
Use of XML DSIG in ebXML Registry1

Author: Sekhar Vajjhala2

Date : 10/03/013

Version: 0.24

Status of this document5
6

This document outlines a proposal for using XML signatures for ebXML registry. This7
document is work in progress.8

9

Acknowledgements10
11

Suresh Damodaran, Sanjay Patil and Farrukh Najmi provided invaluable feedback in the12
design of this document.13

Introduction14
This document specifies the use of XML signatures [XMLDSIG] by ebXML Registry15
Clients and ebXML Registry. The specification is targeted for Version 2.0 of the ebXML16
Registry Services Specification.17

Related Documents18
19

The following documents provide the necessary background and additional background20
to the reader:21
• SOAP Messages with Attachments [SOAPATTACH]22
• XML-Signature Syntax and Processing [XMLDSIG]23

Use Cases24
25

The use of XML signatures is intended to cover the following use cases. The Use Cases26
(indicated in bold) refer to the use case numbers in the Security Risks Document27
[SECRISK].28

29
Use Case 9: Registry Client wants to ensure that the Registry Content he is publishing to30
Registry is not changed on the network.31

32
Use Case 11: Registry Client wants to ensure that the Registry Content he has published33
to the Registry is not changed by the Registry Administrator.34

35
Use Case 13: Registry Client wants to ensure that the Registry Content sent to him by36
Registry is not changed on the network.37

38
Use Case 14: Registry Client wants to ensure that the Registry Content received from39
Registry is legitimate. For example, Registry Client wants to verify that the information40
claiming to have been published by a company XYZ was really published by company41
XYZ. 42

Caveats and Assumptions43
The following assumptions are made by this specification:44
1. The communication between a Registry Client and a Registry is assumed to either45

ebXML Messaging Service [ebMS] or just SOAP with Attachments46
[SOAPATTACH] (referred to as vanillla SOAP with Attachments in this document).47

2. Registry Content can include payloads consisting of arbitrary digital content (i.e.48
payloads need not necessarily be XML documents). Payloads are carried in a SOAP49
Message with Attachments [SOAPATTACH].50

3. ebXML message data (which contain data other than payload data in51
request/response messages) is carried in the SOAP body within a SOAP envelope.52

Overview53
This section provides an overview of how the XML signatures are used by Registry54
Clients and Registry Operator. Specific requirements are stated elsewhere in the55
document.56

57
This document specifies the use of XML signatures for:58
• Signing of information in the SOAP envelope. This is referred to as header signature.59
• Signing of payload (i.e. information which is carried in a SOAP attachment). This is60

referred to as a payload signature.61
62

Payload and header signatures are each represented by a distinct, separate ds:Signature63
element. Either both, one or none of the payload and header signature may be present as64
illustrated by the following table:65

66
Header Signature Payload Signature Usage
No No Non secure client access
No Yes --- No Use Case ----
Yes No Delete object
Yes Yes Submit Objects with payload

67
68

Use Case 14 below illustrates the use of header and payload signatures:69
 70
• RC1 (Registry Client 1) signs the content (generating a payload signature) and71

publishes the content along with the payload signature to the Registry.72
• RC2 (Registry Client 2) retrieves RC1’s content from the Registry.73
• RC2 wants to verify that RC1 published the content. In order to do this, when RC274

retrieves the content, the response from the Registry Operator to RC2 contains the75
following:76

• Payload containing the content that has been published by RC1.77
• RC1’s payload signature (represented by a ds:Signature element) over RC1’s78

published content.79
• Either the key for validating RC1’s payload signature in ds:Signature element (80

using the KeyInfo element as specified in [XMLDSIG]) or RC1’s identity so81
RC2 can obtain the validation key for signature itself (e.g. retrieve a certificate82
containing the public key for RC1).83

• A ds:Signature element containing the header signature. Note that the Registry84
Operator not RC1 generates this signature.85

