
UN/CEFACT

United Nations Centre for Trade Facilitation and Electronic Business

Metadata for Core Components Page 1 of 1

 1
 2
 3
 4

Core Components Realisation 5
 6
 7
 8
 9

 10

eBTWG 11
 12
 13

1st December 2001 14

Version 1.00 15

 16

DRAFT FOR REVIEW 17

 18

 19

 20
 21
 22

 23
24

Core Components August 2001

Metadata for Core Components Page 2 of 2

 24
Part 1 – Relation to ebXML Architecture .. 3 25
1 Introduction .. 4 26
2 Adopting and Implementing ebXML based systems.. 10 27

2.1 Step 1 – Relating existing legacy transaction formats 11 28
2.2 Step 2 - Validate and migrate existing transactions ... 12 29
2.3 Step 3 – Participate in alignment and interoperability standardization............... 13 30
2.4 Step 4 – Migrate interchange documents to UN approved standards 13 31
2.5 Supplemental Notes on Semantic Alignment .. 13 32

3 XML Representation... 14 33
3.1 Representation Model... 16 34

Part 2 – Implementation and Adoption .. 18 35
4 Implementation Diagrams... 19 36

4.1 Features and Use Cases .. 20 37
4.2 Core Component Schema ... 23 38
4.3 Core Component Schema Glossary Details... 25 39
4.4 Alphabetical Listing of Structure Components.. 31 40

A Addendum... 52 41
 42

43

Core Components August 2001

Metadata for Core Components Page 3 of 3

Part 1 – Relation to ebXML Architecture 43
 44

Requirements, Roles, Deliverables 45
 46
 47

48

Core Components August 2001

Metadata for Core Components Page 4 of 4

 48

1 Introduction 49
Within the ebXML technical architecture there is a key element known as the ebXML 50
Registry1. There is a need to allow data components and associated meta information to 51
be loaded and extracted from this registry in a format that maintains the full set of 52
metadata that expresses the semantics of those data components. Along side this 53
requirement there is also a need for ebXML based processes to utilize default assembly 54
mappings from this extract format into useful e-business interchange payload definitions. 55
There is also a need to explain the process of how existing industry component libraries 56
can be enhanced to become candidates for adoption into UN/CEFACT core component 57
libraries and then potentially promoted as wider cross-industry core components in their 58
own right. 59
 60
The Core Component Realisation group (CCR) will define the Import and Export format 61
and the default mappings into XML for exported components. This format detail and its 62
interaction with the Registry constitute the Component Registry Interface (CRI). The 63
team will work with groups both inside the ebTWG and also those industry and standards 64
groups that have submitted useful contributions to the overall core component work 65
within UN/CEFACT. 66
 67
Within the ebTWG effort itself the CCR will need to work with both the UML-to-XML 68
group and the Core Components group, and in the broader context with the continuing 69
ebXML Registry work also. 70
 71
This means that the CCR group expected to have the following deliverables: 72
 73

1) The definition of the Component Registry Interface (CRI). This is contained within 74
this document. 75

 76
2) The definition of the mappings from the CRI to useful payload assembly definitions 77

(Registry to Payload - R2P). This will be documented in a separate document. The 78
initial thoughts related to this are to try to use UML model interchange syntax 79
specification - XMI version 2 - as the basis for this format. This will allow migration 80
too and from different syntax formats and also it is hoped will allow easy integration 81
with UML modelling tools. Potentially XMI Version 2 would also enable a format 82
that would also document the meta-data that has been capture and loaded into the 83
repository. 84

 85
3) The process for the conversion of existing component libraries to allow them to be 86

loaded into the Registry and how they can utilise the existing UN Components and 87
also to be elevated to UN Component Status. Once loaded these components can 88
then be enhanced to refer to Core Components, or established as actual UN certified 89

1 Older documentation may sometimes also refer to Registry/Repository, or Reg/Rep for short.

Core Components August 2001

Metadata for Core Components Page 5 of 5

Core Components themselves (UNCC). This is not the same as the Core Component 90
Discovery process; it is a support process subsequent to that discovery phase. 91

