denote the set of all persistent RegistryEntry instances in the Registry. The following steps will 259

eliminate instances in RE that do not satisfy the conditions of the specified filters. 260
a) If a RegistryEntryFilter is not specified, or if RE is empty, then continue below; otherwise, let x be 261

a registry entry in RE. If x does not satisfy the RegistryEntryFilter as defined in Section 8.2.9, then 262
remove x from RE. 263

b) If a SourceAssociationBranch element is not specified, or if RE is empty, then continue below; 264
otherwise, let x be a remaining registry entry in RE. If x is not the source object of some 265
Association instance, then remove x from RE; otherwise, treat each SourceAssociationBranch 266
element separately as follows: 267

 7

If no AssociationFilter is specified within the SourceAssociationBranch, then let AF be the set of 268
all Association instances that have x as a source object; otherwise, let AF be the set of 269
Association instances that satisfy the AssociationFilter and have x as the source object. If AF is 270
empty, then remove x from RE. If no RegistryEntryFilter or RegistryEntryQuery is specified within 271
SourceAssociationBranch, then let RET be the set of all RegistryEntry instances that are the 272
target object of some element of AF; otherwise, let RET be the set of RegistryEntry instances that 273
satisfy the RegistryEntryFilter or RegistryEentryQuery and are the target object of some element 274
of AF. If RET is empty, then remove x from RE. 275

c) If a TargetAssociationBranch element is not specified, or if RE is empty, then continue below; 276
otherwise, let x be a remaining registry entry in RE. If x is not the target object of some 277
Association instance, then remove x from RE; otherwise, treat each TargetAssociationBranch 278
element separately as follows: 279
If no AssociationFilter is specified within TargetAssociationBranch, then let AF be the set of all 280
Association instances that have x as a target object; otherwise, let AF be the set of Association 281
instances that satisfy the AssociationFilter and have x as the target object. If AF is empty, then 282
remove x from RE. If no RegistryEntryFilter or RegistryEntryQuery is specified within 283
TargetAssociationBranch, then let RES be the set of all RegistryEntry instances that are the 284
source object of some element of AF; otherwise, let RES be the set of RegistryEntry instances 285
that satisfy the RegistryEntryFilter or RegistryEntryQuery and are the source object of some 286
element of AF. If RES is empty, then remove x from RE. 287

d) If a HasClassificationBranch element is not specified, or if RE is empty, then continue below; 288
otherwise, let x be a remaining registry entry in RE. If x is not the classifiedObject of some 289
Classification instance, then remove x from RE; otherwise, treat each HasClassificationBranch 290
element separately as follows: 291
If no ClassificationFilter is specified within the HasClassificationBranch, then let CL be the set of 292
all Classification instances that have x as the classifiedObject; otherwise, let CL be the set of 293
Classification instances that satisfy the ClassificationFilter and have x as the classifiedObject. If 294
CL is empty, then remove x from RE and continue below. Otherwise, if CL is not empty, and if a 295
FromSchemeBranch is specified, then replace CL by the set of remaining Classification instances 296
in CL whose defining classification scheme satisfies the ClassificationSchemeFilter or the 297
RegistryEntryQuery immediately contained in the FromSchemeBranch. If the new CL is empty, 298
then remove x from RE and continue below. Otherwise, if CL remains not empty, and if a 299
HasPathBranch is specified, then replace CL by the set of remaining Classification instances in 300
CL that satisfy the PathFilter, the XpathNodeExpression, or every one of the PathElementFilter 301
elements immediately contained in the HasPathBranch. If the new CL is empty, then remove x 302
from RE and continue below. Otherwise, if CL remains not empty, and if a LocalNodeBranch is 303
specified, then replace CL by the set of remaining Classification instances in CL for which a local 304
node exists and for which that local node satisfies the ClassificationNodeFilter or the 305
ClassificationNodeQuery immediately contained in the LocalNodeBranch. . If the new CL is 306
empty, then remove x from RE and continue below. Otherwise, if CL remains not empty, and if a 307
SubmittingOrganizationBranch is specified, then replaceCL by the set of remaining Classification 308
instances in CL for which the submitting organization of that classification satisfies the 309
OrganizationFilter or OrganizationQuery immediately contained in the 310
SubmittingOrganizationBranch. If the new CL is empty, then remove x from RE. 311

e) If a SubmittingOrganizationBranch element is not specified, or if RE is empty, then continue 312
below; otherwise, let x be a remaining registry entry in RE. If the submitting organization for x 313
does not satisfy the OrganizationFilter or OrganizationQuery immediately contained in the 314
SubmittingOrganizationBranch, then remove x from RE. 315

f) If a ResponsibleOrganizationBranch element is not specified, or if RE is empty, then continue 316
below; otherwise, let x be a remaining registry entry in RE. If x does not have a responsible 317
organization, then remove x from RE and continue below; otherwise, if an OrganizationFilter or 318
OrganizationQuery is specified within the ResponsibleOrganizationBranch and if the responsible 319
organization for x does not satisfy the OrganizationFilter or OrganizationQuery, then remove x 320
from RE. 321

g) If an ExternalIdentifierBranch element is not specified, or if RE is empty, then continue below; 322
otherwise, let x be a remaining registry entry in RE. If x is not linked to some ExternalIdentifier 323
instance, then remove x from RE; otherwise, treat each ExternalIdentifierBranch element 324

 8

separately as follows: If an ExternalIdentifierFilter is not specified, then let EI be the set of 325
ExternalIdentifier instances that are linked to x; otherwise, let EI be the set of ExternalIdentifier 326
instances that satisfy the ExternalIdentifierFilter and are linked to x. If EI is empty, then remove x 327
from RE and continue below. Otherwise, if EI remains not empty, and if a 328
SubmittingOrganizationBranch is specified, replace EI by the set of remaining ExternalIdentifier 329
instances in EI for which the OrganizationFilter or OrganizationQuery immediately contained in 330
the SubmittingOrganizationBranch is valid. If the new EI is empty, then remove x from RE. 331

h) If an ExternalLinkBranch element is not specified, or if RE is empty, then continue below; 332
otherwise, let x be a remaining registry entry in RE. If x is not linked to some ExternalLink 333
instance, then remove x from RE; otherwise, treat each ExternalLinkBranch element separately 334
as follows: Let EL be the set of ExternalLink instances that satisfy the ExternalLinkFilter directly 335
contained in the ExternalLinkBranch and are linked to x. If EL is empty, then remove x from RE. 336

i) If a HasSlotBranch element is not specified, or if RE is empty, then continue below; otherwise, let 337
x be a remaining registry entry in RE. If x is not linked to some Slot instance, then remove x from 338
RE and continue below; otherwise, treat each HasSlotBranch element separately as follows: If a 339
SlotFilter is not specified within HasSlotBranch, then let SL be the set of all Slot instances for x; 340
otherwise, let SL be the set of Slot instances that satisfy the SlotFilter and are Slot instances for 341
x. If SL is empty, then remove x from RE and continue below. Otherwise, if SL remains not 342
empty, and if a SlotElementFilter is specified, replace SL by the set of remaining Slot instances in 343
SL for which every specified SlotElementFilter is valid. If SL is empty, then remove x from RE. 344

j) If a HasAuditableEventBranch element is not specified, or if RE is empty, then continue below; 345
otherwise, let x be a remaining registry entry in RE. If x is not linked to some AuditableEvent 346
instance, then remove x from RE; otherwise, treat each HasAuditableEventBranch element 347
separately as follows: If an AuditableEventFilter or AuditableEventQuery is not specified within 348
HasAuditableEventBranch, then let AE be the set of all AuditableEvent instances for x; otherwise, 349
let AE be the set of AuditableEvent instances that satisfy the AuditableEventFilter or 350
AuditableEventQuery and are auditable events for x. If AE is empty, then remove x from RE. 351

