METU-SRDC Comments on

Use Cases : ebXMLRegistry Semantic Content Management SC

ebXML Registry will become for the semantic web what web servers are to the web today

Color Coding:
Blue: New comments

Red: Insertions from the previously proposed DAPD paper

Introduction

Reviewers are invited to comment on the Use Cases produced by the members of OASIS ebXMLRegistry Semantic Content Management SC . Comments regarding flaws in logic, missing functionality and mis-appropriated concepts are most welcome. Feedback will be used to create a specification for Registering and Storing semantic content in the ebXMLRegistry.
1 Use Case : eBusiness Industry Dictionary: nouns

Priority (L/M/H) : High

Description :

Organizations such as Open Applications Group (OAGi), RosettaNet, and the UDEF and STEP communities along with eGov initiatives such as Integrated Justice Information, European EPR (Electronic PRocess), as well as others in the UK Ministry of Defence, and US Department of Justice require interoperable semantics of noun definitions for their industry domains. OASIS Technical Committees such as the Customer Information Quality TC need the means to document their noun semantics in Registry.

To date the Registry provides Classifications, Taxonomies, the ebXML Registry Information Model (RIM) and logical models such as Core Components Technical Specification (CCTS) but no means to capture consistent semantics around the physical noun details. W3C XSD schema provides some small limited subset of this - datatype, use, annotation, tokenized values, but much more is required, and especially the ability to support context driven semantics, language localization and consistent versioning.

Coupled to this is the ability to support assembly of eBusiness transaction documents from the noun dictionary both as models (CCTS) and physical transactions through the Content Assembly Mechanism (CAM). The ability to link in Web Ontology Language (OWL) descriptions and Topic Maps to further add semantics to the nouns should be part of the design considerations, with the aim to enhance the physical noun collections for discovery and re-use.

Support for Nouns and associated semantic content in ebXML repositories will allow implementers to have a consistent set of nouns across industry domains and provide the building block for adopters to rapidly implement ebXML Registry based dictionaries from their existing manually managed dictionary content.

The noun details will be defined as an XML instance structure (XSD) for storing the individual noun semantics into the registry. Multi-lingual locale support is required in this structure along with an extensible facet support

Actors :

business information analyst

Pre-Conditions: ability to associate to taxonomies or richer semantic content already in registry

Post-Conditions: none

Basic Flow :

analyst #1 publishes a semantic noun as XML to registry

analyst #1 assigns classification and taxonomy to noun entry

analyst #2 queries and retrieves noun based on industry search criteria

analyst #2 uses browse and drill down to locate specific noun meeting industry criteria

Alternate Flow :

machine process retrieves semantic noun details as XML

referencing is done via direct external key value look up and using http-binding interface

machine process scans registry for matching industry nouns and produces catalogue of same as human readable report

Exceptions : none

Includes Use Cases: None

Special Requirements: None

Assumptions:

Industry analyst creates dictionary content using domain expertise.

Noun details may be spread across multiple registries that may or may not be federated

Use Case Relationships:

None

Issues :

none

2 Use Case : eBusiness Industry Dictionary: BP catalogue

Priority (L/M/H) : High

Description :

The ebXML architecture calls for a registry of re-usable business process definitions that can be used to configure eBusiness interactions dynamically with software.

Industry groups such as OAGi, and RosettaNet have developed dictionaries using a variety of tools such as HTML and spreadsheets to manage their own sets of business processes (BODs, PIPs, etc) in a manual way.

Today ebXML has available Collaborative Process Agreements (CPA) with Business Process Specification Schema (BPSS) and associated transaction handling instructions such as CAM template scripts to provide the physical implementation.

By defining semantics for BP catalogue entries in Registry we can provide a consistent way to package a BP definition, including all the necessary components (CPA, BPSS, Transactions, XSD, Context use rules) so that industry groups can quickly build re-usable dictionaries of BP catalogues. BP semantics will be captured in ebXML registries either using currently supported classification mechanisms or through enhancements to the registry supporting languages such as Topic Maps, OWL or some other formalism. These languages support machine reasoning which can enhance re-use and discovery of registry content such as BP entries. A further goal is so that application implementers can reliably download and install BP catalogue definitions into their systems to configure them and provide directives for the runtime systems

Actors :

business process analyst

Pre-Conditions: BP structure and semantics already described in registry content.

Post-Conditions: none

Basic Flow :

analyst #1 assembles a collection of BP components, such as CPA, BPSS, business transaction definitions, and context mechanism details and publishes as a semantic object in XML to registry

analyst #1 assigns classification and taxonomy to BP catalogue entry

analyst #2 queries and retrieves BP catalogue entry based on industry search criteria

analyst #2 uses browse and drill down to locate specific BP catalogue item meeting industry criteria

Alternate Flow :

machine process retrieves semantic details of BP catalogue entry as XML and then automatically configures ebXML components accordingly (CPA - directs ebMS, BPSS - directs BP engine, et al).

machine process queries and/or scans registry for matching industry BP catalogue entries and produces catalogue of same as human readable report.

Exceptions : none

Includes Use Cases: None

Special Requirements: None

Assumptions:

Industry analyst creates BP catalogue content using domain expertise.

BP catalogue details and associated objects (CPA, BPSS, XSD, context configuration) may be spread across multiple registries that may or may not be federated

Use Case Relationships:

None

Issues :

none

Examples:

3 Use Case : Collaborative ontology development

Priority (L/M/H) : High

Description :

Ontologies often need to be developed collaboratively by a group of geographically dispersed Domain Experts within a certain domain. Each Domain Experts builds different sub-graphs (networks) of an ontology. Each Domain Expert may review the ontology sub-graphs produced by others. Each Domain Expert may edit ontology sub-graphs that they or another Domain Expert created with appropriate access control.

Actors :

Domain Expert

Pre-Conditions:

none

Post-Conditions:

none

Basic Flow :

Domain expert #1 publishes an ontology sub-graph

Domain expert #2 publishes another ontology sub-graph and connects it to first sub-graph

Domain expert #1 and #2 review each others sub-graphs

Domain expert #1 and #2 edits sub-graphs to address comments or fix errors

Alternate Flow :

none

Exceptions :

none

Includes Use Cases:

None

Special Requirements:

None

Assumptions:

Proper configuration management and access control policies are defined for collaboration on shared ontology content.

Inter-connected ontology sub-graphs may be spread across multiple registries that may or may not be federated

Use Case Relationships:

None

Issues :

none

Examples:

4 Use Case : Classify content using Ontology class

Priority (L/M/H) : High

Description :

Currently ebXML Registry allows content to be classified using a ClassificationNode within a ClassificationScheme. This use case envisions allowing content to be classified using a class within an Ontology. The resulting classification would carry much clearer semantic content.

An ontology basically defines
· the classes,
· the properties of the classes and

· the relationships between classes and properties.
ebXML RIM provides considerable support to “represent” ontologies in the registry as follows:

· Ontology classes can be represented as through ebXML ClassificationNodes.
· For example, if there is a “Person” class in the ontology, a “Person” ClassficationNode can be created in the ebXML registry.
· Properties of classes can be represented either through the “slot” mechanism associated with RegistryObjects or through ebXML Associations.
· For example, if a “Person” class has a property “hasCar” whose range is another class called “Car”, then we can define a new association type called “Property” and name this property “hasCar” to associate “Person” and “Car” ClassificationNodes in the registry.
· For example, if a “Person” class has a property “age” whose range is integer, we can define a slot called “age” in the “Person” ClassificationNode.