86
Header Signature Requirements87

88
This section specifies the requirements for generation, packaging and validation of a89
header signature. These requirements apply when the Registry Client and Registry90
Operator communicate using vanilla SOAP with Attachments. When ebXML MS is used91
for communication, then the [ebMS] specifies the generation, packaging and validation of92
XML signatures in the SOAP header. Therefore the header signature requirements do not93
apply when the ebXML MS is used for communication. However, payload signature94
generation requirements (specified elsewhere in this document) do apply whether vanilla95
SOAP with Attachments or ebXML MS is used for communication. 96

Packaging Requirements97
98

A header signature is represented by a ds:Signature element. The ds:Signature element99
generated must be packaged in a <SOAP-ENV:Header> element. 100

101
The packaging of the ds:Signature element in the SOAP header field is shown below.102
 103
MIME-Version: 1.0104
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;105
Content-Description: ebXML Message106
 107
-- MIME_boundary108
Content-Type: text/xml; charset=UTF-8109
Content-Transfer-Encoding: 8bit110
Content-ID: http://claiming-it.com/claim061400a.xml111

112
<?xml version='1.0' encoding="utf-8"?>113
<SOAP-ENV:Envelope114
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">115
 <SOAP-ENV:Header>116
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">117
 …signature over soap envelope118
 </ds:Signature>119
 </SOAP-ENV: Header>120
 <SOAP-ENV: Body>121

 …122
 </SOAP-ENV: Body>123
</SOAP-ENV: Envelope>124

125

Header Signature Generation Requirements126
The ds:Signature element [XMLDSIG] for a header signature must be generated as127
specified in this section. 128

129
A ds:Signature element contains:130
• ds:SignedInfo131
• ds:SignatureValue132
• ds:KeyInfo133

134
The ds:SignedInfo element must be generated as follows:135

136
1. ds:SignatureMethod must be present. [XMLDSIG] requires that the algorithm be137

identified using the Algorithm attribute. While [XMLDSIG] allows more than one138
Algorithm Attribute, a client must be capable of signing using only the following139
Algorithm attribute: 140

141
http://www.w3.org/2000/09/xmldsig/#dsa-sha1142

143
The above algorithm is being chosen because any XMLDSIG implementation144
conforming to the [XMLDSIG] specification supports it.145

146
2. an optional ds:CanonicalizationMethod element. If it is not specified, then the147

canonicalization method must default to [XMLC14N] , which is the default specified148
by [XMLDSIG].149

150
3. A ds:Reference element to include the <SOAP-ENV:Envelope> in the signature151

calculation. This signs the entire ds:Reference element:152
• Must include the following ds:Transform153

154
http://www.w3.org/2000/09/xmldsig#enveloped-signature155

156
This ensures that the signature (which is embedded in the <SOAP-ENV:Header>157
element) is not included in the signature calculation.158

159
• Must identify the <SOAP-ENV:Envelope> element using the URI attribute of the160

ds:Reference element (The URI attribute is optional in the [XMLDSIG]161
specification.) . The URI attribute must be “”.162

• Must contain the <ds:DigestMethod> as specified in [XMLDSIG]. A client must163
support the following digest algorithm:164

165
http://www.w3.org/2000/09/xmldsig/#sha1166

http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2000/09/xmldsig/#dsa-sha1

• Must contain a <ds:DigestValue>, which is computed as specified in167
[XMLDSIG].168

169
The ds:SignedValue must be generated as specified in [XMLDSIG]. 170

171
The ds:KeyInfo element must be present and is subject to the requirements stated in the172
“KeyDistrbution and KeyInfo element” section of this document.173

Header Signature Validation Requirements174
175

The ds:Signature element for the ebXML message header must be validated by the176
recipient as specified by [XMLDSIG].177

Header Signature Example178
179

The following example shows the format of a header signature:180
 181
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">182

<ds:SignedInfo>183
 <ds:CanonicalizationMethod>184

 Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-2001026">185
 </ds:CanonicalizationMethod>186