2. If RE is empty, then raise the warning: registry entry query result is empty; otherwise, return RE as 352
the result of the RegistryEntryQuery. 353

3. Return any accumulated warnings or exceptions as the StatusResult associated with the 354
RegistryEntryQuery. 355

 356

Examples 357
A client wishes to establish a trading relationship with XYZ Corporation and wants to know if they have 358
registered any of their business documents in the Registry. The following query returns a set of registry 359
entry instances for currently registered items submitted by any organization whose name includes the 360
string "XYZ". It does not return any registry entry instances for superseded, replaced, deprecated, or 361
withdrawn items. 362

 363
<RegistryEntryQuery> 364
 <RegistryEntryFilter> 365
 status EQUAL "Approved" -- code by Clause, Section Error! Reference 366

source not found. 367
 </RegistryEntryFilter> 368
 <SubmittingOrganizationBranch> 369
 <OrganizationFilter> 370
 name CONTAINS "XYZ" -- code by Clause, Section Error! Reference 371

source not found. 372
 </OrganizationFilter> 373
 </SubmittingOrganizationBranch> 374
</RegistryEntryquery> 375
 376

A client is using the United Nations Standard Product and Services Classification (UNSPSC) scheme and 377
wants to identify all companies that deal with products classified as "Integrated circuit components", i.e. 378
UNSPSC code "321118". The client knows that companies have registered their Collaboration Protocol 379

 9

Profile (CPP) documents in the Registry, and that each such profile has been classified by UNSPSC 380
according to the products the company deals with. However, the client does not know if the UNSPSC 381
classification scheme is internal or external to this registry. The following query returns a set of registry 382
entry instances for CPP’s of companies that deal with integrated circuit components. 383

 384
<RegistryEntryQuery> 385
 <RegistryEntryFilter> 386
 objectType EQUAL "CPP" AND -- code by Clause, Section Error! Reference 387

source not found. 388
 status EQUAL "Approved" 389
 </RegistryEntryFilter> 390
 <HasClassificationBranch> 391
 <FromSchemeBranch> 392
 <ClassificationSchemeFilter> 393
 id EQUAL "urn:org:un:spsc:cs2001" -- code by Clause, Section Error! 394

Reference source not found. 395
 </ClassificationSchemeFilter> 396
 </FromSchemeBranch> 397
 <HasPathBranch> 398
 <PathFilter> 399
 code EQUAL "321118" 400
 </PathFilter> 401
 </HasPathBranch> 402
 <HasClassificationBranch> 403
</RegistryEntryQuery> 404

 405
A client application needs all items that are classified by two different classification schemes, one based 406
on "Industry" and another based on "Geography". Both schemes have been defined by ebXML and are 407
registered as "urn:ebxml:cs:industry" and "urn:ebxml:cs:geography", respectively. The following query 408
identifies registry entries for all registered items that are classified by Industry as any subnode of 409
"Automotive" and by Geography as any subnode of "Asia/Japan". 410
 411

<RegistryEntryQuery> 412
 <HasClassificationBranch> 413
 <FromSchemeBranch> 414
 <ClassificationSchemeFilter> 415
 id EQUAL "urn:ebxml:cs:industry" -- code by Clause, Section Error! 416

Reference source not found. 417
 </ClassificationSchemeFilter> 418
 </FromSchemeBranch> 419
 <HasPathBranch> 420
 <XpathExpression> 421
 getPath = “//Automotive” 422
 </XpathExpression> 423
 </HasPathExpression> 424
 </HasClassificationBranch> 425
 <HasClassificationBranch> 426
 <FromSchemeBranch> 427
 <ClassificationSchemeFilter> 428
 id EQUAL "urn:ebxml:cs:geography" -- code by Clause, Section Error! 429

Reference source not found. 430
 </ClassificationSchemeFilter> 431
 </FromSchemeBranch> 432
 <HasPathBranch> 433
 <PathFilter> 434
 path STARTSWITH "/Asia/Japan" 435
 </PathFilter> 436

 10

 </HasPathBranch> 437
 </HasClassificationBranch> 438
</RegistryEntryQuery> 439

 440
A client application wishes to identify all registry Package instances that have a given registry entry as a 441
member of the package. The following query identifies all registry packages that contain the registry entry 442
identified by URN "urn:path:myitem" as a member: 443
 444

<RegistryEntryQuery> 445
 <RegistryEntryFilter> 446
 objectType EQUAL "RegistryPackage" -- code by Clause, Section Error! 447

Reference source not found. 448
 </RegistryEntryFilter> 449
 <SourceAssociationBranch> 450
 <AssociationFilter> 451
 associationType EQUAL "HasMember" -- code by Clause, Section Error! 452

Reference source not found. 453
 </AssociationFilter> 454
 <RegistryEntryFilter> 455
 id EQUAL "urn:path:myitem" -- code by Clause, Section Error! Reference 456

source not found. 457
 </RegistryEntryFilter> 458
 </SourceAssociationBranch> 459
</RegistryEntryQuery> 460

 461
A client application wishes to identify all RegistryEntry instances that are classified by some internal 462
classification scheme and have some given keyword as part of the name or description of one of the 463
classification nodes of that classification scheme. The following query identifies all such RegistryEntry 464
instances. The query takes advantage of the knowledge that the classification scheme is internal, and 465
thus that all of its nodes are fully described as ClassificationNode instances. 466
 467

<RegistryEntryQuery> 468
 <HasClassificationBranch> 469
 <LocalNodeBranch> 470
 <ClassificationNodeFilter> 471
 472
 name CONTAINS "transistor" OR -- code by Clause, Section Error! 473

Reference source not found. 474
 description CONTAINS "transistor" 475
 </ClassificationNodeFilter> 476
 </LocalNodeBranch> 477
 </HasClassificationBranch> 478
</RegistryEntryQuery> 479

 480
481

 11

8.2.3 AuditableEventQuery 481

Purpose 482
To identify a set of auditable event instances as the result of a query over selected registry metadata. 483
ebRIM Binding 484

Definition 485

 486
<!ELEMENT AuditableEventQuery 487
 (AuditableEventFilter?, 488
 RegistryEntryQuery*, 489
 InvokedByBranch?)> 490
 491
<!ELEMENT InvokedByBranch 492
 (UserFilter?, 493
 OrganizationQuery?)> 494

 495

Semantic Rules 496
1. Let AE denote the set of all persistent AuditableEvent instances in the Registry. The following steps 497

will eliminate instances in AE that do not satisfy the conditions of the specified filters. 498
 499

a) If an AuditableEventFilter is not specified, or if AE is empty, then continue below; otherwise, let x 500
be an auditable event in AE. If x does not satisfy the AuditableEventFilter as defined in Section 501
8.2.9, then remove x from AE. 502

b) If a RegistryEntryQuery element is not specified, or if AE is empty, then continue below; 503
otherwise, let x be a remaining auditable event in AE. Treat each RegistryEntryQuery element 504
separately as follows: 505
Let RE be the result set of the RegistryEntryQuery as defined in Section 8.2.2. If x is not an 506
auditable event for some registry entry in RE, then remove x from AE. 507

c) If an InvokedByBranch element is not specified, or if AE is empty, then continue below; otherwise, 508
let x be a remaining auditable event in AE. 509

Let u be the user instance that invokes x. If a UserFilter element is specified within the InvokedByBranch, 510
and if u does not satisfy that filter, then remove x from AE; otherwise, continue below. 511

AuditableEvent

RegistryEntry User

Organization

InvokedBy

 12

If an OrganizationQuery element is not specified within the InvokedByBranch, then continue 512
below; otherwise, let OG be the set of Organization instances that are identified by the 513
organization attribute of u and are in the result set of the OrganizationQuery. If OG is empty, then 514
remove x from AE. 515