· Relationships among classes can be represented through ebXML RegistryPackage.
· For example, if an ontology defines a class “FemaleDriver” as the intersection of “Female” and “Driver” classes, we can create a “FemaleDriver” RegistryPackage and make “Female” and “Diver” ClassificationNodes members of this RegistryPackage. And then to give the “intersectionOf” meaning to this RegistryPackage, that is to be able to imply that when processing the members of this RegistryPackage it is necessary to take the intersection of the instantances of the member classes in it, we use a “slot” to indicate that this RegistryPackage represents a “Class Expression” and then use another “slot” to indicate that “Class Expression” is “intersectionOf”. Note that there can be other class expressions such as “UnionOf” or “Difference” and the slot value can be one of these to indicate the type.
· Note further that when we define a class expression such as “FemaleDriver”, this class may have its own instances. So when all female drivers are requested from the registry, we should not only find the intersection of the class instances in the “FemaleDriver” RegistryPackage but also retrieve the instances of “FemaleDriver” class. To express this in the ebXML registry, we also associate “FemaleDriver” class with “FemaleDriver” RegistryPackage through “RelatedTo” Association type.

In DAPD paper, Section 4.1, the details of representing OWL Lite constructs in ebXML registry, without modifying the basic registry architecture, are presented.
The important point to note over here is the following: Representing Ontology information in the ebXML registry is one thing; providing processing support for this additional semantics is another thing.
First, let us remember what kind of querying support ebXML registry provides:

· SQL Query

· Filter query

SQL Query: Through SQL queries, any information that exists in the registry can be queried given that the user knows the relational schema. Note that when we represent an ontology in ebXML registry as described in the DAPD paper, since we introduce new semantics, new slot values and new association types, the user has to be aware of this to write the proper SQL code. But again, as we have demonstrated in the DAPD paper, stored procedures can be stored in the registry to help the user to process this additional semantics.

The capabilities provided in this way move the semantics support beyond what is currently available in ebXML registries and it does so by using a standard ontology language and without changing the registry architecture.
Filter Query: Through filter query, it is possible to find:

· Instances of a given ClassificationNode

· The slots of a classification node

· The associations defined for a classification node

· Etc.

However, we can not access the extra semantics introduced through the ebXML Filter query unless QueryManager component of the registry is modified.
· For example, we have defined a “FemaleDriver” RegistryPackage to represent the intersection of “Female” and “Driver” ClassifcationNodes. Two slots in the RegistryPackage indicate that this RegistryPackage represents the “intersectionOf” semantics and thus when processing, the instances of the members must be found and only those instances that exist in both of the classes qualify for the result. There is a need for code to do this. As explained in DAPD paper, a stored procedure can do this. However the Query Manager must call that specific stored procedure to retrieve the required result.
In the following, we provide the details of representing the OWL Lite constructs in an ebXML registry and then give the required stored procedures to process this semantics. This section is taken from the DAPD paper, previously announced in the semantic SC with some slight modifcations.
1. OWL Classes and Properties

OWL classes can be represented through “ClassificationNodes” and RDF properties that are used in OWL can be treated as “Associations”. An “Association” instance represents an association between a “source RegistryObject” and a “target RegistryObject”. Hence the target object of “rdfs:domain” property can be mapped to a “source RegistryObject” and the target object of “rdfs:range” can be mapped to a “target RegistryObject”. In OWL, properties can be of two types:

• ObjectProperty type defines relations between instances of two classes.

• DatatypeProperty type defines relations between instances of classes and XML Schema datatypes.

To represent OWL ObjectProperty (or DatatypeProperty) in ebXML, we define a new type of association called “ObjectProperty” (or “DatatypeProperty”). Consider the following example which defines an object property “hasAirport” whose domain is “City” and whose range is “Airport”:

<owl:ObjectProperty rdf:ID="hasAirport">

<rdfs:domain rdf:resource="#City"/>

<rdfs:range rdf:resource="#AirPort"/>

</owl:ObjectProperty>

In order to define this property in ebXML RIM, first, two classification nodes are created, namely “City” and “Airport”. Then, an association, called “hasAirport” of type “ObjectProperty”, is defined where the “sourceObject” is “City” and the “targetObject” is “Airport”, as shown in the following:

<rim:ClassificationNode id = ’City’parent= ’Country’> </rim:ClassificationNode>

<rim:ClassificationNode id = ’Airport’ parent= ’TravelThing’> </rim:ClassificationNode>

<rim:Association id = ’promotion’associationType = ’ObjectProperty’ sourceObject =

’City’ targetObject = ’Airport’ >

</rim:Association>

Similarly, to represent OWL DatatypeProperty in ebXML, we define a new type of association called “DatatypeProperty” (Note that a Datatype property can also be defined as a “slot”). Consider the following example which defines an datatype property “hasPrice” whose domain is the “AirReservationServices” and whose range is “XMLSchema nonNegativeInteger”:

<owl:DatatypeProperty rdf:ID="hasPrice">

<rdfs:subpropertyOf rdf:resource="http://www.daml.org/services/daml-s/2001/05/Profile.owl"/>

<rdfs:domain rdf:resource="#AirReservationServices"/>

<rdfs:range rdf:resource="http://www.w3.org/2000/10/XMLSchema/nonNegativeInteger"/>

</owl:DatatypeProperty>

To describe this semantics, we define a new association of type “DatatypeProperty” as shown in the following:

<rim:Association id = ’hasPrice’ associationType = ’DatatypeProperty’

sourceObject = ’AirReservationServices’

targetObject = ’integer’ >

<rim:Name> <rim:LocalizedString value ="hasPrice"/></rim:Name>

</rim:Association>

OWL allows the use of XML Schema datatypes to describe part of the datatype domain by simply including their URIs within an OWL ontology. In ebXML, XML Schema datatypes are used by providing an external link from the registry, as demonstrated in the following:

<rim:ExternalLink id = "integer"

externalURI="http://www.w3.org/2001/XMLSchema#integer" >

<rim:Name> <rim:LocalizedString value = "XML Schema integer"/>

</rim:Name>

</rim:ExternalLink>

Once such ObjectProperty or DatatypeProperty definitions are stored in the ebXML registry, they can be retrieved through ebXML query facilities by the user. However, providing some stored procedures for this purpose facilitates the direct access. We therefore propose the following stored procedure to be available in the registry which retrieves all the object properties of a given classification node:

CREATE PROCEDURE findObjectProperties($className) AS

BEGIN

SELECT A.id

FROM Association A, Name_ N, ClassificationNode C

WHERE A.associationType LIKE ’objectProperty’ AND

C.id = N.parent AND

N.value LIKE $className AND

A.sourceObject = C.id

END;

A similar stored procedure can be given to retrieve datatype properties of a given class.

2. OWL Class Hierarchies

When it comes to mapping OWL class hierarchies to ebXML class hierarchies, OWL relies on RDF Schema for building class hierarchies through the use of “rdfs:subClassOf” property and allows multiple inheritance. An ebXML Class hierarchy has a tree structure, and therefore is not readily available to express multiple inheritance, that is, there is a need for additional mechanisms to express multiple inheritance. We define a “subClassOf” property as an association for this purpose.

Consider the example:

<owl:Class rdf:ID="AirReservationServices">

<rdfs:subClassOf rdf:resource="http://www.daml.org/services/owl-s/1.0/Profile.owl#Profile"/>

<rdfs:subClassOf rdf:resource="#AirServices"/>

</owl:Class>

Here, “AirReservationServices” service inherits both from “AirServices” service and OWL-S ServiceProfile class.