 92
Additionally this approach ensures that the core component semantics are therefore being 93
captured and stored in a neutral simple XML instance structure that is not specific to 94
anyone rendering or dialect for business documents. This is critical to ensure future 95
adaptability and to avoid reliance on any short-term syntax devices. The document 96
formats required for business interactions (verbs and transactions) themselves are then 97
render as either XML, or any other convenient format such as EDI as needed by the 98
business process implementation and trading partner requirements. These format 99
assembly instructions are also stored associated with the assembly core component 100
definitions and can be provided and accessed by vendors and implementers as needed. 101
 102
Figure 1. Relationships of CCR / CRI components 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
The distinction therefore between components in the registry and between the UN 118
sponsored Core Components (UNCC) is that the UNCC have reached a semantic quality 119
that allows them to be used interoperably. However by allowing organizations to migrate 120
their existing legacy Component Libraries these therefore have a significant role to play 121
in increasing the number of components available as candidates for future adoption as 122
UN Core Components. Figure 2 below illustrates this process. 123
 124
Another consideration is to be able to provide consistent document format instructions for 125
business process implementation. Providing a default library of document format 126
artefacts that industries can standardize on to enable consistent and reliable document 127
interactions and reduce the need for transformation services. 128
 129
This CRI work is designed to provide the technical facilitation that the other ebTWG 130
groups need to then work logically with to refine and deliver the business artefacts that 131
the end user organizations ultimately need to implement ebXML-based systems. This 132
work is key to linking the top down approach of the Business Process team and the 133
bottom up approach of the Core Component team. 134
 135

Core Components

CCR / CRI instances Registry

Assembly
Services

Business
Content, XML,
EDI, XMI..

Industry domain
usage

Application
Database

stored in
used by

Core Components August 2001

Metadata for Core Components Page 6 of 6

Simply put the CCR project deliverables enables implementers to get an XML file of the 136
Core Component assembly instructions and associated semantic details, and therefore 137
directly use them to transform actual physical business interchange content into the 138
necessary format for them to be used in real documents/message interchanges. 139
 140
Figure 2 below shows the adoption life cycle for core components and their use in such 141
document assembly. 142
The initial version of the CCR has been designed with current available document 143
standards in mind. These include DTD, XML Schema and RELAX variants. The aim in 144
the future is to derive a standard CRI format based on XMI version 2. The reason for this 145
is that the CRI is in a position to act as a transition point between the UML Tools world 146
and the XML only world. Some issues preclude an early adoption of XMI, including 147
enhanced UML tools that allow themselves to create classes based on meta-class models. 148
The Core Component Meta Model defines a set of information that should be captured 149
when new classes are generated. Clearly if a UML tool could enforce the capture of this 150
information and then output it using the XMI format based on the Core Component Meta 151
Model we would have a clear marriage between the two worlds of ebXML 152
implementation specifics and the enhanced modelling concepts being developed for 153
eBTWG. 154
 155
In Section 2 below we examine in more detail the mechanics of deriving the metadata 156
content as a series of logical steps. Figure 2 below provides a high-level schematic of the 157
interactions associated with this process. 158

159

Core Components August 2001

Metadata for Core Components Page 7 of 7

Figure 2. Overview of the adoption of Core Components Process 159

 160
 161
The above diagram explains the process by which both core components and legacy 162
industry specific components get entered into the Registry via the CRI format. They are 163
then linked to produce Business Information Entities (BIEs) that are then the semantic 164
basis for what is passed across the wire in physical business interchange transactions. 165
Starting in the bottom left quadrant we have UN Core Components (UNCC) and 166
Components from other libraries either Industry verticals or Horizontal tool libraries. 167
These are expressed in their native format. To be loaded into the registry they need to be 168

R2P

CRI

UN000001

UN000005
UN000004

UN000002

UN000003

Repository

OAG000001

CBL000001

EDI000001
EDI000001

OAG000001

CBL000001

UN000004

UN000005

Component Discovery

Candidate (aggregate)
Components

OAG
CBL

EDI

Real Business Objects
In various formats including R2P

CRI

Core Components August 2001

Metadata for Core Components Page 8 of 8

changed to the CRI format. This provides modellers and components builders the means 169
to relate existing libraries to their UNCC equivalents to express real business components 170
and their cross-walks between the industry implementations and the interoperable UNCC 171
definitions. Associated with each of these core components is a reference key, a UID 172
(Unique ID) reference value that allows it to be precisely addressed and versioned. The 173
UID values therefore act as the network that defines the crosswalks and the 174
interoperability matrix. 175
 176
The underpinning for the CCR effort is the description of the XML document instance 177
that carries the semantic information of each core component item. Figure 3 shows the 178
UML information model of that representation. 179
 180
The details of this information model, and the associated XML structure that holds the 181
information is explained in the Section 2, the information model diagram is provided here 182
to introduce the original concepts behind the early core components work so as to aid 183
understanding of the continuing discussion in this section. The actually CRI work itself 184
is a simplification and refined subset of this earlier work expressed as a simple XML 185
instance structure. 186
 187
 188