2. If AE is empty, then raise the warning: auditable event query result is empty. 516
3. Return AE as the result of the AuditableEventQuery. 517
 518

Examples 519
A Registry client has registered an item and it has been assigned a URN identifier "urn:path:myitem". 520
The client is now interested in all events since the beginning of the year that have impacted that item. The 521
following query will return a set of AuditableEvent identifiers for all such events. 522
 523

<AuditableEventquery> 524
 <AuditableEventFilter> 525
 timestamp GE "2001-01-01" AND -- code by Clause, Section Error! 526

Reference source not found. 527
 registryEntry EQUAL "urn:path:myitem" 528
 </AuditableEventFilter> 529
</AuditableEventQuery> 530

 531
A client company has many registered objects in the Registry. The Registry allows events submitted by 532
other organizations to have an impact on your registered items, e.g. new classifications and new 533
associations. The following query will return a set of identifiers for all auditable events, invoked by some 534
other party, that had an impact on an item submitted by “myorg” and for which “myorg” is the responsible 535
organization. 536
 537

<AuditableEventQuery> 538
 <RegistryEntryQuery> 539
 <SubmittingOrganizationBranch> 540
 <OrganizationFilter> 541
 id EQUAL "urn:somepath:myorg" -- code by Clause, Section Error! 542

Reference source not found. 543
 </OrganizationFilter> 544
 </SubmittingOrganizationBranch> 545
 <ResponsibleOrganizationBranch> 546
 <OrganizationFilter> 547
 id EQUAL "urn:somepath:myorg" -- code by Clause, Section Error! 548

Reference source not found. 549
 </OrganizationFilter> 550
 </ResponsibleOrganizationBranch> 551
 </RegistryEntryQuery> 552
 <InvokedByBranch> 553
 <OrganizationQuery> 554
 <OrganizationFilter> 555
 id -EQUAL "urn:somepath:myorg" -- code by Clause, Section Error! 556

Reference source not found. 557
 </OrganizationFilter> 558
 </OrganizationQuery> 559
 </InvokedByBranch> 560
</AuditableEventQuery> 561

562

 13

8.2.4 ClassificationNodeQuery 562

Purpose 563
To identify a set of classification node instances as the result of a query over selected registry metadata. 564

ebRIM Binding 565

 566

 567

 568

 569

 570

 571

 572

 573

 574

 575

 576

Definition 577
 578

<!ELEMENT ClassificationNodeQuery 579
 (ClassificationNodeFilter?, 580
 FromSchemeBranch?, 581
 HasPathBranch?, 582
 HasParentNodeBranch?, 583

 HasSubnodeBranch*)> 584
 585
<!ELEMENT HasParentNodeBranch 586
 (ClassificationNodeFilter?, 587
 HasPathBranch?, 588

 HasParentNodeBranch?)> 589
 590
<!ELEMENT HasSubnodeBranch 591
 (ClassificationNodeFilter?, 592
 HasPathBranch?, 593
 HasSubnodeBranch* 594

 595

Semantic Rules 596
1. Let CN denote the set of all persistent ClassificationNode instances in the Registry. The following 597

steps will eliminate instances in CN that do not satisfy the conditions of the specified filters. 598
a) If a ClassificationNodeFilter is not specified, or if CN is empty, then continue below; otherwise, let 599

x be a classification node in CN. If x does not satisfy the ClassificationNodeFilter as defined in 600
Section 8.2.9, then remove x from AE. 601

ClassificationNode

ClassificationNode ClassificationNode

 Path

Classification
 Scheme

RegistryEntry

FromScheme

HasParentNode HasSubnode

 14

b) If a FromSchemeBranch is not specified, or if CN is empty, then continue below; otherwise, let x 602
be a remaining classification node in CN. If the defining classification scheme of x does not 603
satisfy the ClassificationSchemeFilter or the RegistryEntryQuery immediately contained in the 604
FromSchemeBranch, then remove x from CN. 605

c) If a HasPathBranch is not specified, or if CN is empty, then continue below; otherwise, let x be a 606
remaining classification node in CN. If the path derived from x does not satisfy the PathFilter, the 607
XpathNodeExpression, or every one of the PathElementFilter elements immediately contained in 608
the HasPathBranch, then remove x from CN. 609

d) If a HasParentNodeBranch element is not specified, or if CN is empty, then continue below; 610
otherwise, let x be a remaining classification node in CN and execute the following paragraph 611
with n=x. 612

Let n be a classification node instance. If n does not have a parent node (i.e. if n is a base level 613
node), then remove x from CN and continue below; otherwise, let p be the parent node of n. If a 614
ClassificationNodeFilter element is directly contained in the HasParentNodeBranch and if p does 615
not satisfy the ClassificationNodeFilter, then remove x from CN. If a HasPathBranch element is 616
directly contained in HasParentNodeBranch and if the path derived from p does not satisfy the 617
PathFilter, the XpathNodeExpression, or every one of the PathElementFilter elements 618
immediately contained in the HasPathBranch, then remove x from CN. 619

If another HasParentNode element is directly contained within this HasParentNode element, then 620
repeat the previous paragraph with n=p. 621

e) If a HasSubnodeBranch element is not specified, or if CN is empty, then continue below; 622
otherwise, let x be a remaining classification node in CN. If x is not the parent node of some 623
ClassificationNode instance, then remove x from CN; otherwise, treat each HasSubnodeBranch 624
element separately and execute the following paragraph with n = x. 625

Let n be a classification node instance. If a ClassificationNodeFilter is not specified within the 626
HasSubnodeBranch element then let CNC be the set of all classification nodes that have n as 627
their parent node; otherwise, let CNC be the set of all classification nodes that satisfy the 628
ClassificationNodeFilter and have n as their parent node. If CNC is empty, then remove x from 629
CN; otherwise, let c be any member of CNC. If a HasPathBranch element is directly contained in 630
the HasSubodeBranch and if the path derived from c does not satisfy the PathFilter, the 631
XpathNodeExpression, or every one of the PathElementFilter elements immediately contained in 632
the HasPathBranch, then remove x from CN. If CNC is empty then remove x from CN; otherwise, 633
let y be an element of CNC and continue with the next paragraph. 634

If the HasSubnode element is terminal, i.e. if it does not directly contain another HasSubnode 635
element, then continue below; otherwise, repeat the previous paragraph with the new 636
HasSubnode element and with n = y. 637

2. If CN is empty, then raise the warning: classification node query result is empty. 638
3. Return CN as the result of the ClassificationNodeQuery. 639
 640

Examples 641
 642
A client application wishes to identify all of the classification nodes in the first three levels of a 643
classification scheme hierarchy. The client knows that the URN identifier for the underlying classification 644
scheme is “urn:ebxml:cs:myscheme”. The following query identifies all nodes at the first three levels. 645

 646
<ClassificationNodeQuery> 647
 <FromSchemeBranch> 648

 <ClassificationSchemeFilter> 649
 id EQUAL “urn:ebxml:cs:myscheme” -- code by Clause, Section Error! 650

Reference source not found. 651
 </ClassificationSchemeFilter> 652
</FromSchemeBranch> 653
<HasPathBranch> 654
 <PathFilter> 655