Once we define such a semantics, we need the code to process the objects in the registry according to the semantics implied; that is, given a class, we should be able to retrieve all of its subclasses and/or all of its super classes. By making the required stored procedures available in the registry, this need can be readily served. For example, the following procedure finds all the immediate super classes of a given class:

CREATE PROCEDURE findSuperClasses($className) AS

BEGIN

SELECT C2.id

FROM Association A, Name_ N, ClassificationNode C1, ClassificationNode C2

WHERE A.associationType LIKE ’subClassOf’ AND

C1.id = N.parent AND

N.value LIKE $className AND

A.sourceObject = C1.id AND

A.targetObject = C2.id

END;

Similar procedures can be provided to find all the superclasses of a given class (not only the immediate ones) as well as all its subclasses. The following procedure can then be used to retrieve all of the properties of a given class including the ones inherited from its super classes:

CREATE PROCEDURE findInheritedObjectProperties ($className) AS

SELECT A.id FROM Association A, ClassificationNode C WHERE

A.sourceObject=C.id AND

A.associationType LIKE ’objectProperty’ AND

C.id IN (

SELECT parent

FROM name_

WHERE value LIKE $className

UNION

findSuperClasses($className)

}

END;

3. OWL subPropertyOf

Since OWL properties are represented through ebXML associations, we define “rdfs:subPropertyOf” as an association between associations with a new association type of “subPropertyOf”. The following procedure finds all the immediate super properties of a given property and similar procedures can be made available for all the super and subproperties:

CREATE PROCEDURE findSuperProperties($propertyName) AS

BEGIN

SELECT A3.id

FROM Association A1, Association A2, Association A3, Name_ N

WHERE A2.associationType LIKE ’subPropertyOf’ AND

A1.id = N.parent AND

N.value LIKE $propertyName AND

A2.sourceObject = A1.id AND

A2.targetObject = A3.id

4. OWL equivalentClass, equivalentProperty and sameAs Properties

In ebXML, the predefined “EquivalentTo” association (Table 1) expresses the fact that the source registry object is equivalent to target registry object. Therefore, “EquivalentTo” association is used to express “owl:equivalentClass”, “equivalent-Property” and “sameAs” properties since classes, properties and instances are all ebXML registry objects.

Given a class, the following stored procedure retrieves all the equivalent classes:

CREATE PROCEDURE findEquivalentInstances($className) BEGIN SELECT

N.value FROM Service S, Name_ N WHERE S.id IN (

SELECT classifiedObject

FROM Classification

WHERE classificationNode IN (

SELECT id

FROM ClassificationNode

WHERE id IN (

SELECT parent

FROM name_

WHERE value LIKE $className

)

UNION

SELECT A.targetObject

FROM Association A, Name_ N, ClassificationNode C

WHERE A.associationType LIKE ’EquivalentTo’ AND

C.id = N.parent AND

N.value LIKE $className AND

A.sourceObject = C.id

)

) AND S.id=N.parent

END;

5. OWL Transitive Property

In OWL, if a property, P, is specified as transitive then for any x, y, and z: P(x,y) and P(y,z) implies P(x,z). Transitive property can be defined as a new type of association in ebXML. Consider the following example where we define the “succeeds” as a transitive property of “TravelWebService” class:

<owl:ObjectProperty rdf:ID="succeeds">

<rdf:type rdf:resource="&owl;TransitiveProperty" />

<rdfs:domain rdf:resource="#TravelWebService" />

<rdfs:range rdf:resource="#TravelWebService" />

</owl:ObjectProperty>

Assuming the following two de.nitions:

<TravelWebService rdf:ID="MyHotelAvailabilityService">

<succeeds rdf:resource="#MyAirReservationService" />

</TravelWebService>

<TravelWebService rdf:ID="MyInsuranceService">

<succeeds rdf:resource="#MyHotelAvailabilityService" />

</TravelWebService>

Since “succeeds” is a transitive property, it follows that “MyInsuranceService” succeeds “MyAirReservationService” although this fact is not explicitly stated. To make any use of this transitive property in ebXML registries, coding is necessary to findout the related information. We provide the following stored procedure to handle this semantics: Given a class which is a source of a transitive property, this stored procedure retrieves not only the target of a given transitive property, but if the target objects have the same property, it also retrieves their target objects too.

CREATE PROCEDURE findTransitiveRelationships($className,

$propertyName) BEGIN SELECT A2.targetObject FROM Association A1,

Association A2, Name_ N1,Name_ N2, Name_ N3 WHERE

A1.associationType LIKE ’transitiveProperty’ AND

A1.id = N1.parent AND

14 DOGAC ET. AL.

N1.value LIKE $propertyName AND

A1.sourceObject = N3.parent AND

N3.value LIKE $className AND

A2.sourceObject = A1.targetObject AND

A2.id = N2.parent AND

N2.value LIKE $propertyName AND

A2.associationType LIKE ’transitiveProperty’

UNION

SELECT A1.targetObject

FROM Association A1, Name_ N1, Name_ N3

WHERE A1.associationType LIKE ’transitiveProperty’ AND

A1.id = N1.parent AND

N1.value LIKE $propertyName AND

A1.sourceObject = N3.parent AND

N3.value LIKE $className

END;

6. OWL inverseOf Property

In OWL, if a property, P1, is tagged as the “owl:inverseOf” P2, then for all x and y: P1(x,y) i. P2(y,x). Consider for example the “succeeds” property defined in Section 5. To denote that a certain Web service instance precedes another, we may define the “precedes” property as an inverse of the “succeeds” property as follows:

<owl:ObjectProperty rdf:ID="precedes">

<owl:inverseOf rdf:resource="#succeeds" />

</owl:ObjectProperty>

Then, by using the following stored procedure, we can find all the services that precede a given service by making use of its “succeeds” property.
CREATE PROCEDURE findInverseRanges($className, $propertyName)

BEGIN

SELECT C2.id

FROM Association A, Name_ N, Name_ N2, ClassificationNode C1, ClassificationNode C2

WHERE A.id=N2.parent AND

N2.value LIKE $propertyName AND

C1.id = N.parent AND

N.value LIKE $className AND

A.sourceObject = C1.id AND

A.targetObject = C2.id

UNION

SELECT A3.sourceObject

FROM Association A1, Association A2, Association A3, Name_ N, NAME_ N2, ClassificationNode C1

WHERE A2.associationType LIKE ’inverseOf’ AND

A1.id = N.parent AND

N.value LIKE $propertyName AND

A2.sourceObject = A1.id AND

A3.id=A2.targetObject AND

C1.id = N2.parent AND

N2.value LIKE $className AND

A3.targetObject = C1.id

END;

7. OWL Restriction

Another important construct of OWL is “owl:Restriction”. In RDF, a property has a global scope, that is, no matter what class the property is applied to, the range of the property is the same. “owl:Restriction”, on the other hand, has a local scope; restriction is applied on the property within the scope of the class where it is defined. The aim is to make ontologies more extendable and hence more reusable. OWL provides the following language elements to indicate the type of restriction: owl:allValuesFrom, owl:someValuesFrom, owl:hasValue. An owl:all-ValuesFrom element defines the class of all objects for whom the values of property all belong to the class expression.

Consider the following example:

<owl:Class rdf:ID="AirReservationServices">

<rdfs:subClassOf rdf:resource="&service"/>

<rdfs:subClassOf rdf:resource= "#AirServices"/>

<rdfs:subClassOf>

<owlRestriction>

<owl:onProperty rdf:resource="#paymentMethod"/>

<owl:allValuesFrom rdf:resource= "#PossiblePaymentMethods"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Here “owl:Restriction” defines an anonymous class, that is the class of all things that satisfy this restriction. The restriction is that the property “paymentMethod” should get all of its values from the class “PossiblePaymentMethods”. By defining “AirReservationServices” class as a subclass of this anonymous class, its “payment-Method” property is restricted to the elements of the “PossiblePaymentMethods”. In ebXML class hierarchies, on the other hand, an association (which represents a property) is already defined in a local scope by associating two nodes of the class hierarchy. The type of the restriction can be expressed by special slot values.

8. OWL Class Intersection

OWL provides the means to manipulate class extensions using basic set operators. In OWL Lite, only “owl:intersectionOf” is available which defines a class that consists of exactly all objects that do not belong to both of the classes. Consider the following example:

<owl:Class rdf:ID="AirReservationServices">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AirServices" />

<owl:Class rdf:about="#ReservationServices" />

</owl:intersectionOf>

</owl:Class>

In ebXML RIM “owl:intersectionOf” set operator can be expressed as follows:

• The classes constituting the intersection are represented as members of a RegistryPackage.

• The registry package has two slots, one indicating that this is a class expressions; the other defining its type as “intersectionOf”.

