Design Alternatives and Recommendation for Reasoning Support
ebXML Registry will become for the semantic web what web servers are to the web today

Note: This document began as a subset of the SCM use case document as a candidate proposal submitted by Jeff Pollock, Network Inference, to be considered by the Reg/Rep SCM team. The expectation was that one or two(or some other combination) of the three use cases would be deemed appropriate for full consideration within the SCM team, but not all three – since some necessarily exclude the others. The result of feedback from the group indicated the fact that this document was more design-oriented and should be recast as a “Design Alternatives” document.
Thus, version two of the document is focused on articulating these patterns as design alternatives.
Introduction

Reviewers are invited to comment on the Design Alternatives for Reasoning Support produced by the members of OASIS ebXMLRegistry Semantic Content Management SC. Comments regarding flaws in logic, missing functionality and mis-appropriated concepts are most welcome. Feedback will be used to create a specification for reasoning upon and within semantic content contained in an ebXMLRegistry

Summary Conclusion

Early indications from the ebXML Reg/Rep Semantic Content Management team at OASIS have strongly favored design alternative 3 because of its high functionality and minimal footprint on existing ebXML implementations. However, the status of this document is still as a candidate proposal and is by no means considered either complete or final.

Design Alternative 1 : Reason on Reg/Rep Content Objects (via RIM query interfaces)

Description :

This design candidate contemplates the use of a reasoner to make inferences upon individual content objects of the Registry/Repository (Reg/Rep). The scope of this design is at an architectural level – envisioning the machine-to-machine interactions – as opposed to a business level scope, where the primary actors would typically be considered as human users.

As one candidate design among three, the unique drivers are:

· Minimize the changes required to the existing, known Reg/Rep architecture

· Enable the contents of the Reg/Rep (if appropriate) to be reasoned upon by machines

· Allow all content types that can be reasoned upon to be valid content objects, within the scope of this use case

· RDF

· OWL-Full

· OWL-DL

· OWL-Lite

· KIF

· Etc.

The advantage of this candidate is that it minimizes changes to the existing Reg/Rep architecture. The disadvantage is that it offers no new or unique capabilities to reason against the set of content objects within the Reg/Rep – only against individuals. An architecturally separate query agent is required, using existing RIM query formats, to identify and retrieve content objects that are ‘reasonable’ and hand them off to the reasoning tool. Therefore, the onus of supporting this design is upon the Reg/Rep end-user and/or vendors of reasoning tools – not the implementers of the core Reg/Rep specifications.
Simple Use Case Architecture:

[image: image1.png]<communicates>

<initiates>

RIM Query Agent

<includes>

Reason on <conmimicates>
Reg/Rep Contents -
w
<includes>

Registry/Repository

Line of Business
Applications T

Infer Semantic on
Content Objects

<communicates>

Reasoner

Simple Component Architecture:

[image: image2.png]Reasoner

1. Query Reg/Rep
2 Explicit Contents
3.Query Model
4.Semantic Information

	Actors :
	· Line of Business Applications (LoB) – any business software application
· RIM Query Agent – some code component that knows how to construct RIM queries (based upon LoB demands)

· Registry/Repository

· Reasoner – Some engine that can make inferences upon ontology

	Pre-Conditions:
	· ontology objects in Reg/Rep
· RIM queries built and ready to submit

· interfaces between reasoner and business applications

	Post-Conditions:
	· Implicit data (business rules or domain knowledge) has been inferred from an ontology and made available to a Line of Business Application

	Basic Flow :
	1. Line of Business Application determines external knowledge requirement
2. Line of Business Application issues request to Query Agent
3. Query Agent formulates appropriate queries

4. Query Agent issues query(ies) to Reg/Rep
5. Reg/Rep responds with one or more content objects

6. Query Agent passes results (transformation?) back to LoB
7. LoB determines “business value” of retrieved content objects

8. LoB sends high-value objects to appropriate Reasoner
9. Reasoner creates inferred ontology from told ontology

10. LoB may issue queries to inferred ontology

11. LoB may request views of inferred ontology

12. LoB may request set of all inferred facts

13. Reasoner responds with demanded results

	Alternate Flow :
	Identified, but not expounded upon:
· Single results vs. multiple results vs. no results from Query Agent
· Different conditions and requests to Reasoner
· Use of a Reasoner Query Agent (alternate actor)

	Exceptions :
	Identified, but not expounded upon:

· Malformed or invalid ontologies sent to reasoner

	Includes Use Cases:
	· Query
· Infer Semantic on Content Objects

	Special Requirements:
	None

	Assumptions:
	· Appropriate metadata is available to determine ontology “type”

	Use Case Relationships:
	TBD

	Issues :
	TBD

	Examples:
	TBD

Design Alternative 2: Reason on Reg/Rep Schema Directly (Tight Binding with OWL)
Description :

This design candidate contemplates the use of a reasoner to make inferences upon the full set of all content objects within the Registry/Repository (Reg/Rep) for the purpose of discovery of semantically similar content objects. The scope of this design is at an architectural level – envisioning the machine-to-machine interactions – as opposed to a business level scope, where the primary actors would typically be considered as human users. Functionally, this design candidate is identical to Design Alternative 3, but envisions a different architectural paradigm for accessing the RIM objects.