 15

 pathDepth LE “3” 656
 </PathFilter> 657
</HasPathBranch> 658

 </ClassificationNodeQuery> 659
 660
If, instead, the client wishes all levels returned, they could simply delete the HasPathBranch element from 661
the query. 662
 663
By assuming that the "path" of a node is known, and the URN of the classification scheme it comes from, 664
one could get all nodes at the next level below that node as follows: 665
 666
 <ClassificationNodeQuery> 667
 <FromSchemeBranch> 668
 <ClassificationSchemeFilter> 669
 id EQUAL "urn:some:known:scheme" 670
 </ClassificationSchemeFilter> 671
 </FromSchemeBranch> 672
 <HasParentBranch> 673
 <HasPathBranch> 674
 <PathFilter> 675
 path EQUAL "KnownPathOfGivenNode" 676
 </PathFilter> 677
 </HasPathBranch> 678
 </HasParentBranch> 679
 </ClassificationNodeQuery> 680
 681
If instead, one wanted ALL nodes in the subtree beneath the given node, then the following query could 682
be used: 683
 684
 <ClassificationNodeQuery> 685
 <FromSchemeBranch> 686
 <ClassificationSchemeFilter> 687
 id EQUAL "urn:some:known:scheme" 688
 </ClassificationSchemeFilter> 689
 </FromSchemeBranch> 690
 <HasParentBranch> 691
 <HasPathBranch> 692
 <PathFilter> 693
 path STARTSWITH "KnownPathOfGivenNode" 694
 </PathFilter> 695
 </HasPathBranch> 696
 </HasParentBranch> 697
 </ClassificationNodeQuery> 698

699

 16

8.2.5 RegistryPackageQuery 699

Purpose 700
To identify a set of registry package instances as the result of a query over selected registry metadata. 701

ebRIM Binding 702

Definition 703
 704
<!ELEMENT RegistryPackageQuery 705
 (PackageFilter?, 706
 HasMemberBranch*)> 707
 708
<!ELEMENT HasMemberBranch 709
 (RegistryEntryQuery?)> 710

 711

Semantic Rules 712
1. Let RP denote the set of all persistent Package instances in the Registry. The following steps will 713

eliminate instances in RP that do not satisfy the conditions of the specified filters. 714
a) If a PackageFilter is not specified, or if RP is empty, then continue below; otherwise, let x be a 715

package instance in RP. If x does not satisfy the PackageFilter as defined in Section 8.2.9, then 716
remove x from RP. 717

b) If a HasMemberBranch element is not directly contained in the RegistryPackageQuery, or if RP is 718
empty, then continue below; otherwise, let x be a remaining package instance in RP. If x is an 719
empty package, then remove x from RP; otherwise, treat each HasMemberBranch element 720
separately as follows: 721

 722
If a RegistryEntryQuery element is not directly contained in the HasMemberBranch element, then 723
let PM be the set of all RegistryEntry instances that are members of the package x; otherwise, let 724
RE be the set of RegistryEntry instances returned by the RegistryEntryQuery as defined in 725
Section 8.2.2 and let PM be the subset of RE that are members of the package x. If PM is empty, 726
then remove x from RP. 727

2. If RP is empty, then raise the warning: registry package query result is empty. 728
3. Return RP as the result of the RegistryPackageQuery. 729
 730

Examples 731
A client application wishes to identify all package instances in the Registry that contain an Invoice 732
extrinsic object as a member of the package. 733
 734
 <RegistryPackageQuery> 735

Package

RegistryEntry

HasMember

 17

 <HasMemberBranch> 736
 <RegistryEntryQuery> 737
 <RegistryEntryFilter> 738
 objectType EQ “Invoice” -- code by Clause, Section Error! Reference 739

source not found. 740
 </RegistryEntryFilter> 741
 </RegistryEntryQuery> 742
 </HasMemberBranch> 743
 </RegistryPackageQuery> 744
 745
A client application wishes to identify all package instances in the Registry that are not empty. 746
 747

<RegistryEntryQuery> 748
 <HasMemberBranch/> 749
</RegistryEntryQuery> 750
 751

A client application wishes to identify all package instances in the Registry that are empty. Since the 752
RegistryPackageQuery is not set up to do negations, clients will have to do two separate 753
RegistryPackageQuery requests, one to find all packages and another to find all non-empty packages, 754
and then do the set difference themselves. Alternatively, they could do a more complex 755
RegistryEntryQuery and check that the packaging association between the package and its members is 756
non-existent. 757
Note: A registry package is an intrinsic RegistryEntry instance that is completely determined by its 758
associations with its members. Thus a RegistryPackageQuery can always be re-specified as an 759
equivalent RegistryEntryQuery using appropriate “Source” and “Target” associations. However, the 760
equivalent RegistryEntryQuery is often more complicated to write. 761

762

 18

8.2.6 OrganizationQuery 762

Purpose 763
To identify a set of organization instances as the result of a query over selected registry metadata. 764

ebRIM Binding 765

 766

 767

 768

 769

 770

 771

 772

 773

 774

 775

 776

 777

Definition 778
 779
<!ELEMENT OrganizationQuery 780
 (OrganizationFilter?, 781
 SubmitsRegistryEntry*, 782
 HasParentOrganization?, 783
 InvokesEventBranch*)> 784
 785
<!ELEMENT SubmitsRegistryEntry (RegistryEntryQuery?)> 786
 787
<!ELEMENT HasParentOrganization 788
 (OrganizationFilter?, 789
 HasParentOrganization?)> 790
 791
<!ELEMENT InvokesEventBranch 792
 (UserFilter?, 793
 AuditableEventFilter?, 794
 RegistryEntryQuery?)> 795

Semantic Rules 796

1. Let ORG denote the set of all persistent Organization instances in the Registry. The following steps 797
will eliminate instances in ORG that do not satisfy the conditions of the specified filters. 798

Submits

Organization

Organization

HasParent

RegistryEntry
User

AuditableEvent

InvokesEvent

RegistryEntry

 19

a) If an OrganizationFilter element is not directly contained in the OrganizationQuery element, or if 799
ORG is empty, then continue below; otherwise, let x be an organization instance in ORG. If x 800
does not satisfy the OrganizationFilter as defined in Section 8.2.9, then remove x from RP. 801

b) If a SubmitsRegistryEntry element is not specified within the OrganizationQuery, or if ORG is 802
empty, then continue below; otherwise, consider each SubmitsRegistryEntry element separately 803
as follows: 804

If no RegistryEntryQuery is specified within the SubmitsRegistryEntry element, then let RES be 805
the set of all RegistryEntry instances that have been submitted to the Registry by organization x; 806
otherwise, let RE be the result of the RegistryEntryQuery as defined in Section 8.2.2 and let RES 807
be the set of all instances in RE that have been submitted to the Registry by organization x. If 808
RES is empty, then remove x from ORG. 809

c) If a HasParentOrganization element is not specified within the OrganizationQuery, or if ORG is 810
empty, then continue below; otherwise, execute the following paragraph with o = x: 811

Let o be an organization instance. If an OrganizationFilter is not specified within the 812
HasParentOrganization and if o has no parent (i.e. if o is a root organization in the Organization 813
hierarchy), then remove x from ORG; otherwise, let p be the parent organization of o. If p does 814
not satisfy the OrganizationFilter, then remove x from ORG. 815
If another HasParentOrganization element is directly contained within this HasParentOrganization 816
element, then repeat the previous paragraph with o = p. 817

d) If an InvokesEventBranch element is not specified within the OrganizationQuery, or if ORG is 818
empty, then continue below; otherwise, consider each InvokesEventBranch element separately 819
as follows: 820
If an UserFilter is not specified, and if x is not the submitting organization of some AuditableEvent 821
instance, then remove x from ORG. If an AuditableEventFilter is not specified, then let AE be the 822
set of all AuditableEvent instances that have x as the submitting organization; otherwise, let AE 823
be the set of AuditableEvent instances that satisfy the AuditableEventFilter and have x as the 824
submitting organization. If AE is empty, then remove x from ORG. If a RegistryEntryQuery is not 825
specified in the InvokesEventBranch element, then let RES be the set of all RegistryEntry 826
instances associated with an event in AE; otherwise, let RE be the result set of the 827
RegistryEntryQuery, as specified in Section 8.2.2, and let RES be the subset of RE of entries 828
submitted by x. If RES is empty, then remove x from ORG. 829