• The "AirReservationServices" ClassfcationNode is associated with this registry package through the predefined Association “RelatedTo”
The RIM representation of the OWL example presented above is as follows:

<rim:ClassificationNode id = ’AirServices’ parent= ’TravelServices’>

<rim:Name> <rim:LocalizedString value = ’AirServices’ /> </rim:Name>

</rim:ClassificationNode>

<rim:ClassificationNode id = ’ReservationServices’ parent= ’TravelServices’>

<rim:Name> <rim:LocalizedString value = ’ReservationServices’ /> </rim:Name>

</rim:ClassificationNode>

<rim:ClassificationNode id = ’AirReservationServices’ parent= ’TravelServices’>

<rim:Name> <rim:LocalizedString value = ’AirReservationServices’ /> </rim:Name>

</rim:ClassificationNode>

<rim:RegistryPackage id = ’RP-AirServicesANDReservationServices’>

<rim:Name> <rim:LocalizedString value = ’RP-AirServicesANDReservationServices’/>

</rim:Name>

<Slot name = 'ClassExpression'> <ValueList>

 <Value>True</Value> </ValueList> </Slot>

<Slot name = 'Type'> <ValueList>

 <Value>intersectionOf</Value> </ValueList> </Slot>

</rim:RegistryPackage>

<rim:Association id = ’firstMember’ associationType = ’HasMember’

sourceObject = ’RP-AirServicesANDReservationServices’ targetObject = ’AirServices’ >

<rim:Name> <rim:LocalizedString value = ’firstMember’ /> </rim:Name>

</rim:Association>

<rim:Association id = ’secondMember’ associationType = ’HasMember’

sourceObject = ’RP-AirServicesANDReservationServices’ targetObject = ’ReservationServices’ >

<rim:Name> <rim:LocalizedString value = ’secondMember’ /> </rim:Name>

</rim:Association>

<rim:Association id = ’RelatedTo’ associationType = ’RelatedTo’

sourceObject = ’AirReservationServices’ targetObject = ’RP-AirServicesANDReservationServices’ >

<rim:Name> <rim:LocalizedString value = ’RelatedTo’ /> </rim:Name>

</rim:Association>

When such a representation is used to create a complex class in RIM, it becomes possible to infer that the objects classified by both of the classes constituting the intersection are also the instances of this complex class. The following stored procedure retrieves the direct instances of the complex class and also the intersection of the instances of the member classes:

CREATE PROCEDURE findInstances($className) AS

BEGIN

SELECT N1.value

FROM Name_ N1, Service S, (

SELECT A.targetObject AS id

FROM RegistryPackage R, Association A

WHERE R.id=A.sourceObject AND

A.associationType = ’HasMember’ AND

R.id IN (

SELECT A.targetObject

FROM Association A, Name_ N, ClassificationNode C

WHERE A.associationType LIKE ’RelatedTo’ AND

C.id = N.parent AND

N.value LIKE $className AND

A.sourceObject = C.id

)

) AS T1, (

SELECT A.targetObject AS id

FROM RegistryPackage R, Association A

WHERE R.id=A.sourceObject AND

A.associationType = ’HasMember’ AND

R.id IN (

SELECT A.targetObject

FROM Association A, Name_ N, ClassificationNode C

WHERE A.associationType LIKE ’RelatedTo’ AND

C.id = N.parent AND

N.value LIKE $className AND

A.sourceObject = C.id

)

) AS T2

WHERE S.id IN (

SELECT classifiedObject

FROM Classification

WHERE classificationNode=T1.id

INTERSECT

SELECT classifiedObject

FROM Classification

WHERE classificationNode=T2.id

) AND T1.id!=T2.id AND

N1.parent=S.id

UNION

SELECT N.value

FROM Service S, Name_ N

WHERE S.id IN (

SELECT classifiedObject

FROM Classification

WHERE classificationNode IN (

SELECT id

FROM ClassificationNode

WHERE id IN (

SELECT parent

FROM name_

WHERE value LIKE $className

)

)

) AND S.id=N.parent

END;

RIM support for ontologies brings rich and precise semantic content to ebXML registries. Adding the ability for binding non-semantic registry entries to elements of these ontologies infers semantics to this content. These semantics can then be exploited for automated support of a number of content analysis tasks, including: classification, consistency checking and schema and instance comparison.

See attached use case diagram.

Actors :

Domain Expert , Registry

Pre-Conditions:

Ontology must already be defined or be submitted along with the content being classified

Post-Conditions:

none

Basic Flow :

Domain experts publishes an ontology

Content Publisher publishes content

Content Publisher classified content using an ontology class reference within a Classification

Alternate Flow :

none

Exceptions :

none

Includes Use Cases:

None

Special Requirements:

None

Assumptions:

Domain experts publishes an ontology

Content Publisher publishes content

Content Publisher classified content using an ontology class reference within a Classification

Use Case Relationships:

This use case is either a component of or a precondition for most other SCM use cases.

Issues :

none

Examples:

5 Use Case : Associate 2 RegistryObjects using an Ontology elements

Priority (L/M/H) :

High

Description :

Currently ebXML Registry allows content to be associated using an Association which has an optional associationType that is defined by a ClassificationNode within a ClassificationScheme.

This use case envisions allowing content to be associated using an Association which has an optional associationType that is defined by a pair of Properties within an Ontology.

A property in an ontology can be represented through ebXML Association. For example, a “Person” class may have a functional property called “hasBiologicalMother” whose range is “Female”. We can define “Person” and “Female” classes as ClassificationNodes in ebXML and define a new Assocation type called “functionalProperty’. In this way, we can express the meaning that every instance of the “Person” class will have a unique biological mother. However, expressing this semantics is not enough; proper mechanisms must be in place to handle this semantics.

First let us take a look how “functionalProperty” semantics can be made use of in an ontology language like OWL: If we have two facts in the knowledge base, one saying that John’s biological mother is “Mary” and the other saying that John’s biological mother is “Jane”, a reasoner can deduce that “Mary” and “Jane” are the same person since “hasBiologicalMother” is a functional property and thus John has only one biological mother.

It follows that if we wish to make use of such a “functionalProperty” in ebXML we need to have similar mechanisms.

A more striking example can be given through a “transitiveProperty”. For example, we can define “ancestorOf” as a transitive property by introducing “transitiveProperty” Association type to ebXML. So when we declare that John is an ancestor of George and George is an ancestor of Peter, “transitiveProperty” will help us to conclude that John is an ancestor of Peter. Again, to make this conclusion, proper mechanisms should be available in the registry. Note that it is possible to provide a stored procedure for this purpose.
The meaning of the resulting association would be much more clear and precise.

Actors :

Domain Expert , Content Publisher , Registry

Pre-Conditions:

A repository populated with domain and higher level ontologies

Post-Conditions:

none

Basic Flow :

Domain experts publishes an ontology

Content Publisher publishes content #1

Content Publisher publishes content #2

Content Publisher publishes an Association that associates content #1 and content #2 using an ontology class (not class but property) reference as an associationType

Alternate Flow :

none

Exceptions :

none

Includes Use Cases:

None

Special Requirements:

None

Assumptions:

An Association class is used to associate the two content instances as is the case in version ebXML Registry 2.5

Queries (different use case) may be submitted that discover associated content not only based on associationType but also specific attributes of the properties that were used to define associationType.
It is possible to access any data in the relational database through SQL queries in ebXML. Through Filter Queries, the possibilities include the following:

· It is possible to retrieve all the Associations in the registry

· It is possible to retrieve all the Associations of certain type such as “transitiveProperty”
· It is possible to retrieve all the Associations of certain type such as “transitiveProperty” with a given name such as “ancestorOf”

However, through Filter Query, it is not directly possible to find, for example, the range of a given association. For instance, you can not say “Give me the range (which is “Female” class) of the Association whose type is “functionalProperty”, whose name is “biologicalMother”. You can, on the other hand, retrieve all the related information on “Person” class and extract this information by writing code.

Use Case Relationships:

None

Issues :

none

Examples:

6 Use Case : Discover content using semantic queries

Priority (L/M/H) : High

Description :

Currently ebXML Registry allows content to be discovered using ad hoc queries which are based on predicates defined over attributes of RIM classes.