UN/CEFACT

United Nations Centre for Trade Facilitation and Electronic Business

Metadata for Core Components Page 9 of 9

Figure 3. Information Model of Core Components

TypeConstraint

EmbeddedGroup
<<Enumeration>> order : String

ExternalValueList
id : String
maintenanceAgency : String

BasicInformationEntity

PermittedValue
name : String

0..*

1..1

0..*

1..1

annotation

DataTypeConstraint

DataType
0..*

0..1

0..*

0..1

valuesDerivedFrom

0..*

1..1

0..*

1..1

isOfType

0..*

0..*

0..*

0..*

hasPermittedValues

0..*

1..1

0..*

1..1

redefinesDataType

FunctionalSet
name : <undefined>

0..*
0..*+parent 0..*

subComponents

+children0..*

These classes are not
a part of the core
component model.
They are included to
show the link to the
Business Process

ApplicationComponent
name : String
identifier : String
description : String
submittedBy : String
date : Date
emailAddress : String
isExtendable : Boolean
isRestrictable : BooleanAggregateInformationEntity

CoreComponentTypeDefinition
name : String
identifier : String
description : String
submittedBy : String
date : Date
emailAddress : String
isExtendable : Boolean
isRestrictable : Boolean

0..* 1..*0..* 1..*

comprisesComponents

AssembleTypes
identifier : String
description : String
submittedBy : String
date : Date
emailAddress : String

0..*0..1 0..*0..1

componentAssembleTypes

TypeUseRules
assignedName : String
explanationOfUse : String
minMaxConstraints : String

0..*0..*

hasConstraint

TypeExtension

0..*

1

0..*

1

usesApplicationComponent

DocumentModel
(from BusinessProcess)

0..*

1..*

0..*

1..*
uses

ClassificationScheme

name : <undefined>
(from Classification)

ClassificationNode

name : String
(from Classification)

0..*

1..1

0..*

1..1

hasNodes

0..1

0..*

+children0..1 +parent
0..*

ContextRules
identifier : String
description : String
submittedBy : String
date : Date
emailAddress : String
expressionLanguage : String
expressionBody : String

0..*

0..*

0..*

0..*

isConstrainedBy

0..*0..* 0..*0..*

modifiedBy

0..*

0..1

0..*

0..1
isConstrainedBy

Context

0..* 1..*0..* 1..*

usesClassification

0..*

1..1

0..*

1..1

classificationNode

0..*

1..*

0..*

1..*

context

BusinessContext
(from BusinessProcess)

0..*

0..*

0..*

0..*

AggregationRules

0..*

1..*

0..*

1..*
contains

1..1

0..*

1..1

0..*

usesType

ApplicationRules

1..*

0..*

1..*

0..*

hasTypeExtension

0..*

0..*

0..*

0..*

appliesTo

0..1

0..*

0..1

0..*

isAssigned

UN/CEFACT

United Nations Centre for Trade Facilitation and Electronic Business

Metadata for Core Components Page 10 of 10

 200

2 Adopting and Implementing ebXML based systems. 201
 202
Once core components have been established and made available then the CCR is designed to 203
facilitate business organizations migrating their existing systems to ebXML and creating 204
business artefacts in a systematic and deliberate set of steps. It also provides them with an 205
extremely easy and rapid method of taking their in-place systems and making a baseline first step 206
to adopting ebXML-based interoperability. 207
 208
This section details the four steps or phases required and the outcomes and resources resulting to 209
move from a start point today to a fully ebXML compatible implementation. These four phases 210
are summarized here, and then each one is described in detail. 211
 212
The ebXML CCR adoption steps for a particular industry domain are: 213
 214

1) Relate existing legacy transaction formats to structural definitions containing UID 215
references, and load and enhance the definitions of the UID items and structures into the 216
ebXML Registry to complete as much of the CRI information as applicable. 217

2) Validate and migrate existing transactions and / or new transactions to conform to the 218
best practices and XML representation guidelines and rules established by the ebXML 219
specifications. 220

3) Participate in alignment efforts to relate the industry specific components to the broader 221
UNCC definitions, and also related industry group work, including interoperability an 222
alignment across industry. Use of UMM to facilitate this whole process. 223