 <ds:Reference URI= “”>187
<ds:Transform>188

http://www.w3.org/2000/09/xmldsig#enveloped-signature189
</ds:Transform>190

 <ds:DigestMethod DigestAlgorithm="./xmldsig#sha1">191
 <ds:DigestValue> ... </ds:DigestValue>192
 </ds:Reference>193

</ds:SignedInfo>194
<ds:SignatureValue> ... </ds:SignatureValue>195

</ds:Signature>196

http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig#enveloped-signature

197
Payload Signature Requirements198
This section specifies the requirements for generation, packaging and validation of199
payload signatures. Unlike header signature, payload signature is packaged with the200
payload. Therefore the requirements apply regardless of whether the Registry Client and201
the Registry Operator communicate over vanilla SOAP with Attachments or ebMS.202

203
[ebMS] does not specify the generation, validation and packaging of payload signatures.204
The specification is left upto the application (such as [ebMS]). So the requirements on205
the payload signatures augment the [ebMS] specification. 206

Packaging Alternatives207
A payload signature is represented by a ds:Signature element and must be packaged as208
specified in this section.209

210
There are several ways to package the payload signature with the payload. The following211
three options were considered.212
1. A payload signature and the payload could be packaged as two separate SOAP213

attachments with an implicit ordering. The implicit order would have to be214
understood and followed by both the signer and the recipient.215

2. Alternately, payload signature and payload could be packaged as a single SOAP216
attachment [SOAPATTACH], which is a MIME multipart/Related or multipart/mixed217
message. The payload can be packaged in the first body part and the signature can be218
packaged in the second body part. Instead of relying on ordering, the signature could219
be identified by a specific Content-Type.220

221
3. The payload signature and the payload could be packaged as a single SOAP222

atatchment [SOAPATTACH], which is a MIME multipart/signed message as223
specified by [RFC1847]. 224

225
[RFC1847] specifies a framework within which security services may be applied to226
MIME body parts. The framework defines two new content subtypes:227
• multipart/signed228
• multipart/encrypted229

230
A multipart/signed type contains two MIME body parts:231
– the first body part contains content to be signed232
– second body part contains control information which can be used to verify the233

digital signature over the first body part234
235

[RFC1847] itself does not specify the control information in the second body part.236
Instead, [RFC1847] specifies a protocol parameter for the Content-Type. The237
protocol parameter determines the type and contents of the control information in the238
second body part. Other RFCs register the protocol and specify the contents.239
Such protocols include:240

241

– application/pkcs-7 defined by S/MIME242
– application/pgp-mime defined by PGP/MIME243

244
There is however, currently no protocol (e.g. application/xmldsig) registered and245
specified for use within a multipart/signed message.246

247
Note ToReviewers: I am going to be investigating the possibility of a registering and248
XML signature as a protcol for [RFC1847].249

250
Option 2 is being chosen as the way to package the payload signature for the following251
reasons:252
• Option 3 is consistent and works within the framework specified by [RFC1847] and253

is hence appears to be the right choice. However, the current expectation is that254
mulitpart/signed is not as widely supported as mulitpart/Related or multipart/mixed255
Content-Type. So option 2 is preferred over option 3.256

• Option 2 provides aggregation at the level of the payload and is therefore preferrable257
to option 1.258

259

Payload Signature Packaging Requirements260
The payload signature must be packaged with the payload as specified here.261

262
1. The payload and its signature must be enclosed in a MIME multipart message with a263

Content-Type of multipart/Related.264
2. The first body part must be the content265
3. The second body part must be the XML signature as specified in the “Payload266

Signature Generation Requirements”.267
268

The above packaging assumes that the payload is always signed.269
270

The packaging of the payload signature is shown below:271
272

MIME-Version: 1.0273
Content-Type: multipart/Related; boundary=MIME_boundary; type=text/xml;274
Content-Description: ebXML Message275
 276
-- MIME_boundary277
Content-Type: text/xml; charset=UTF-8278
Content-Transfer-Encoding: 8bit279
Content-ID: http://claiming-it.com/claim061400a.xml280