This use case envisions allowing content to be discovered using semantic ad hoc queries which are based on predicates defined over attributes of Ontology class instances in addition to attributes of RIM classes.

The result is that a Registry Client may now discover content by expressing their intended target using enhanced expressive power, semantic clarity and reduced ambiguity.
The details of how semantic querying will be achieved depend upon how the semantic information is stored in the registry. There are query languages for retrieving semantic information such as RDQL (for RDF) and OWL-QL. Although RDQL has a relatively simple syntax, OWL-QL abstract syntax is complicated. Also OWL-QL does not provide support for arithmetic operators.

What we propose is the following:

· By changing the Query Manager component, we can make Filter Query to return semantic information seamlessly to the user and this is what we had proposed earlier within the scope of DAPD paper.
· The down side of this approach is that unless we have a reasoner in the Query Manager, we will never be able to provide all the inferred knowledge; we will provide some inferred knowledge which can be misleading for the user.
· We therefore think the following is a better idea: Currently we are using OWL-QL in one of our projects and after gaining some experience with it, it seemed to us that it is possible to modify ebXML Filter Query specification to retrieve semantic information from the registry directly through Filter Query. The approach we have in mind has the following advantages:
· OWL-QL did not fix the surface syntax of the query language. OWL-QL specification is stated at an “abstract” form, allowing the same language to be implemented in multiple surface syntactic forms. So, with parties interested in the ebXML SCM SC, we may attack to develop a Filter Query specification conforming to OWL-QL.

· We may give an option to the user whether he wants to retrieve the information available in the registry without reasoning (hence without performance penalties but with limited inferred knowledge) or by going through a reasoner (making use of all the inferred knowledge with performance penalties)
· The user will make an informed choice and will know what he is getting

· However to do this, that is to specify a semantic Filter query for ebXML Registry, we first must decide what kind of semantics (OWL?) will be stored in the registry and how it will be stored (through the mappings we propose?).
Actors :

Domain Expert , Content Publisher, Registry Client, Registry

Pre-Conditions:

Ontology is already be defined or be submitted along with the content being associated

Content to be discovered is submitted to registry and be classified using ontology class instance(s)

Post-Conditions:

none

Basic Flow :

Registry Client discovers the ontology that fits the content they seek.

Registry Client performs a semantic query that predicates on attributes of an ontology class

Alternate Flow :

none

Exceptions :

none

Includes Use Cases:

None

Special Requirements:

None

Assumptions:

Inference using ontology knowledge is supported and can aid in discovery of content that is not directly classified by the specified ontology class but may classified by a more general concept represented by an ancestor class of the specified ontology class

Use Case Relationships:

None

Issues :

none

Examples:

7 Use Case : Extend information model with user-defined classes

Priority (L/M/H) : High

Description :

Currently ebXML Registry allow clients to extend Registry Information Model (RIM) only via attribute extension using Slots on existing RIM classes.

New RIM classes cannot be defined.

This use case envisions allowing clients to extend Registry Information Model (RIM) classes by defining new classes that may be sub-classes of existing RIM classes .

The ontology languages give us some constructs like classes, properties and relationships among them. ebXML ClassificationNodes seem to express the class information adequately. When trying to represent semantic information given through ontologies in ebXML, the main difficulty is in expressing the relationships among classes (such union, intersection, etc.) as well as multiple inheritance and different types of properties (such as functional property, transitive property, etc.) as well as defining a property hierarchy through subProperty property.

The result is that verticals and enterprises may specialize ebXML RIM to meet their domain specific needs.

Actors :

Domain Expert , Content Publisher, Registry

Pre-Conditions:

none

Post-Conditions:

none

Basic Flow :

Domain expert defines extension to RIM by submitting new RIM classes to the Registry

Content publisher may now submit instances of new RIM classes to the Registry

Alternate Flow :

none

Exceptions :

none

Includes Use Cases:

None

Special Requirements:

None

Assumptions:

It is envisioned that in order to support this use case the RIM would have to be expressed in an ontology syntax chosen by the registry. It is likely that the Ontology syntax chosen by the registry will be OWL.

Use Case Relationships:

None

Issues :

none

Examples:

8 Use Case : Ontology searching and browsing

Priority (L/M/H) : High

Description :

One of the premises of the Semantic Web is that terms will be reused rather than reinvented. RDF, RDFS, and OWL support this through the ability to reference resources described outside a document as easily as those described within. They also encourage this with various constructs for describing equivalence and other relationships between terms. But for reuse to occur, people will also need to be able to find the correct terms on which to build. This will require ontology repositories with appropriate search or query capabilities. This use case describes how an ontology developer might interact with such a repository to discover appropriate terms upon which to build a local ontology.
ebXML registries allow classification hierarchies to be stored in the registry (Note that this is not possible in UDDI registries). Furthermore, ebXML registries provide mechanisms to relate Registry Objects with the ClassificationNodes. Once an ontology language like OWL is represented in the ebXML registry, it may be desirable to improve the already available GUI of the registry which shows the ClassificationSchemes (but not OWL enhancements) to browse through the OWL ontologies in the Registry.
Actors :

Ontology developer

Pre-Conditions:

A repository populated with domain and higher level ontologies

Post-Conditions: none

Basic Flow :

Ontology developer searches a repository for ontologies which contain classes specifically mentioned in the domain of identified property restrictions (global or local). A user specifies a set of matching property terms using a regular expression. Something like: return all classes where <class> *[m,M]ember <range>. See Examples below for OWL fragments that match this query. Repository returns a list of ontologies matching the query, probably presented with some standard metadata for each. Ontology developer chooses an ontology from the list and asks to browse that ontology. Ontology developer chooses to view the classes in the chosen ontology. Repository returns the classes with the earlier query tagged as such. Ontologist requests download of entire ontology for more detailed examination. Ontologist refines the terms from downloaded ontology in an organization ontology he creates for his enterprise.

Alternate Flow :

Alt flow 1: No suitable ontology found

Ontologist finds no suitable general ontology, so he creates one. Ontologist uploads new reusable ontology to repository.

Alt flow 2: Navigate through ontology

Query returns terms too specialized for intended use. However, some are subtyped from another term defined in another ontology within the repository. Ontologist requests to follow link to ontology in which the supertype is defined. Repository selects ontology for browsing and returns list of the metatype (either properties or classes) of terms from the ontology containing the supertype of interest.

Exceptions :

Alt flow 1 Ontologist does not have permission to upload to the repository.

Alt flow 2 Supertype of interest is not described in the repository.

Includes Use Cases: 6 Discover content using semantic queries

Special Requirements: None

Assumptions:

This scenario assumes sufficient (property and class) information grouped in a single file. It also assumes that english words will be a useful tool in identifying concepts in ontology repositories. Note no subsumption reasoning is used for responses to these queries. This significantly scopes the query results, but could result in filtering the ontology desired

Use Case Relationships: Part of 3: Collaborative ontology development

Issues :

Ontology files in the repository may not have names that help explain their content, and may not even contain an owl:Ontology keyword to help distinguish them from rdf data files.

Examples:

Files containing the following sample rdf/xml would match the example query described in the main flow above: (from http://www.mindswap.org/~golbeck/web/www04photo.owl)

<owl:Class rdf:ID="Group"/>

<owl:ObjectProperty rdf:ID="hasMember">

<rdfs:domain rdf:resource="#Group"/>

<rdfs:range rdf:resource="#Person"/>

<owl:inverseOf rdf:resource="#memberOf"/>

</owl:ObjectProperty>

or (from my imagination)

<owl:Class rdf:ID="OMGVotingList">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasMember"/>

<owl:allValuesFrom rdf:resource="#OMGMember"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

9 Use Case : Attach semantic Objects to Stored Content

Priority (L/M/H) : High

Description :

This use case envisions allowing previously existing Repository Stored Content to be attached to a Semantic Object (Ontology Class). The meaning of previously existing Repository Stored Content would be much more clear and precise.