4) Migrate existing interchange documents to reference and use UNCC UID references as 224
substitutions for the older proprietary components. Migrate interchange documents to 225
UN approved business process definitions and associated document payloads and ebXML 226
enabled transportation and routing. 227

228

Core Components August 2001

Metadata for Core Components Page 11 of 11

 228

2.1 Step 1 – Relating existing legacy transaction formats 229
 230
The first step is to take existing transactions being used in situ and associate with each of these a 231
physical structure definition that relates UID references to each item within the transaction set. 232
These structure definition may be DTD, XML Schema or RELAX or other machine parable 233
structure syntax. Figure 4 below shows for a typical legacy piece of XML content (mailing 234
Address) how to create a DTD example that makes the linkage to the semantic definitions via 235
UID associations. We discuss later the rules for how UID values are created, essentially they 236
consist of a character prefix followed by a 6 digit number as can be seen here such as ’CAT10100’. 237
 238
Figure 4. Assigning UID values to legacy transaction structures 239
 240

<!ELEMENT Address (Street+, City, (State | Province), (PostCode | ZIP), 241
 Country?)> 242
<!ATTLIST Address UID CDATA #FIXED 'CAT10100'> 243
<!ELEMENT Street (#PCDATA)> 244
<!ATTLIST Street UID CDATA #FIXED 'CAT10101'> 245
<!ELEMENT City (#PCDATA)> 246
<!ATTLIST City UID CDATA #FIXED 'CAT10102'> 247
<!ELEMENT State (#PCDATA)> 248
<!ATTLIST State UID CDATA #FIXED 'CAT10103'> 249
<!ELEMENT Province (#PCDATA)> 250
<!ATTLIST Province UID CDATA #FIXED 'CAT10104'> 251
<!ELEMENT PostCode (#PCDATA)> 252
<!ATTLIST PostCode countrycode CDATA #REQUIRED 253
 UID CDATA #FIXED 'CAT10105'> 254
<!ELEMENT ZIP (#PCDATA)> 255
<!ATTLIST ZIP UID CDATA #FIXED 'CAT10106'> 256
<!ELEMENT Country (#PCDATA)> 257
<!ATTLIST Country UID CDATA #FIXED 'CAT10107'> 258

 259
Then each of these UID references will point to entries in the ebXML Registry using the CRI 260
XML instance containing the semantic definition of that individual item. See Section 2 for full 261
details of what the CRI XML instance and associated semantics details being stored looks like, 262
including some sample XML based off an OAG Address component example. 263
 264
In assigning UID references an industry group, or individual business typically can chose a 265
prefix string and number sequence that is appropriate for its own industry (as in the CAT10100 266
through to CAT10107 example above). There are no special rules that determine the number 267
sequence or the prefix. However industry groups and companies may be expected to cooperate 268
to share existing assigned UID values, and avoid collisions for new assignments. Also 269
specifications for a central registry concept for ebXML are also under development as part of the 270
phase 2 follow-on specification work. 271
 272
For version specifics the ebXML Registry information model itself provides support for both 273
major version and minor version assignments. This allows the base UID to always be 274

Core Components August 2001

Metadata for Core Components Page 12 of 12

referenced, but with a version extension as needed, where the version details are a suffix 275
separated by colons, i.e. CAT10107:01:00, is a major version reference. 276
 277

2.2 Step 2 - Validate and migrate existing transactions 278
 279
These actual best practice recommendations for ebXML based XML instances are explained 280
elsewhere in the ebXML specifications. The major aspect that needs to be understood in regard 281
to CCR is that the requirement here is not so much to micro-manage how content is assembled 282
and represented in XML document instances. More important is that the overall principles and 283
approach is adhered to. Specifically what needs to be avoided is any mechanisms that rely on 284
specific tricks or proprietary mechanisms in mark-up that will inhibit or constrain 285
interoperability based on the UID system and using the ebXML Registry as the means to provide 286
the semantic pool and reference point. 287
 288
The intent of the best practices is to suggest sensible techniques that will provide optimised, 289
lightweight and simple structures that rely on well-defined and stable aspects of XML 290
technology particularly. Obscure and esoteric techniques that rely on extended XML 291
specifications and behaviours are to be expressly items that would be not favoured for inclusion 292
in standard document formats. Such items lead to a reduced interoperability on a global scale by 293
creating extended processing requirements on local implementations. 294