281
<?xml version='1.0' encoding="utf-8"?>282
<SOAP-ENV: Envelope>283

…284
 SOAP-ENV: Envelope>285

286

--MIME_boundary287
Content-Type: multipart/Related; boundary=PAYLOAD_boundary288

289
--PAYLOAD_boundary290
Content-Type: text/xml; charset=UTF-8291
Content-Transfer-Encoding: 8bit292
Content-ID: payload1293
<SubmitObjectsRequest>…</SubmitObjectsRequest>294

295
--PAYLOAD_boundary296
Content-Type: text/xml; charset=UTF-8297
Content-Transfer-Encoding: 8bit298
Content-ID: payload2299
<ds:Signature>300

…. Payload signature301
</ds: Signature>302
--MIME_boundary303

Payload Signature Generation Requirements304
305

The ds:Signature element [XMLDSIG] for a payload signature must be generated as306
specified in this section. 307

308
1. ds:SignatureMethod must be present. For same reasons as noted in the Message309

Header Requirements”, the client must be capable of signing using only the following310
Algorithm attribute:311

312
http://www.w3.org/2000/09/xmldsig/#dsa-sha1313

314
2. An optional ds:CanonicalizationMethod element. If it is not specified, then the315

canonicalization method must default to [XMLC14N], which is the default specified316
by [XMLDSIG].317

318
3. One Reference element to reference the payload that needs to be signed. The319

Reference element:320
• Must identify the payload to be signed using the URI attribute of the ds:Reference321

element. (The URI attribute is optional in the XMLDSIG specification.) 322
• Must contain the <ds:DigestMethod> as specified in [XMLDSIG]. A client must323

be support the following digest algorithm:324
http://www.w3.org/2000/09/xmldsig/#sha1325

• Must contain a <ds:DigestValue> which is computed as specified in [XMLDSIG].326
327

The ds:SignedValue must be generated as specified in [XMLDSIG]. 328
329

The ds:KeyInfo element must be present and is subject to the requirements stated in the330
“KeyDistrbution and KeyInfo element” section of this document.331

http://www.w3.org/2000/09/xmldsig/#dsa-sha1
http://www.w3.org/2000/09/xmldsig/#dsa-sha1

Message Payload Signature Validation332
333

The ds:Signature element must be validated by the Registry as specified in the334
[XMLDSIG].335

Payload Signature Example336
337

The following example shows the format of the payload signature:338
339

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">340
<ds:SignedInfo>341

 <ds:CanonicalizationMethod>342
 Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-2001026">343
 </ds:CanonicalizationMethod>344

<ds:Reference URI=#Payload1>345
 <ds:DigestMethod DigestAlgorithm="./xmldsig#sha1">346

 <ds:DigestValue> ... </ds:DigestValue>347
</ds:Reference>348

</ds:SignedInfo>349
<ds:SignatureValue> ... </ds:SignatureValue>350

</ds:Signature>351
352

Key Distribution and KeyInfo Element353
354

To validate a signature, the recipient of the signature needs the validation key355
corresponding to the signer’s key. The following use cases need to be handled:356

357
• Registry Operator needs the validation key of the Registry Client to validate the358

signature359
• Registry Client needs the validation key of the Registry Operator to validate the360

Registry’s signature.361
• Registry Client RC1 needs the validation key of Registry Client (RC2) to validate the362

content signed by RC1. 363
364

 [XMLDSIG] provides a ds:KeyInfo element, which can be used to pass the recipient365
information for retrieving the validation key. ds:KeyInfo is an optional element as366
specified in [XMLDSIG]. This field together with the procedures outlined in this section367
is used to securely pass the validation key to a recipient.368

369
ds:Keyinfo can be used to pass information such as keys, certificates, names etc. The370
intended usage of KeyInfo field for ebXML is as follows:371

372
• Pass a DN (Distinguished Name). The recipient extracts the certificate corresponding373

to the DN name from its own key store location. The public key is then obtained from374
the certificate.375

• Pass a X509 Certificate. This recipient extracts the X509 Certificate and the public376
key from the certificate.377