Domain Expert , Content Publisher , Registry

Pre-Conditions:

A repository previously populated with Stored Content

A repository populated with domain specific ontology

Post-Conditions:

none

Basic Flow :

Content Publisher publishes content #1

Domain experts publishes an ontology

Content Publisher publishes an Association that associates content #1 with an ontology class reference as an associationType

Alternate Flow :

none

Assumptions: Objects are registered as described in Use Case 5 : Associate 2 RegistryObjects using an Ontology Class

None

Issues :

none

Examples:

Repository was populated with (content #1) information based upon a "citizen-centered" content model and classified using a controlled vocabulary describing .gov functions, products, and services in terms that are meaningful to the public. At a later point-in-time a ‘Government Function’ specific domain Ontology is registered. Content publisher associates a subset of the citizen-centered information with the Ontology Class for that specific domain.

10 Use Case : Support Association of Semantically Equivalent Objects

Priority (L/M/H) : High

Description :

This use case envisions allowing 2 types of Semantic Objects to be associated using an Equivalence Association .This allows a partial mapping of semantic models of different domains potentially leading to some integration across those domains.

Actors :

Domain Expert , Content Publisher , Registry

Pre-Conditions:

none

Post-Conditions:

none

Basic Flow :

Domain experts publishes a Semantic Object #1 e.g. OWL-S Ontology for Automobile Sales

Domain experts publishes a Semantic Object #2 e.g. RDFS rendering of UDEF (Universal Data Element Framework) Class modeling Automobile parts

Domain experts publishes an Association that associates a subset of Semantic Object #1 and subset Semantic Object #2 using a Semantic Equivalence class reference as an associationType

Alternate Flow :

none

Exceptions :

none

Includes Use Cases:

None

Special Requirements:

None

Assumptions:

An Association class is used to associate the two class instances

Use Case Relationships:

None

Issues :

none

Examples:

(1) Registry was populated with Semantic Object #1 a RDFS identifying an UDEF (Universal Data Element Framework) Class model of Product-specific concepts. Registry is also populated with Semantic Object #2 an OWL-S Ontology for Automobile Sales. Domain experts publishes an Association that associates ‘Winter Package’ a property of the automobile sales ontology with ‘Heated Seats’ property of the Automobile Parts model.

11 Use Case : Semantic Query On RIM Model

Priority (L/M/H) : High

Description :

This use case envisions a semantic query, performed via a third-party reasoning engine, against the RIM model. This use case is a specialization of Use Case #6 (Discover Content with Semantic Queries).

The special feature of this use case is that it poses the query against the schema of the RIM. In other words, the classifications and taxonomic structure of the RIM – as it would be expressed in an OWL representation – will allow the use of deductive algorithms to draw inferences among the classifications that would otherwise be inaccessible to a particular query agent. Thus, the precise use of the term “semantic query” is in this case intended to represent the ability of the reasoning engine to infer the meaning of class structures, including relationships, independent of human involvement.

From the end-users perspective, this will allow either human actors (domain experts) or machine actors (registry client applications) to issue ambiguously stated queries and receive unanticipated results back from them. To use a SQL metaphor, rather than only getting back data from explicitly stated joins and “where clause” constraints, the reasoning engine can return matching results based off of deductive logic that relates the OWL model equivalent of tables and rows without the human or machine actor specifically asking for those results.

Technically speaking, this use case considers the use of “T-Box” inferencing upon the RIM model as it will be expressed in an OWL format. Thus, the RIM becomes a knowledge base whose schema enables an analytic capability during the query process.

	Actors:
	Domain Expert, Registry Client Applications, Registry, Reasoner

	Pre-Conditions:
	· RIM is expressed in OWL.

· OWL model of RIM is loadable within a reasoning engine.

· A mapping exists between the native RIM and the OWL expression.

· The reg/rep is capable interpreting the RIM to OWL mappings (so that it may get the correct physical results as they have been deduced from the OWL representation)

	Post-Conditions:
	Domain experts have query results to questions they ask – where the results include data found through implicit, deduced, relationships among classes

	Basic Flow :

	· Domain experts find the RIM model (from a Registry) they want to ask questions to

· Domain experts get the OWL representation of that RIM model

· Domain experts evaluate the OWL model and determines the question they would like to ask

· Domain experts construct a valid query (XQuery?) for the OWL representation

· Domain experts issue the query to a Reasoner
· Reasoner accepts the query and issues it against an inferred representation of the RIM/OWL model

· Reasoner collates the results of the query and sends them to a Registry
· Registry interprets the request from the Reasoner and queries the RIM natively for appropriate results

· Registry passes the results back to the Reasoner and confirms a correct match

· Reasoner validates results against the OWL/RIM model and passes them back to the Domain experts
· Domain experts receive the query results and begin to interpret them

	Alternate Flow:
	None

	Exceptions:
	None

	Includes Use Cases:
	None

	Special Requirements:
	None

	Assumptions:
	Mapping between native RIM representation and OWL RIM representation is sufficient to determine query result matching

	Use Case Relationships:
	Inherits from Use Case 6: Discover Content with Semantic Queries

	Issues:
	

	Examples:
	

12 Use Case : Semantic Query On RIM Contents (Instances, AKA Individuals)

Priority (L/M/H) : High

Note: key differences between 11 & 12 are highlighted
Description :

This use case envisions a semantic query, performed via a third-party reasoning engine, against the instance data described by a RIM model. This use case is a specialization of Use Case #6 (Discover Content with Semantic Queries).

The special feature of this use case is that it poses the query against the data contained within the RIM – not the schema representation of the RIM. In other words, the individuals and instance values contained within the RIM – as it would be expressed in an OWL representation, and possibly represented as RDF data – will allow the use of deductive algorithms to draw inferences among data values. Thus, the precise use of the term “semantic query” is in this case intended to represent the ability of the reasoning engine to infer the meaning of data values, including relationships, independent of human involvement.

From the end-users perspective, this will allow either human actors (domain experts) or machine actors (registry client applications) to issue ambiguously stated queries and receive unanticipated results back from them. To use a SQL metaphor, rather than only getting back data from explicitly stated joins and “where clause” constraints, the reasoning engine can return matching results based off of deductive logic that relates the OWL model equivalent of database instances without the human or machine actor specifically asking for those results (which may in fact be implicitly linked).

Technically speaking, this use case considers the use of “A-Box” inferencing upon the RIM model as it will be expressed in an OWL format. Thus, the RIM becomes a knowledge base whose instances enable an analytic capability during the query process.

	Actors:
	Domain Expert, Registry Client Applications, Registry, Reasoner

	Pre-Conditions:
	· RIM is expressed in OWL.

· OWL model of RIM is loadable within a reasoning engine.

· A mapping exists between the native RIM and the OWL expression.

· The reg/rep is capable interpreting the RIM to OWL mappings (so that it may get the correct physical results as they have been deduced from the OWL representation)

· RDF representations of instance values are available (or transformable)

	Post-Conditions:
	Domain experts have query results to questions they ask – where the results include data found through implicit, deduced, relationships among classes

	Basic Flow :

	· Domain experts find the RIM model (from a Registry) they want to ask questions to

· Domain experts get the OWL representation of that RIM model

· Domain experts evaluate the OWL model’s individuals and determines the question they would like to ask

· Domain experts construct a valid query (XQuery?) for the OWL representation

· Domain experts issue the query to a Reasoner
· Reasoner accepts the query and issues it against an inferred representation of the RIM/OWL model

· Reasoner collates the results of the query and sends them to a Registry
· Registry interprets the request from the Reasoner and queries the RIM natively for appropriate results

· Registry transforms the native RIM results into RDF values

· Registry passes RDF results back to the Reasoner and confirms a correct match

· Reasoner infers results of OWL individuals and associates those with RDF values

· Reasoner validates RDF results against the OWL/RIM model and passes them back to the Domain experts
· Reasoner converts RDF values into (??) (XML, SQL…)

· Domain experts receive the query results and begin to interpret them

	Alternate Flow:
	None

	Exceptions:
	None

	Includes Use Cases:
	None

	Special Requirements:
	None

	Assumptions:
	· Mapping between native RIM representation and OWL RIM representation is sufficient to determine query result matching

· Registry has the ability to convert native RIM contents to corresponding RDF values

	Use Case Relationships:
	Inherits from Use Case 6: Discover Content with Semantic Queries

	Issues:
	

	Examples:
	

Design Alternatives

To facilitate design discussions the following use case design candidates are presented.
They should be not considered complete or final.