2. If ORG is empty, then raise the warning: organization query result is empty. 830
3. Return ORG as the result of the OrganizationQuery. 831
 832

Examples 833
A client application wishes to identify a set of organizations, based in France, that have submitted a 834
PartyProfile extrinsic object this year. 835
 836
 <OrganizationQuery> 837
 <OrganizationFilter> 838
 country EQUAL “France” -- code by Clause, Section Error! Reference 839

source not found. 840
 </OrganizationFilter> 841
 <SubmitsRegistryEntry> 842
 <RegistryEntryQuery> 843
 <RegistryEntryFilter> 844
 objectType EQUAL “CPP” -- code by Clause, Section Error! Reference 845

source not found. 846
 </RegistryEntryFilter> 847
 <HasAuditableEventBranch> 848
 <AuditableEventFilter> 849
 timestamp GE “2001-01-01” -- code by Clause, Section Error! 850

Reference source not found. 851
 </AuditableEventFilter> 852
 </HasAuditableEventBranch> 853

 20

 </RegistryEntryQuery> 854
 </SubmitsRegistryEntry> 855
 </OrganizationQuery> 856
 857
A client application wishes to identify all organizations that have XYZ, Corporation as a parent. The client 858
knows that the URN for XYZ, Corp. is urn:ebxml:org:xyz, but there is no guarantee that subsidiaries of 859
XYZ have a URN that uses the same format, so a full query is required. 860

 861
<OrganizationQuery> 862
 <HasParentOrganization> 863
 <OrganizationFilter> 864
 id EQUAL “urn:ebxml:org:xyz” -- code by Clause, Section Error! Reference 865

source not found. 866
 </OrganizationFilter> 867
 </HasParentOrganization> 868
</OrganizationQuery> 869

870

 21

8.2.7 ReturnRegistryEntry 870

Purpose 871
To construct an XML document that contains selected registry metadata associated with the registry 872
entries identified by a RegistryEntryQuery. NOTE: Initially, the RegistryEntryQuery could be the identifier 873
for a single registry entry. 874

Definition 875
 876

<!ELEMENT ReturnRegistryEntry 877
 (RegistryEntryQuery, 878
 WithClassifications?, 879
 WithSourceAssociations?, 880
 WithTargetAssociations?, 881
 WithAuditableEvents?, 882
 WithExternalLinks?)> 883
 884
<!ELEMENT WithClassifications (ClassificationFilter?)> 885
<!ELEMENT WithSourceAssociations (AssociationFilter?)> 886
<!ELEMENT WithTargetAssociations (AssociationFilter?)> 887
<!ELEMENT WithAuditableEvents (AuditableEventFilter?)> 888
<!ELEMENT WithExternalLinks (ExternalLinkFilter?)> 889
 890
<!ELEMENT ReturnRegistryEntryResult 891
 (RegistryEntryMetadata*)> 892
 893
<!ELEMENT RegistryEntryMetadata 894
 (RegistryEntry, 895
 Classification*, 896
 SourceAssociations?, 897
 TargetAssociations?, 898
 AuditableEvent*, 899
 ExternalLink*)> 900
 901
<!ELEMENT SourceAssociations (Association*)> 902
<!ELEMENT TargetAssociations (Association*)> 903

Semantic Rules 904
1. The RegistryEntry, Classification, Association, AuditableEvent, and ExternalLink elements contained 905

in the ReturnRegistryEntryResult are defined by the ebXML Registry schema specified in Appendix A. 906
2. Execute the RegistryEntryQuery according to the Semantic Rules specified in Section 8.2.2, and let R 907

be the result set of registry entry instances. Let S be the set of warnings and errors returned. If any 908
element in S is an error condition, then stop execution and return the same set of warnings and errors 909
along with the ReturnRegistryEntryResult. 910

3. If the set R is empty, then do not return a RegistryEntryMetadata subelement in the 911
ReturnRegistryEntryResult. Instead, raise the warning: no resulting registry entry. Add this warning to 912
the error list returned by the RegistryEntryQuery and return this enhanced error list with the 913
ReturnRegistryEntryResult. 914

4. For each registry entry E referenced by an element of R, use the attributes of E to create a new 915
RegistryEntry element as defined in Appendix A. Then create a new RegistryEntryMetadata element 916
as defined above to be the parent element of that RegistryEntry element. 917

5. If no With option is specified, then the resulting RegistryEntryMetadata element has no Classification, 918
SourceAssociations, TargetAssociations, AuditableEvent, or ExternalData subelements. The set of 919
RegistryEntryMetadata elements, with the Error list from the RegistryEntryQuery, is returned as the 920
ReturnRegistryEntryResult. 921

6. If WithClassifications is specified, then for each E in R do the following: If a ClassificationFilter is not 922
present, then let C be any classification instance linked to E; otherwise, let C be a classification 923

 22

instance linked to E that satisfies the ClassificationFilter (Section 8.2.9). For each such C, create a 924
new Classification element as defined in Appendix A. Add these Classification elements to their 925
parent RegistryEntryMetadata element. 926

7. If WithSourceAssociations is specified, then for each E in R do the following: If an AssociationFilter is 927
not present, then let A be any association instance whose source object is E; otherwise, let A be an 928
association instance that satisfies the AssociationFilter (Section 8.2.9) and whose source object is E. 929
For each such A, create a new Association element as defined in Appendix A. Add these Association 930
elements as subelements of the WithSourceAssociations and add that element to its parent 931
RegistryEntryMetadata element. 932

8. If WithTargetAssociations is specified, then for each E in R do the following: If an AssociationFilter is 933
not present, then let A be any association instance whose target object is E; otherwise, let A be an 934
association instance that satisfies the AssociationFilter (Section 8.2.9) and whose target object is E. 935
For each such A, create a new Association element as defined in Appendix A. Add these Association 936
elements as subelements of the WithTargetAssociations and add that element to its parent 937
RegistryEntryMetadata element. 938

9. If WithAuditableEvents is specified, then for each E in R do the following: If an AuditableEventFilter is 939
not present, then let A be any auditable event instance linked to E; otherwise, let A be any auditable 940
event instance linked to E that satisfies the AuditableEventFilter (Section 8.2.9). For each such A, 941
create a new AuditableEvent element as defined in Appendix A. Add these AuditableEvent elements 942
to their parent RegistryEntryMetadata element. 943

10. If WithExternalLinks is specified, then for each E in R do the following: If an ExternalLinkFilter is not 944
present, then let L be any external link instance linked to E; otherwise, let L be any external link 945
instance linked to E that satisfies the ExternalLinkFilter (Section 8.2.9). For each such D, create a 946
new ExternalLink element as defined in Appendix A. Add these ExternalLink elements to their parent 947
RegistryEntryMetadata element. 948

11. If any warning or error condition results, then add the code and the message to the 949
RegistryResponse element that includes the RegistryEntryQueryResult. 950

12. Return the set of RegistryEntryMetadata elements as the content of the ReturnRegistryEntryResult. 951
 952

Examples 953
A customer of XYZ Corporation has been using a PurchaseOrder DTD registered by XYZ some time ago. 954
Its URN identifier is "urn:com:xyz:po:325". The customer wishes to check on the current status of that 955
DTD, especially if it has been superceded or replaced, and get all of its current classifications. The 956
following query request will return an XML document with the registry entry for the existing DTD as the 957
root, with all of its classifications, and with associations to registry entries for any items that have 958
superceded or replaced it. 959

 960
<ReturnRegistryEntry> 961
 <RegistryEntryQuery> 962
 <RegistryEntryFilter> 963
 id EQUAL "urn:com:xyz:po:325" -- code by Clause, Section Error! 964

Reference source not found. 965
 </RegistryEntryFilter> 966
 </RegistryEntryQuery> 967
 <WithClassifications/> 968
 <WithSourceAssociations> 969
 <AssociationFilter> -- code by Clause, Section Error! 970