378
The following assumptions are also made:379

380
1. A Certificate is associated both with the Registry Operator and a Registry Client.381
2. A Registry Client registers its certificate with the Registry Operator. The mechanism382

used for this is not specified here. The certificate registered with the Registry383
Operator must match the DN name, which is passed in KeyInfo.384

3. A Registry Client obtains the Registry Operator’s certificate and stores it in its own385
local key store. The mechanism is not specified here. The DN name in the Registry’s386
certificate must match Registry’s certificate has a DN name, which is passed in387
KeyInfo.388

389
The usage of ds:KeyInfo field for different use cases is illustrated below:390
• Use Case 9 and 11.391

1. Registry Client (RC) signs the payload and the SOAP envelope using its private392
key.393

2. The DN name of RC is passed to the Registry in KeyInfo field of the header394
signature.395

3. The DN name of RC is passed to the Registry in KeyInfo field of the payload396
signature.397

4. Registry Operator retrieves the certificate corresponding to the DN name in the398
KeyInfo field in the header signature(since RC must have already registered its399
certificate).400

5. Registry Operator validates the header signature using the public key from the401
certificate.402

6. Registry Operator validates the payload signature by repeating steps 4 and 5403
using the DN name from the KeyInfo field of the payload signature. This is only404
required if the Registry Operator wants to ensure that contents have not been405
modified on the network.406

407
• Use Case 13 and 14408

1. RC1 signs the payload and SOAP envelope using its private key and publishes to409
the Registry.410

2. The DN name of RC1 is passed to the Registry in the KeyInfo field of the header411
signature.412

3. The DN name of RC2 is passed to the Registry in the KeyInfo field of the payload413
signature.414

4. RC2 retrieves content from the Registry.415
5. Registry Operator signs the SOAP envelope using its private key. Registry416

Operator sends RC1’s content and the RC1’s signature (signed by RC1).417
6. Registry Operator sends its own DN name in the KeyInfo field of the header418

signature. It also sends RC1’s certificate in the KeyInfo field of the payload419
signature. Note that if PKI infrastructure were assumed, then it would have been420

sufficient to send DN of RC1. RC2 would then have obtained the certificate from421
the PKI infrastructure (for e.g. using XKMS).422

7. RC2 obtains Registry Operator’s certificate using Registry Operator’s DN name423
in the header signature and verifies Registry’s signature.424

8. RC2 obtains RC1’s certificate from the KeyInfo field of the payload signature and425
validates the signature on the payload.426

427
Issue1: The mechanism outlined for use case 13 and 14 requires the Registry428
Operator to insert the RC1’s certificate in the payload signature. However, this may429
not be valid use model to assume. A typical model may be that the Registry Operator430
simply stores the payload and payload signature when submitted by a Registry Client431
without ever having to verify the payload signature. Then when the content is432
retrieved, the Registry Operator returnst the payload and payload signature to the433
Registry Client without any manipulation. In this scenario, it would not be possible434
for the Registry Operator to insert a certificate in the KeyInfo field. This scenario can435
be handled by requiring that the Registry Client to include a certificate instead of a436
DN name in the KeyInfo field of the payload signature when content is being437
submitted. The current expectation is that the Registry Client would be required to438
send a certificate in the payload signature instead of the DN name. The above use439
cases would change accordingly.440

441
Issue2: In a header signature, sending of a DN name is not necessary if a reference to442
the contract between the Registry Client and the Registry Operator exists in the ebXML443
message (for e.g. CPAId). The certificate could be retrieved based on the reference444
contract id. 445

446
To handle the above use cases, a Registry Client and Registry could be required to447
support the KeyInfo field. However, KeyInfo field has many different elements. So to448
make it simpler to conform to this specification, only a subset of the KeyInfo field is449
required to be supported (as specified below):450
Based on the above use cases, a Registry Client and Registry must support the following:451
• X509Subject element. This is a child element of X509Data which in turn is a child452

element of KeyInfo. X509SubjectName element can be used to indicate a X.509453
subject distinguished name. [XMLDSIG] states that:454