Design Alternative 1 : Reason on Reg/Rep Content Objects (via RIM query interfaces)

Description :

This design candidate contemplates the use of a reasoner to make inferences upon individual content objects of the Registry/Repository (Reg/Rep). The scope of this design is at an architectural level – envisioning the machine-to-machine interactions – as opposed to a business level scope, where the primary actors would typically be considered as human users.

As one candidate design among three, the unique drivers are:

· Minimize the changes required to the existing, known Reg/Rep architecture

· Enable the contents of the Reg/Rep (if appropriate) to be reasoned upon by machines

· Allow all content types that can be reasoned upon to be valid content objects, within the scope of this use case

· RDF

· OWL-Full

· OWL-DL

· OWL-Lite

· KIF

· Etc.

The advantage of this candidate is that it minimizes changes to the existing Reg/Rep architecture. The disadvantage is that it offers no new or unique capabilities to reason against the set of content objects within the Reg/Rep – only against individuals. An architecturally separate query agent is required, using existing RIM query formats, to identify and retrieve content objects that are ‘reasonable’ and hand them off to the reasoning tool. Therefore, the onus of supporting this design is upon the Reg/Rep end-user and/or vendors of reasoning tools – not the implementers of the core Reg/Rep specifications.

Simple Use Case Architecture:

[image: image1.png]<communicates>

<initiates>

RIM Query Agent

<includes>

Reason on <conmimicates>
Reg/Rep Contents -
w
<includes>

Registry/Repository

Line of Business
Applications T

Infer Semantic on
Content Objects

<communicates>

Reasoner

Simple Component Architecture:

[image: image2.png]Reasoner

1. Query Reg/Rep
2 Explicit Contents
3.Query Model
4.Semantic Information

	Actors :
	· Line of Business Applications (LoB) – any business software application

· RIM Query Agent – some code component that knows how to construct RIM queries (based upon LoB demands)

· Registry/Repository

· Reasoner – Some engine that can make inferences upon ontology

	Pre-Conditions:
	· ontology objects in Reg/Rep

· RIM queries built and ready to submit

· interfaces between reasoner and business applications

	Post-Conditions:
	· Implicit data (business rules or domain knowledge) has been inferred from an ontology and made available to a Line of Business Application

	Basic Flow :
	1. Line of Business Application determines external knowledge requirement

2. Line of Business Application issues request to Query Agent
3. Query Agent formulates appropriate queries

4. Query Agent issues query(ies) to Reg/Rep
5. Reg/Rep responds with one or more content objects

6. Query Agent passes results (transformation?) back to LoB
7. LoB determines “business value” of retrieved content objects

8. LoB sends high-value objects to appropriate Reasoner
9. Reasoner creates inferred ontology from told ontology

10. LoB may issue queries to inferred ontology

11. LoB may request views of inferred ontology

12. LoB may request set of all inferred facts

13. Reasoner responds with demanded results

	Alternate Flow :
	Identified, but not expounded upon:

· Single results vs. multiple results vs. no results from Query Agent
· Different conditions and requests to Reasoner
· Use of a Reasoner Query Agent (alternate actor)

	Exceptions :
	Identified, but not expounded upon:

· Malformed or invalid ontologies sent to reasoner

	Includes Use Cases:
	· Query

· Infer Semantic on Content Objects

	Special Requirements:
	None

	Assumptions:
	· Appropriate metadata is available to determine ontology “type”

	Use Case Relationships:
	TBD

	Issues :
	TBD

	Examples:
	TBD

Design Alternative 2: Reason on Reg/Rep Schema Directly (Tight Binding with OWL)

Description :

This design candidate contemplates the use of a reasoner to make inferences upon the full set of all content objects within the Registry/Repository (Reg/Rep) for the purpose of discovery of semantically similar content objects. The scope of this design is at an architectural level – envisioning the machine-to-machine interactions – as opposed to a business level scope, where the primary actors would typically be considered as human users. Functionally, this design candidate is identical to Design Alternative 3, but envisions a different architectural paradigm for accessing the RIM objects.

As one candidate among many, the unique drivers of this are:

· Maximize the efficiency of reasoning against the Registry/Repository directly

· This supports discovery of new content based upon ambiguous queries

· Enable the RIM itself to be reasoned upon by machines

· Enable the contents of the Reg/Rep (if appropriate) to be reasoned upon by machines

· Simultaneously allow all content types that can be reasoned upon to be valid content objects, for use separately – outside of the Reg/Rep – with the appropriate reasoners

· These content objects may include:

· RDF

· OWL-Full

· OWL-DL

· OWL-Lite

· KIF

· Etc.

The advantage of this design is that it maximizes the efficiency of reasoning across RIM content objects. The disadvantage of this design is that it would require a significant commitment to re-architect the core RIM structure to support a native ontology structure. An architecturally separate query agent may be required, using ontology-based query structures, to reason against the RIM model – however the scope of this query agent is not considered herein. Therefore, the onus of supporting this alternative is upon the implementers of the core Reg/Rep specifications and not upon the business users and/or the reasoning vendors.

Simple Use Case Architecture:

[image: image3.png]<communicates>

<initiates>

<includes>

Line of Business Reasoner

Applications

Reason on
Reg/Rep Directly

<includes> <conpiicates>

Infer Semantic on
Content Objects
Registry/Repository

Simple Component Architecture:

[image: image4.png]1. Query Reasoner
2 Explicitimplicit Content
3.Query Model(s)
4.Semantic Information

	Actors :
	· Line of Business Applications (LoB) – any business software application

· Registry/Repository (Reg/Rep)

· Reasoner (OWL) – an OWL engine for reasoning directly to Reg/Rep

· Reasoner (any) – Some engine that can make inferences upon ontology contents

	Pre-Conditions:
	· OWL interface to Reg/Rep (for reasoning support)

· ontology objects in Reg/Rep
· OWL queries built and ready to submit

· interfaces between reasoner and business applications (protocol)

	Post-Conditions:
	· Content Discovery. Implicit data (business rules or domain knowledge) has been inferred from the Reg/Rep directly and made available to a Line of Business Application for examination, consideration, and retrieval.

	Basic Flow :
	1. Line of Business Application determines external knowledge requirement

2. Line of Business Application issues request to Reasoner (OWL)
3. Reasoner (OWL) loads or refreshes told Reg/Rep ontology to inferred

4. Reasoner (OWL) issues query(ies) to Reg/Rep ontology interface

5. Reasoner (OWL) infers implicit and explicit facts upon the model

6. Reasoner (OWL) returns results to LoB

7. LoB determines “business value” of retrieved content objects

8. LoB sends high-value objects to appropriate Reasoner (any)
9. Reasoner creates inferred ontology from told ontology

10. LoB may issue queries to inferred ontology

11. LoB may request views of inferred ontology

12. LoB may request set of all inferred facts

13. Reasoner responds with demanded results

	Alternate Flow :
	Identified, but not expounded upon:

· Single results vs. multiple results vs. no results from Reasoner (OWL)
· Different conditions and requests to Reasoner (any)
· Use of a Reasoner Query Agent (alternate actor)

	Exceptions :
	Identified, but not expounded upon:

· Malformed or invalid ontologies sent to reasoner

	Includes Use Cases:
	· Discover

· Infer Semantic on Content Objects

	Special Requirements:
	None

	Assumptions:
	· Appropriate metadata is available to determine ontology “type”

	Use Case Relationships:
	TBD

	Issues :
	TBD

	Examples:
	TBD

Design Alternative 3: Reason on Reg/Rep Schema Directly (Loose-Binding with OWL)

Description :

This design alternative contemplates the use of a reasoner to make inferences upon the full set of all content objects within the Registry/Repository (Reg/Rep) for the purpose of discovery of semantically similar content objects. The scope of this design is at an architectural level – envisioning the machine-to-machine interactions – as opposed to a business level scope, where the primary actors would typically be considered as human users. In particular, this design alternative is identical to alternative 2, but envisions a different architectural paradigm for accessing the RIM objects.