Reference source not found. 971
 associationType EQUAL "SupersededBy" OR 972
 associationType EQUAL "ReplacedBy" 973
 </AssociationFilter> 974
 </WithSourceAssociations> 975
</ReturnRegistryEntry> 976

 977
A client of the Registry registered an XML DTD several years ago and is now thinking of replacing it with 978
a revised version. The identifier for the existing DTD is "urn:xyz:dtd:po97". The proposed revision is not 979

 23

completely upward compatible with the existing DTD. The client desires a list of all registered items that 980
use the existing DTD so they can assess the impact of an incompatible change. The following query 981
returns an XML document that is a list of all RegistryEntry elements that represent registered items that 982
use, contain, or extend the given DTD. The document also links each RegistryEntry element in the list to 983
an element for the identified association. 984
 985
 986
 <ReturnRegistryEntry> 987
 <RegistryEntryQuery> 988
 <SourceAssociationBranch> 989
 <AssociationFilter> -- code by Clause, Section Error! Reference 990

source not found. 991
 associationType EQUAL "Contains" OR 992
 associationType EQUAL "Uses" OR 993
 associationType EQUAL "Extends" 994
 </AssociationFilter> 995
 <RegistryEntryFilter> -- code by Clause, Section Error! Reference 996

source not found. 997
 id EQUAL "urn:xyz:dtd:po97" 998
 </RegistryEntryFilter> 999
 </SourceAssociationBranch> 1000
 </RegistryEntryQuery> 1001
 <WithSourceAssociations> 1002
 <AssociationFilter> -- code by Clause, Section Error! 1003

Reference source not found. 1004
 associationType EQUAL "Contains" OR 1005
 associationType EQUAL "Uses" OR 1006
 associationType EQUAL "Extends" 1007
 </AssociationFilter> 1008
 </WithSourceAssociations> 1009
 </ReturnRegistryEntry> 1010
 1011
A user has been browsing the registry and has found a registry entry that describes a package of core-1012
components that should solve the user's problem. The package URN identifier is "urn:com:cc:pkg:ccstuff". 1013
Now the user wants to know what's in the package. The following query returns an XML document with a 1014
registry entry for each member of the package along with that member's Uses and HasMemberBranch 1015
associations. 1016
 1017
 <ReturnRegistryEntry> 1018
 <RegistryEntryQuery> 1019
 <TargetAssociationBranch> 1020
 <AssociationFilter> -- code by Clause, Section Error! Reference 1021

source not found. 1022
 associationType EQUAL "HasMember" 1023
 </AssociationFilter> 1024
 <RegistryEntryFilter> -- code by Clause, Section Error! Reference 1025

source not found. 1026
 id EQUAL "urn:com:cc:pkg:ccstuff" 1027
 </RegistryEntryFilter> 1028
 </TargetAssociationBranch> 1029
 </RegistryEntryQuery> 1030
 <WithSourceAssociations> 1031
 <AssociationFilter> -- code by Clause, Section Error! Reference 1032

source not found. 1033
 associationType EQUAL "HasMember" OR 1034
 associationType EQUAL "Uses" 1035
 </AssociationFilter> 1036

 24

 </WithSourceAssociations> 1037
 </ReturnRegistryEntry> 1038

1039

 25

8.2.8 ReturnRepositoryItem 1039

Purpose 1040
To construct an XML document that contains one or more repository items, and some associated 1041
metadata, by submitting a RegistryEntryQuery to the registry/repository that holds the desired objects. 1042
NOTE: Initially, the RegistryEntryQuery could be the URN identifier for a single registry entry. 1043

Definition 1044
 1045
<!ELEMENT ReturnRepositoryItem 1046
(RegistryEntryQuery, 1047
 RecursiveAssociationOption?, 1048
 WithDescription?)> 1049
 1050
<!ELEMENT RecursiveAssociationOption (AssociationType+)> 1051
<!ATTLIST RecursiveAssociationOption 1052
 depthLimit CDATA #IMPLIED > 1053
 1054
<!ELEMENT AssociationType EMPTY > 1055
<!ATTLIST AssociationType 1056
 role CDATA #REQUIRED > 1057
 1058
<!ELEMENT WithDescription EMPTY > 1059
 1060
<!ELEMENT ReturnRepositoryItemResult 1061
 (RepositoryItem*)> 1062
 1063
<!ELEMENT RepositoryItem 1064
 (ClassificationSchemeRepresentation 1065
 | RegistryPackageElements 1066
 | ExtrinsicObjectFile 1067
 | WithdrawnObject 1068
 | ExternalRegistryItem)> 1069
<!ATTLIST RepositoryItem 1070
 id CDATA #REQUIRED 1071
 name CDATA #REQUIRED 1072
 objectType CDATA #REQUIRED 1073
 status CDATA #REQUIRED 1074
 stability CDATA #REQUIRED 1075
 contentURI CDATA #IMPLIED 1076
 description CDATA #IMPLIED > 1077
 1078
<!ELEMENT ClassificationSchemeRepresentation 1079

 (ClassificationNode+)> 1080
 1081
<!ELEMENT RegistryPackageElements 1082
 (RegistryObject*)> 1083
 1084
<!ELEMENT ExtrinsicObjectFile EMPTY > 1085
<!ATTLIST ExtrinsicObjectFile 1086
 contentURI CDATA #REQUIRED > -- REF to attached file 1087
 1088
<!ELEMENT WithdrawnObject EMPTY > 1089
 1090

 <!ELEMENT ExternalRegistryItem EMPTY > 1091
 1092
 1093
 1094

 26

Semantic Rules 1095
1. If the RecursiveOption element is not present , then set Limit=0. If the RecursiveOption element is 1096

present, interpret its depthLimit attribute as an integer literal. If the depthLimit attribute is not present, 1097
then set Limit = -1. A Limit of 0 means that no recursion occurs. A Limit of -1 means that recursion 1098
occurs indefinitely. If a depthLimit value is present, but it cannot be interpreted as a positive integer, 1099
then stop execution and raise the exception: invalid depth limit; otherwise, set Limit=N, where N is 1100
that positive integer. A Limit of N means that exactly N recursive steps will be executed unless the 1101
process terminates prior to that limit. 1102

2. Set Depth=0. Let Result denote the set of RepositoryItem elements to be returned as part of the 1103
ReturnRepositoryItemResult. Initially Result is empty. Semantic rules 4 through 10 determine the 1104
content of Result. 1105

3. If the WithDescription element is present, then set WSD="yes"; otherwise, set WSD="no". 1106
4. Execute the RegistryEntryQuery according to the Semantic Rules specified in Section 8.2.2, and let R 1107

be the result set of registry entry instances. Let S be the set of warnings and errors returned. If any 1108
element in S is an error condition, then stop execution and return the same set of warnings and errors 1109
along with the ReturnRepositoryItemResult. 1110

5. Execute Semantic Rules 6 and 7 with X as a set of registry references derived from R. After 1111
execution of these rules, if Depth is now equal to Limit, then return the content of Result as the set of 1112
RepositoryItem elements in the ReturnRepositoryItemResult element; otherwise, continue with 1113
Semantic Rule 8. 1114

6. Let X be a set of RegistryEntry instances. For each registry entry E in X, do the following: 1115
a) If E references a repository item in this registry, then create a new RepositoryItem element, with 1116

values for its attributes derived as specified in Semantic Rule 7. 1117
1) If E.objectType="ClassificationScheme", then put the classification scheme nodes 1118

described by E as a ClassificationSchemeRepresentation subelement of this 1119
RepositoryItem. 1120

2) If E.objectType="Package", then put the package members described by E as a 1121
RegistryPackageElements subelement of this RepositoryItem. 1122