295

Core Components August 2001

Metadata for Core Components Page 13 of 13

 295

2.3 Step 3 – Participate in alignment and interoperability 296
standardization 297

 298
Once the industry domain or business organization has completed Step 1, then they have the 299
underpinning necessary to begin the work of aligning with the existing UNCC base, and also 300
alignment between related industry domain specifications. The eBTWG management structure 301
contains specific working groups that provide resources to help in this process. Also the core 302
components group have created documentation on how to discover, manage and develop core 303
component definitions. 304
 305

2.4 Step 4 – Migrate interchange documents to UN approved 306
standards 307

 308
Once the industry domain has established a base standard that is in alignment with ebXML, then 309
the member base can migrate to those improved interchange formats. 310
 311
 312

2.5 Supplemental Notes on Semantic Alignment 313
 314
A further goal of the core components work within ebXML is to provide standardized and 315
uniformly named logical content. While this is attainable for logical components, this can be 316
problematic for foreign languages especially in physical components. 317
 318
To overcome this limitation the CRI structure within the model section provides for the ability to 319
capture logical names. This has the additional benefit of freeing the XML element name from 320
needing to conform to some artificial naming constraints within a physical implementation 321
domain. 322
 323
Some examples of an Address component taken from the Open Applications specifications have 324
been provided as associated external document examples related to this physical text 325
documentation herein.326

Core Components August 2001

Metadata for Core Components Page 14 of 14

 327

3 XML Representation 328
This section describes the XML representation of Core Components. This section continues on 329
from Part 1 and provides XML mechanisms for the model representations. 330
The representation is designed to support verbs as well as nouns, and also logical and well as 331
physical models, and being able to associate business processes with core components. 332
Furthermore the representation provides the means to capture context information, business rules 333
and assembly information. The XML representation is the actual instance of the core 334
component exposed in an XML structure and is therefore designed to facilitate application 335
software mechanisms and use of core components throughout the ebXML technical architecture. 336
Particularly important is the integration of the XML representation with the ebXML Registry 337
information model and the ability to store the core component within an ebXML Registry and 338
effectively manage and access it there. 339
 340
Part 1 introduces the notion of basic core component, business component and document core 341
component with each having an associated core component type. Then a core component is 342
defined as "a building block for the creation of a semantically correct and meaningful 343
information exchange 'parcel'". The XML representation therefore enables all of these 344
mechanisms and in addition provides the contextual and process linkage for real world 345
implementation. 346
 347
To further the understanding of these mechanisms and the implementation here, this section is 348
divided into three parts: 349
 350
??The core component representation model, 351
 352
??A summary of the main features and use cases, 353
 354
??And then the actual schema of the XML with documentation of the components themselves 355

and their intended purpose and content. 356
 357
A sample core component noun instance is also provided in the addendum. 358
 359
The intention is to provide a start point for implementers to be able to create core component 360
noun instances themselves and the associated assembly instructions, and then to store those into 361
an ebXML Registry system. 362
 363
An important further note is that the XML representation of the core component is neutral to any 364
particular schema dialect, whether it be DTD, XML Schema or RELAX, or some other variant 365
such as EDI structures. The goal is to keep core components independent from any technology 366
details, while allowing implementers to generate and choose whatever schema syntax best fits 367
their business use. Furthermore this also provides future proofing against new schema syntax 368
implementations and extensions. The XML representation does however allow implementers to 369
embedded links to schema specific content as required by a specific schema dialect. An example 370

Core Components August 2001

Metadata for Core Components Page 15 of 15

is a namespace or grammar link, or some complex piece of syntax fragment that assembly 371
software will insert into a generated syntax instance. 372
 373
Therefore the schema representing the XML core component is documented in three ways: as a 374
DTD, XML Schema and RELAX syntax structures. Each of these are interchangeable, and all 375
describe the structure of the XML instance of the same core component, where this instance is 376
intended to be as close to simple XML V1.1 syntax as possible. 377
 378
To aid development use the latest instance of the core component schema and this documentation 379
file will be available from an open source management library, with full versioning control. The 380
CCR working group will be responsible for managing that library and posting latest changes to 381
that. 382

383

Core Components August 2001

Metadata for Core Components Page 16 of 16

 383

3.1 Representation Model 384
 385
 386
The information model of the XML representation is shown in figure 5 and includes the registry 387
object header content (see ebXML Registry specifications) that the ebXML registry header will 388
associate with this core component item and contains important content details. It is important to 389
remember that any registry object always contains these details and that the ebXML registry 390
services provide many query and access tools keyed off this content along with audit, owner, 391
security and tracking mechanisms. 392
 393
Figure 5. Core component instance information model 394
 395