455
“subject distinguished name SHOULD be compliant with RFC 2253[LDAP-DN]”456

457
• X509Certificate element. This is a child element of X509Data which in turn is a458

child element of KeyInfo. This can be used to pass the certificate to the recipient.459
X509Certificate element contains a base64-encoded certificate.460

461
The following table illustrates what is possible in the KeyInfo field.462

463
Header Signature | Payload Signature464

465
DN Name Certificate DN Name Certificate

RC to Registry Yes No Yes No (yes ok too)
Registry to RC Yes No No Yes

466

Relationship to XKMS467
468

XKMS defines a protocol for key registration and distribution. It consists of two parts:469
470

• X-KISS (XML Key Information Service Specification) for processing key471
information in an XML signature. This allows a client of XKMS to delegate472
processing (in part or whole) of KeyInfo field to XKMS.473

• X-KRSS (XML Key Registration Service Specification) for registration of keys.474
475

XKMS is not a requirement for this specification. However, a Registry Client or a476
Registry implementation may use XKMS for digital signature key registration and477
distribution.478

Alignment with SOAP-SEC479
480

SOAP Security Extensions [SOAPSEC] proposes a standard to use the XML Signatures481
to SOAP 1.1 messages with Attachments [SOAPATTACH]. The signature is packaged482
in a SOAP header entry <SOAP-SEC:Signature>. 483

484
The SOAP security extensions package a digital signature in a SOAP header entry. It is485
not applicable to payload signatures since the requirements for ebXML registries486
necessitate the payload signature to be packaged with the payload itself rather than in the487
SOAP header. 488

489
An additional reason that the SOAP Security Extensions are not used by this specification490
is that it appears to be work in progress.491

Relationship to S/MIME492
S/MIME is currently not a requirement for signing payloads in version 2.0. However,493
they can be accomodated in future versions of Registry Specifications.494

495
Note To Reviewers: I can add more information on use cases and how I expect S/MIME496
to be handled. But I ran out of time. I will add this for the next version of the document. 497

Versioning Information498
499

If a standard for signing SOAP Messages with Attachments is specified and that satisfies500
the use cases outlined earlier in the beginning of this document, then that standard could501
be adopted by future versions of ebXML Registry Specifications. This document assumes502
that there is sufficient versioning information which would allow future versions of503
Registry Clients and the Registry to distinguish between the different standards for504
signing.505

506

References507
[ebMS] Message Service Specification ebXML Transport, Routing & Packaging508

http://www.ebxml.org/specs/ebMS.pdf509

[SECRISK] Security Proposal for ebXML Registry V2510
511

[RFC1847] Security Multiparts for MIME: Multipart/Signed and Multipart/Encrypted512
513

[SOAPSEC] SOAP Security Extensions: Digital Signature514
http://www.w3.org/TR/2001/NOTE-SOAP-dsig-20010206/515

516
[SOAP]517
[SOAPATTACH] SOAP Messages with Attachments518

http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211/519
520

[XMLDSIG] XML-Signature Syntax and Processing,521
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/522

523
524

http://www.ebxml.org/specs/ebMS.pdf
http://www.w3.org/TR/2001/NOTE-SOAP-dsig-20010206/
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/

	Use of XML DSIG in ebXML Registry
	Author: Sekhar Vajjhala
	Date : 10/03/01
	Version: 0.2
	Status of this document
	Acknowledgements
	Introduction
	Related Documents
	Use Cases
	Caveats and Assumptions
	Overview
	
	Header Signature Requirements

	Packaging Requirements
	Header Signature Generation Requirements
	Header Signature Validation Requirements
	Header Signature Example

	Payload Signature Requirements
	Packaging Alternatives
	Payload Signature Packaging Requirements
	Payload Signature Generation Requirements
	Message Payload Signature Validation
	Payload Signature Example
	Key Distribution and KeyInfo Element
	Relationship to XKMS
	Alignment with SOAP-SEC
	Relationship to S/MIME
	Versioning Information
	References