As one candidate among many, the unique drivers of this are:

· Maximize the efficiency of reasoning against the Registry/Repository directly

· This supports discovery of new content based upon ambiguous queries

· Enable the RIM itself to be reasoned upon by machines

· Enable the contents of the Reg/Rep (if appropriate) to be reasoned upon by machines

· Simultaneously allow all content types that can be reasoned upon to be valid content objects, for use separately – outside of the Reg/Rep – with the appropriate reasoners

· These content objects may include:

· RDF

· OWL-Full

· OWL-DL

· OWL-Lite

· KIF

· Etc.

The advantage of this design is that it maximizes the efficiency of reasoning across RIM content objects. The disadvantage of this design is that it would require a significant commitment to re-architect the core RIM structure to support a native ontology structure. An architecturally separate query agent may be required, using ontology-based query structures, to reason against the RIM model – however the scope of this query agent is not considered herein. Therefore, the onus of supporting this alternative is upon the implementers of the core Reg/Rep specifications and not upon the business users and/or the reasoning vendors.

Simple Use Case Architecture:

[image: image3.png]<communicates>

<initiates>

<includes>

Line of Business Reasoner

Applications

Reason on
Reg/Rep Directly

<includes> <conpiicates>

Infer Semantic on
Content Objects
Registry/Repository

Simple Component Architecture:

[image: image4.png]1. Query Reasoner
2 Explicitimplicit Content
3.Query Model(s)
4.Semantic Information

	Actors :
	· Line of Business Applications (LoB) – any business software application

· Registry/Repository (Reg/Rep)
· Reasoner (OWL) – an OWL engine for reasoning directly to Reg/Rep
· Reasoner (any) – Some engine that can make inferences upon ontology contents

	Pre-Conditions:
	· OWL interface to Reg/Rep (for reasoning support)

· ontology objects in Reg/Rep
· OWL queries built and ready to submit

· interfaces between reasoner and business applications (protocol)

	Post-Conditions:
	· Content Discovery. Implicit data (business rules or domain knowledge) has been inferred from the Reg/Rep directly and made available to a Line of Business Application for examination, consideration, and retrieval.

	Basic Flow :
	1. Line of Business Application determines external knowledge requirement

2. Line of Business Application issues request to Reasoner (OWL)
3. Reasoner (OWL) loads or refreshes told Reg/Rep ontology to inferred
4. Reasoner (OWL) issues query(ies) to Reg/Rep ontology interface
5. Reasoner (OWL) infers implicit and explicit facts upon the model

6. Reasoner (OWL) returns results to LoB

7. LoB determines “business value” of retrieved content objects

8. LoB sends high-value objects to appropriate Reasoner (any)
9. Reasoner creates inferred ontology from told ontology

10. LoB may issue queries to inferred ontology

11. LoB may request views of inferred ontology

12. LoB may request set of all inferred facts

13. Reasoner responds with demanded results

	Alternate Flow :
	Identified, but not expounded upon:

· Single results vs. multiple results vs. no results from Reasoner (OWL)
· Different conditions and requests to Reasoner (any)
· Use of a Reasoner Query Agent (alternate actor)

	Exceptions :
	Identified, but not expounded upon:

· Malformed or invalid ontologies sent to reasoner

	Includes Use Cases:
	· Discover
· Infer Semantic on Content Objects

	Special Requirements:
	None

	Assumptions:
	· Appropriate metadata is available to determine ontology “type”

	Use Case Relationships:
	TBD

	Issues :
	TBD

	Examples:
	TBD

Design Alternative 3: Reason on Reg/Rep Schema Directly (Loose-Binding with OWL)
Description :

This design alternative contemplates the use of a reasoner to make inferences upon the full set of all content objects within the Registry/Repository (Reg/Rep) for the purpose of discovery of semantically similar content objects. The scope of this design is at an architectural level – envisioning the machine-to-machine interactions – as opposed to a business level scope, where the primary actors would typically be considered as human users. In particular, this design alternative is identical to alternative 2, but envisions a different architectural paradigm for accessing the RIM objects.

As one candidate among many, the unique drivers of this particular design are:

· Tradeoff between efficiency of reasoning and ease of implementation

· While supporting discovery of new content based upon ambiguous queries

· Enable the RIM itself to be reasoned upon by machines

· Enable the RIM to maintain existing query interfaces

· Enable the contents of the Reg/Rep (if appropriate) to be reasoned upon by machines

· Simultaneously allow all content types that can be reasoned upon to be valid content objects, for use separately – outside of the Reg/Rep – with the appropriate reasoners

· These content objects may include:

· RDF

· OWL-Full

· OWL-DL

· OWL-Lite

· KIF

· Etc.