As one candidate among many, the unique drivers of this particular design are:

· Tradeoff between efficiency of reasoning and ease of implementation

· While supporting discovery of new content based upon ambiguous queries

· Enable the RIM itself to be reasoned upon by machines

· Enable the RIM to maintain existing query interfaces

· Enable the contents of the Reg/Rep (if appropriate) to be reasoned upon by machines

· Simultaneously allow all content types that can be reasoned upon to be valid content objects, for use separately – outside of the Reg/Rep – with the appropriate reasoners

· These content objects may include:

· RDF

· OWL-Full

· OWL-DL

· OWL-Lite

· KIF

· Etc.

The advantage of this design is that it enables reasoning across RIM content objects while minimizing impacts to existing RIM architectures. The disadvantage of this design is that it would require a commitment to support and maintain mappings between architecturally separate RIM interface models (one OWL and one native RIM). An architecturally separate query agent may be required, using ontology-based query structures, to reason against the OWL/RIM models – however the scope of this query agent is not considered herein. Therefore, the onus of supporting this design alternative (eg: a new OWL interface and the mappings to existing RIM objects) is upon the implementers of the core Reg/Rep specifications and not upon the business users and/or the reasoning vendors.

Simple Use Case Architecture:

[image: image5.png]Line of Business
Applications

nitiates>

<communicates>

<includes>

Reasoner

Reason on
Reg/Rep Directly

<includes>

Interpret Mappings

Infer Semantic on
Content Objects

Registry/Repository

Simple Component Architecture:

[image: image6.png]poram
Reasoner
|

1. Query Reasoner
2 Explicitimplicit Content

3.Query Model(s)
4.Semantic Information

	Actors :
	· Line of Business Applications (LoB) – any business software application

· Registry/Repository (Reg/Rep)

· Reasoner (OWL) – an OWL engine for reasoning directly to Reg/Rep

· Reasoner (any) – Some engine that can make inferences upon ontology contents

	Pre-Conditions:
	· OWL interface to Reg/Rep (for reasoning support)

· Actionable mappings between internal RIM and external OWL interfaces

· ontology objects in Reg/Rep
· OWL queries built and ready to submit

· interfaces between reasoner and business applications (protocol)

	Post-Conditions:
	· Content Discovery. Implicit data (business rules or domain knowledge) has been inferred from the Reg/Rep directly and made available to a Line of Business Application for examination, consideration, and retrieval.

	Basic Flow :
	14. Line of Business Application determines external knowledge requirement

15. Line of Business Application issues request to Reasoner (OWL)
16. Reasoner (OWL) loads or refreshes told Reg/Rep ontology to inferred

17. Reg/Rep refreshes OWL “view” based upon native RIM state

18. Reasoner (OWL) issues query(ies) to Reg/Rep ontology interface

19. Reg/Rep interprets scope of inferred query (implications) into native RIM queries

20. Reg/Rep returns RIM query responses back to Reasoner in RDF format as instance

21. Reasoner (OWL) infers implicit and explicit facts upon the model

22. Reasoner (OWL) returns results to LoB

23. LoB determines “business value” of retrieved content objects

24. LoB sends high-value objects to appropriate Reasoner (any)
25. Reasoner creates inferred ontology from told ontology

26. LoB may issue queries to inferred ontology

27. LoB may request views of inferred ontology

28. LoB may request set of all inferred facts

29. Reasoner responds with demanded results

	Alternate Flow :
	Identified, but not expounded upon:

· Single results vs. multiple results vs. no results from Reasoner (OWL)
· Different conditions and requests to Reasoner (any)
· Use of a Reasoner Query Agent (alternate actor)

	Exceptions :
	Identified, but not expounded upon:

· Malformed or invalid ontologies sent to reasoner

	Includes Use Cases:
	· Discover

· Infer Semantic on Content Objects

· Interpret Mappings (for both queries and responses)

	Special Requirements:
	None

	Assumptions:
	· Appropriate metadata is available to determine ontology “type”

	Use Case Relationships:
	TBD

	Issues :
	TBD

	Examples:
	TBD

Tradeoff Analysis

The following simple tradeoff analysis scores the capabilities enable by the different design alternatives. A simple scoring mechanism of 1..3 is used, whereby 3 = Very Well Suited, 2 = Well Suited, and 1 = Not Well Suited. The sum of the scores indicates the favored design alternative. The relative scores on a given axis identify the tradeoffs.

	
	DA#1
	DA#2
	DA#3

	Inference upon RIM schema
	0
	3
	3

	Inference upon RIM content objects
	3
	3
	3

	Low impact on existing RIM architecture
	3
	1
	2

	Decoupled interface for reasoners (supports hybrid reasoning)
	3
	1
	2

	Supports native RIM querys
	3
	1
	3

	Supports reasoner-driven queries
	0
	3
	3

	Does not require exposed mappings between RIM and OWL
	3
	3
	1

	Does not require more work for ebXML end user
	0
	2
	2

	Totals (more is better):
	15
	17
	19

While reasoning over an ontology, we can think of this as if it is achieved in two parts:
First the reasoner can go over the schema definition of the ontology without considering the instances. For example, it can deduce that if class C is a subclass of class B and B is a subclass of class A, then C is a subclass of A and this is an inferred knowledge. In the second part, it can go over the instances to deduce inferred knowledge among instances. For example, if John is an ancestorOf George and George is an ancestorOf Peter and if the ancestorOf is a “transitveProperty”, then the reasoner can infer the new knowledge that John is an ancestorOf Peter. However, to work correctly, the reasoner must execute these phases together until no new knowledge can be produced.
The basic idea in the above use cases seems to be this. However, we have not understood how the flows described work. If the author wishes us to comment, it may help if the author provides an example to clarify each step.

Summary and Conclusions

Early indications from the ebXML Reg/Rep Semantic Content Management team at OASIS have strongly favored design alternative 3 because of its high functionality and minimal footprint on existing ebXML implementations. However, the status of this document is still as a candidate proposal and is by no means considered either complete or final.
A standard for the industry, to be acceptable, should have very good performance when implemented. In my opinion, the reasoners have not yet reached a level performance which can be used by the industry; when the number of rules increases, the performance becomes unacceptable. Therefore a user must at least be provided with the choice; whether he wants fast execution with some inferred knowledge or needs all the inferred knowledge to be considered but is ready to pay for the performance penalties.
As a summary:
· Ontologies can play two major roles: one is to provide a source of shared and precisely defined terms which can be used formalizing knowledge and relationship among objects in a domain of interest. The other is to reason about the ontologies.

· The semantic content of the ebXML registries can be improved by representing OWL constructs through RIM constructs.
· Stored procedures can be provided to help the users to process this semantics.

· Query Manager component can be modified to make use of stored procedures through Filter Query constructs seamlessly to the user

· Filter Query syntax can be improved to make it have the power of OWL-QL to handle semantic queries. Yet the user can be given the option of whether he wants the information directly available in the registry or is in need of inferred semantics and thus needs a reasoner to execute the query.

I will conclude with the following paragraph which I have borrowed (from Henry S. Thompson’s power point slides:
"The history of AI is full of examples of two weaknesses:

· Over-promising by insiders

· 'AI Winter'; Intelligent Agents

· Over-optimism by outsiders

· 25 years ago Ed Feigenbaum described Terry Winograd’s work as "a breakthrough in enthusiasm"

· I worry that WS and SW, in their reliance on effective computational semantics, are vulnerable to the same criticism"

Henry S. Thompson

HCRC Language Technology Group

Division of Informatics

University of Edinburgh,

Markup Technology Ltd.

and

World Wide Web Consortium

PAGE
36