3) Otherwise, i.e., if the repository item referenced by E has an unknown internal structure, 1123
then attach the file that represents that structure to the ReturnRepositoryItemResult. 1124
Create a new ExtrrinsicObjectFile as the subelement of this RepositoryItem and set the 1125
contentURI attribute to reference the attached file. 1126

b) If E references a registered object in some other registry, then create a new RepositoryItem 1127
element, with values for its attributes derived as specified in Semantic Rule 7, and create a new 1128
ExternalRegistryItem element as the subelement of this RepositoryItem. 1129

c) If E describes a repository item that has since been withdrawn, then create a new RepositoryItem 1130
element, with values for its attributes derived as specified in Semantic Rule 7, and create a new 1131
WithdrawnObject element as the subelement of this RepositoryItem. 1132

7. Let E be a registry entry and let RO be the RepositoryItem element created in Semantic Rule 6. Set 1133
the attributes of RO to the values derived from the corresponding attributes of E. If WSD="yes", 1134
include the value of the description attribute; otherwise, do not include it. Insert this new 1135
RepositoryItem element into the Result set. 1136

8. Let R be defined as in Semantic Rule Error! Reference source not found.. Execute Semantic Rule 1137
9 with Y as the set of RegistryEntry instances referenced by R. Then continue with Semantic rule 10. 1138

9. Let Y be a set of references to RegistryEntry instances. Let NextLevel be an empty set of 1139
RegistryEntry instances. For each registry entry E in Y, and for each AssociationType of the 1140
RecursiveAssociationOption, do the following: 1141
a) Let Z be the set of target items E' linked to E under Association instances having E as the source 1142

object, E' as the target object, and with the associationType of the association equal to the value 1143
of the role attribute of that AssociationType. 1144

b) Add the elements of Z to NextLevel. 1145
10. Let X be the set of new registry entries that are in NextLevel but are not yet represented in the Result 1146

set. 1147
Case: 1148
a) If X is empty, then return the content of Result as the set of RepositoryItem elements in the 1149

ReturnRepositoryItemResult element. 1150

 27

b) If X is not empty, then execute Semantic Rules 6 and 7 with X as the input set. When finished, 1151
add the elements of X to Y and set Depth=Depth+1. If Depth is now equal to Limit, then return 1152
the content of Result as the set of RepositoryItem elements in the ReturnRepositoryItemResult 1153
element; otherwise, repeat Semantic Rules 9 and 10 with the new set Y of registry entries. 1154

11. If any exception, warning, or other status condition results during the execution of the above, then 1155
return appropriate RegistryError elements in the RegistryResult associated with the 1156
ReturnRepositoryItemResult element created in Semantic Rule 5 or Semantic Rule 10. 1157

Examples 1158
A registry client has found a registry entry for a core-component item. The item's URN identity is 1159
"urn:ebxml:cc:goodthing". But "goodthing" is a composite item that uses many other registered items. The 1160
client desires the collection of all items needed for a complete implementation of "goodthing". The 1161
following query returns an XML document that is a collection of all needed items. The query follows all 1162
“Uses” and “ValidatesTo” association types through an arbitrary number of recursive steps to return every 1163
repository item in this registry that is needed by “goodthing”. 1164
 1165
 <ReturnRepositoryItem> 1166
 <RegistryEntryQuery> 1167
 <RegistryEntryFilter> -- code by Clause, Section Error! Reference 1168

source not found. 1169
 id EQUAL "urn:ebxml:cc:goodthing" 1170
 </RegistryEntryFilter> 1171
 </RegistryEntryQuery> 1172
 <RecursiveAssociationOption> 1173
 <AssociationType role="Uses" /> 1174
 <AssociationType role="ValidatesTo" /> 1175
 </RecursiveAssociationOption> 1176
 </ReturnRepositoryItem> 1177
 1178
A registry client has found a reference to a core-component routine ("urn:ebxml:cc:rtn:nice87") that 1179
implements a given business process. The client knows that all routines have a required association to its 1180
defining UML specification. The following query returns both the routine and its UML specification as a 1181
collection of two items in a single XML document. 1182
 1183
 <ReturnRepositoryItem> 1184
 <RegistryEntryQuery> 1185
 <RegistryEntryFilter> -- code by Clause, Section Error! Reference 1186

source not found. 1187
 id EQUAL "urn:ebxml:cc:rtn:nice87" 1188
 </RegistryEntryFilter> 1189
 </RegistryEntryQuery> 1190
 <RecursiveAssociationOption depthLimit="1" > 1191
 <AssociationType role="ValidatesTo" /> 1192
 </RecursiveAssociationOption> 1193
 </ReturnRepositoryItem> 1194
 1195
A user has been told that the 1997 version of the North American Industry Classification System (NAICS) 1196
is stored in a registry with URN identifier "urn:nist:cs:naics-1997". The following query would retrieve the 1197
complete classification scheme, with all 1810 nodes, as an XML document that contains all of the 1198
ClassificationNode instances for the ClassificationScheme instance identified by that URN. 1199
 1200
 <ReturnRepositoryItem> 1201
 <RegistryEntryQuery> 1202
 <RegistryEntryFilter> -- code by Clause, Section Error! 1203

Reference source not found. 1204
 id EQUAL "urn:nist:cs:naics-1997" 1205
 </RegistryEntryFilter> 1206

 28

 </RegistryEntryQuery> 1207
 </ReturnRepositoryItem> 1208
 1209
 1210

1211

 29

8.2.9 Registry Filters 1211

Purpose 1212
To identify a subset of the set of all persistent instances of a given registry class. 1213

Definition 1214
 1215
<!ELEMENT RegistryObjectFilter (Clause)> 1216
 1217
<!ELEMENT RegistryEntryFilter (Clause)> 1218
 1219
<!ELEMENT ExtrinsicObjectFilter (Clause)> 1220
 1221
<!ELEMENT PackageFilter (Clause)> 1222
 1223
<!ELEMENT OrganizationFilter (Clause 1224
 1225
<!ELEMENT ClassificationNodeFilter (Clause)> 1226
 1227
<!ELEMENT AssociationFilter (Clause)> 1228
 1229
<!ELEMENT ClassificationFilter (Clause)> 1230
 1231
<!ELEMENT ExternalLinkFilter (Clause)> 1232
 1233
<!ELEMENT ExternalIdentifierFilter (Clause)> 1234
 1235
<!ELEMENT SlotFilter (Clause)> 1236
 1237
<!ELEMENT AuditableEventFilter (Clause)> 1238
 1239
<!ELEMENT UserFilter (Clause)> 1240
 1241
<!ELEMENT PathFilter (Clause)> 1242
 1243
<!ELEMENT PathElementFilter (Clause)> 1244
 1245
<!ELEMENT SlotElementFilter (Clause)> 1246

 1247

Semantic Rules 1248
1. The Clause element is defined in Section Error! Reference source not found., Clause. 1249
2. For every RegistryObjectFilter XML element, the leftArgument attribute of any containing 1250

SimpleClause shall identify a public attribute of the RegistryObject UML class defined in [ebRIM]. If 1251
not, raise exception: object attribute error. The RegistryObjectFilter returns a set of identifiers for 1252
RegistryObject instances whose attribute values evaluate to True for the Clause predicate. 1253

3. For every RegistryEntryFilter XML element, the leftArgument attribute of any containing SimpleClause 1254
shall identify a public attribute of the RegistryEntry UML class defined in [ebRIM]. If not, raise 1255
exception: registry entry attribute error. The RegistryEntryFilter returns a set of identifiers for 1256
RegistryEntry instances whose attribute values evaluate to True for the Clause predicate. 1257

4. For every ExtrinsicObjectFilter XML element, the leftArgument attribute of any containing 1258
SimpleClause shall identify a public attribute of the ExtrinsicObject UML class defined in [ebRIM]. If 1259
not, raise exception: extrinsic object attribute error. The ExtrinsicObjectFilter returns a set of 1260
identifiers for ExtrinsicObject instances whose attribute values evaluate to True for the Clause 1261
predicate. 1262