The advantage of this design is that it enables reasoning across RIM content objects while minimizing impacts to existing RIM architectures. The disadvantage of this design is that it would require a commitment to support and maintain mappings between architecturally separate RIM interface models (one OWL and one native RIM). An architecturally separate query agent may be required, using ontology-based query structures, to reason against the OWL/RIM models – however the scope of this query agent is not considered herein. Therefore, the onus of supporting this design alternative (eg: a new OWL interface and the mappings to existing RIM objects) is upon the implementers of the core Reg/Rep specifications and not upon the business users and/or the reasoning vendors.

Simple Use Case Architecture:

[image: image5.png]Line of Business
Applications

nitiates>

<communicates>

<includes>

Reasoner

Reason on
Reg/Rep Directly

<includes>

Interpret Mappings

Infer Semantic on
Content Objects

Registry/Repository

Simple Component Architecture:

[image: image6.png]poram
Reasoner
|

1. Query Reasoner
2 Explicitimplicit Content

3.Query Model(s)
4.Semantic Information

	Actors :
	· Line of Business Applications (LoB) – any business software application

· Registry/Repository (Reg/Rep)

· Reasoner (OWL) – an OWL engine for reasoning directly to Reg/Rep
· Reasoner (any) – Some engine that can make inferences upon ontology contents

	Pre-Conditions:
	· OWL interface to Reg/Rep (for reasoning support)

· Actionable mappings between internal RIM and external OWL interfaces

· ontology objects in Reg/Rep
· OWL queries built and ready to submit

· interfaces between reasoner and business applications (protocol)

	Post-Conditions:
	· Content Discovery. Implicit data (business rules or domain knowledge) has been inferred from the Reg/Rep directly and made available to a Line of Business Application for examination, consideration, and retrieval.

	Basic Flow :
	14. Line of Business Application determines external knowledge requirement

15. Line of Business Application issues request to Reasoner (OWL)
16. Reasoner (OWL) loads or refreshes told Reg/Rep ontology to inferred

17. Reg/Rep refreshes OWL “view” based upon native RIM state
18. Reasoner (OWL) issues query(ies) to Reg/Rep ontology interface

19. Reg/Rep interprets scope of inferred query (implications) into native RIM queries

20. Reg/Rep returns RIM query responses back to Reasoner in RDF format as instance

21. Reasoner (OWL) infers implicit and explicit facts upon the model

22. Reasoner (OWL) returns results to LoB

23. LoB determines “business value” of retrieved content objects

24. LoB sends high-value objects to appropriate Reasoner (any)
25. Reasoner creates inferred ontology from told ontology

26. LoB may issue queries to inferred ontology

27. LoB may request views of inferred ontology

28. LoB may request set of all inferred facts

29. Reasoner responds with demanded results

	Alternate Flow :
	Identified, but not expounded upon:

· Single results vs. multiple results vs. no results from Reasoner (OWL)
· Different conditions and requests to Reasoner (any)
· Use of a Reasoner Query Agent (alternate actor)

	Exceptions :
	Identified, but not expounded upon:

· Malformed or invalid ontologies sent to reasoner

	Includes Use Cases:
	· Discover
· Infer Semantic on Content Objects
· Interpret Mappings (for both queries and responses)

	Special Requirements:
	None

	Assumptions:
	· Appropriate metadata is available to determine ontology “type”

	Use Case Relationships:
	TBD

	Issues :
	TBD

	Examples:
	TBD

Tradeoff Analysis
The following simple tradeoff analysis scores the capabilities enable by the different design alternatives. A simple scoring mechanism of 1..3 is used, whereby 3 = Very Well Suited, 2 = Well Suited, and 1 = Not Well Suited. The sum of the scores indicates the favored design alternative. The relative scores on a given axis identify the tradeoffs.
	
	DA#1
	DA#2
	DA#3

	Inference upon RIM schema
	0
	3
	3

	Inference upon RIM content objects
	3
	3
	3

	Low impact on existing RIM architecture
	3
	1
	2

	Decoupled interface for reasoners (supports hybrid reasoning)
	3
	1
	2

	Supports native RIM querys
	3
	1
	3

	Supports reasoner-driven queries
	0
	3
	3

	Does not require exposed mappings between RIM and OWL
	3
	3
	1

	Does not require more work for ebXML end user
	0
	2
	2

	Totals (more is better):
	15
	17
	19

Summary and Conclusions

Early indications from the ebXML Reg/Rep Semantic Content Management team at OASIS have strongly favored design alternative 3 because of its high functionality and minimal footprint on existing ebXML implementations. However, the status of this document is still as a candidate proposal and is by no means considered either complete or final.