 30

5. For every PackageFilter XML element, the leftArgument attribute of any containing SimpleClause 1263
shall identify a public attribute of the Package UML class defined in [ebRIM]. If not, raise exception: 1264
package attribute error. The PackageFilter returns a set of identifiers for Package instances whose 1265
attribute values evaluate to True for the Clause predicate. 1266

6. For every OrganizationFilter XML element, the leftArgument attribute of any containing SimpleClause 1267
shall identify a public attribute of the Organization or PostalAddress UML classes defined in [ebRIM]. 1268
If not, raise exception: organization attribute error. The OrganizationFilter returns a set of identifiers 1269
for Organization instances whose attribute values evaluate to True for the Clause predicate. 1270

7. For every ClassificationNodeFilter XML element, the leftArgument attribute of any containing 1271
SimpleClause shall identify a public attribute of the ClassificationNode UML class defined in [ebRIM]. 1272
If not, raise exception: classification node attribute error. The ClassificationNodeFilter returns a set of 1273
identifiers for ClassificationNode instances whose attribute values evaluate to True for the Clause 1274
predicate. 1275

8. For every AssociationFilter XML element, the leftArgument attribute of any containing SimpleClause 1276
shall identify a public attribute of the Association UML class defined in [ebRIM]. If not, raise exception: 1277
association attribute error. The AssociationFilter returns a set of identifiers for Association instances 1278
whose attribute values evaluate to True for the Clause predicate. 1279

9. For every ClassificationFilter XML element, the leftArgument attribute of any containing SimpleClause 1280
shall identify a public attribute of the Classification UML class defined in [ebRIM]. If not, raise 1281
exception: classification attribute error. The ClassificationFilter returns a set of identifiers for 1282
Classification instances whose attribute values evaluate to True for the Clause predicate. 1283

10. For every ExternalLinkFilter XML element, the leftArgument attribute of any containing SimpleClause 1284
shall identify a public attribute of the ExternalLink UML class defined in [ebRIM]. If not, raise 1285
exception: external link attribute error. The ExternalLinkFilter returns a set of identifiers for 1286
ExternalLink instances whose attribute values evaluate to True for the Clause predicate. 1287

11. For every ExternalIdentiferFilter XML element, the leftArgument attribute of any containing 1288
SimpleClause shall identify a public attribute of the ExternalIdentifier UML class defined in [ebRIM]. If 1289
not, raise exception: external identifier attribute error. The ExternalIdentifierFilter returns a set of 1290
identifiers for ExternalIdentifier instances whose attribute values evaluate to True for the Clause 1291
predicate. 1292

12. For every SlotFilter XML element, the leftArgument attribute of any containing SimpleClause shall 1293
identify a public attribute of the Slot UML class defined in [ebRIM]. If not, raise exception: slot attribute 1294
error. The SlotFilter returns a set of identifiers for Slot instances whose attribute values evaluate to 1295
True for the Clause predicate. 1296

13. For every AuditableEventFilter XML element, the leftArgument attribute of any containing 1297
SimpleClause shall identify a public attribute of the AuditableEvent UML class defined in [ebRIM]. If 1298
not, raise exception: auditable event attribute error. The AuditableEventFilter returns a set of 1299
identifiers for AuditableEvent instances whose attribute values evaluate to True for the Clause 1300
predicate. 1301

14. For every UserFilter XML element, the leftArgument attribute of any containing SimpleClause shall 1302
identify a public attribute of the User UML class defined in [ebRIM]. If not, raise exception: auditable 1303
identity attribute error. The UserFilter returns a set of identifiers for User instances whose attribute 1304
values evaluate to True for the Clause predicate. 1305

15. Path is a derived, non-persistent class based on the ClassificationNode and Classification classes 1306
from ebRIM. The visible attributes of the Path class are “path”, “code”, and “pathDepth”. Each is 1307
derived from the corresponding method defined in ebRIM for a ClassificationNode or Classification 1308
instance. The getPath() method acts on a ClassificationNode or Classification instance to produce a 1309
character string, i.e. path, that can be queried by the predicates of a StringClause element. The 1310
getCode() method on a Classification instance returns a string value, i.e. code: (i) if an internal 1311
classification, returns the code attribute of the referenced ClassificationNode, and (ii) if an external 1312
classification, returns the classification value submitted by the classifier (ebRIM definitions needed!). 1313
The getPathDepth() method acts on a ClassificationNode or Classification instance to produce an 1314
integer that identifies the level of the referenced node and that can be queried by the predicates of an 1315
IntClause element. For an external Classification instance, getPathDepth() may return void since the 1316
depth of the node referenced by that classification may not be known if it wasn’t supplied by the 1317
classifier. For every PathFilter XML element, the leftArgument attribute of any containing 1318
SimpleClause shall identify a public attribute of the Path class just defined. If not, raise exception: 1319

 31

path attribute error. The PathFilter returns a set of Path instances whose attribute values evaluate to 1320
True for the Clause predicate. 1321

16. PathElement is a derived, non-persistent class based on the ClassificationNode and Classification 1322
classes from ebRIM. The visible attributes of PathElement are “level” and “value”. Each is a character 1323
string. The dynamic instances of PathElement are derived from the getPathElements() method 1324
defined in ebRIM for a ClassificationNode or Classification instance. This method returns a set of 1325
level/value pairs for each ClassificationNode or Classification instance. For an external Classification 1326
instance, getPathElements() may return void since the explicit structure of the node referenced by 1327
that classification may not be known if it wasn’t supplied by the classifier. For every PathElementFilter 1328
XML element, the leftArgument attribute of any containing SimpleClause shall identify a public 1329
attribute of the PathElement class just defined. If not, raise exception: path element attribute error. 1330
The PathElementFilter returns a set of PathElement instances whose attribute values evaluate to 1331
True for the Clause predicate. 1332

17. SlotElement is a derived, non-persistent class based on the Slot class from ebRIM. The visible 1333
attribute of PathElement is“value”. It is a character string. The dynamic instances of SlotElement are 1334
derived from the “values” attribute defined in ebRIM for a Slot instance. For every SlotElementFilter 1335
XML element, the leftArgument attribute of any containing SimpleClause shall identify the “value” 1336
attribute of the SlotElement class just defined. If not, raise exception: slot element attribute error. The 1337
SlotElementFilter returns a set of Slot instances whose “value” attribute evaluates to True for the 1338
Clause predicate. 1339

 1340

Example 1341
The following is a complete example of RegistryEntryQuery combined with Clause expansion of 1342
RegistryEntryFilter to return a set of RegistryEntry instances whose objectType attibute is “CPP” and 1343
whose status attribute is “Approved”. 1344
 1345
 <RegistryEntryQuery> 1346
 <RegistryEntryFilter> 1347
 <Clause> 1348
 <CompoundClause connectivePredicate="And" > 1349
 <Clause> 1350
 <SimpleClause leftArgument="objectType" > 1351
 <StringClause stringPredicate="equal" >CPP</StringClause> 1352
 </SimpleClause> 1353
 </Clause> 1354
 <Clause> 1355
 <SimpleClause leftArgument="status" > 1356
 <StringClause stringPredicate="equal" >Approved</StringClause> 1357
 </SimpleClause> 1358
 </Clause> 1359
 </CompoundClause> 1360
 </Clause> 1361
 </RegistryEntryFilter> 1362
 </RegistryEntryQuery> 1363
 1364
 1365

8.2.10 XML Clause Constraint Representation 1366
 1367
NOTE to Editor: This proposal makes no changes to Section 8.2.10, so it remains as currently specified 1368
in ebRS v1.1. 1369