CoreComponentTypeDefinition

RegistryObjectHeader

CoreComponentName

 MetaInformation

 Identifiers

RegistryClassifications

classificationUID

 ExplanationOfUse
type
value

Usage
Instance
Type

 DefaultAssembly

 Assembly

Locale
Type
Model
namespace

 BaseDetails ExtendedDetails

 Assembly

Locale
id
externalRef

Locale
id
externalRef

 PhysicalDetail Attributes Processes Associations Context Schemas

ElementName
Label
Description

0 .. *

0 .. *0 .. * 0 .. *0 .. *

1 .. *1 .. *

0 .. *

0 .. 1

0 .. 1

 396
 397

Core Components August 2001

Metadata for Core Components Page 17 of 17

This model diagram has been organized to show the major features for clarity, expanded down to 398
only the 3rd level of nodes. Similarly, properties within objects have been restricted to skeletal 399
notes only. The actual schema instance model is shown next to detail the complete entities that 400
are represented beneath in the full model. Also, no attempt has been made to show relation of 401
use cases to model content; for instance, a logical model core component may not contain 402
physical detail content, only associations to physical model core components as assembly details 403
(see section 2 below for use case discussion). Similarly a verb entry or a process entry may 404
have restricted physical detail items, and so on. 405
 406

407

Core Components August 2001

Metadata for Core Components Page 18 of 18

Part 2 – Implementation and Adoption 407
 408

Methods, Technical Details, Approach 409
 410
 411

412

Core Components August 2001

Metadata for Core Components Page 19 of 19

 412
 413

4 Implementation Diagrams 414
 415
The XML schema model of the XML representation is shown in figure 5.1.0 includes only the 416
core component itself, (without the registry information model items). Only the element level 417
model is shown, not the attribute level. The details of the attributes are given in major section 418
below detailing the documentation of the schema itself. (Note: elements have been labelled using UN 419
spellings, not North American spellings) 420
 421
Figure 5.1.0. XML schema model (DTD representation) 422
 423

 424
 425
The figure shows the complete hierarchy of the XML core component instance. It is also 426
designed to provide logical and consistent use of XML markup, to facilitate XPath based 427
selections against content, and particularly to facilitate accessing such content within the ebXML 428
Registry. In this regard a DefaultAssembly is always provided, so that consistent access can be 429
made against reliable content for all types and aspects of core components themselves. The 430
overall design allows for use in representing the multiple aspects and types of core components. 431
 432
In the next section, 5.1 use case diagrams showing selected instances of the complete model will 433
be provided, along with selected uses. 434
 435

Core Components August 2001

Metadata for Core Components Page 20 of 20

4.1 Features and Use Cases 436
 437
This section presents some obvious and primary use cases for the XML representation of a core 438
component. These include a simple noun (atomic core component), a logical core component, 439
and a permitted values list core component. Then an assembly core component and a business 440
process (verb) core component. Each of these samplings is shown as a schematic 441
representation, where the required elements are included in the view, and those optional or not 442
required items are removed, or collapsed. 443
 444
 445
 446
Figure 5.1.1. Atomic core component (noun) 447

 448
The figure shows those items that typical for this kind of core component. Other core 449
component assemblies would likely reference this one using a UID address. 450

451

Core Components August 2001

Metadata for Core Components Page 21 of 21

 451
 452
 453
Figure 5.2.1. Logical core component (noun) 454
 455

 456
The figure shows those items that typical for this kind of core component. This would like 457
reference other core component assemblies or atomic core components using their UID 458
address(es). 459
 460
 461
 462
Figure 5.3.1. Permitted values core component (noun) 463

 464
The figure shows those items that typical for this kind of core component. 465

466

Core Components August 2001

Metadata for Core Components Page 22 of 22

 466
 467
 468
Figure 5.4.1. Assembly core component (noun collection) 469

 470
The figure shows those items that typical for this kind of core component. The Assembly 471
indicates the structure and included atomic core components and how they are arranged together. 472
Typically this type of core component is a business document for exchanging in a business 473
process. 474
 475
 476
 477
Figure 5.5.1. Business process core component (verb) 478

 479
The figure shows those items that typical for this kind of core component. 480

481

Core Components August 2001

Metadata for Core Components Page 23 of 23

 481

4.2 Core Component Schema 482
 483
This section contains the reference schema for the XML implementation. Three schema flavours 484
are provided: DTD, RELAX and XML-Schema. Each one is equivalent and can be used 485
interchangeably. The DTD representation is used as the reference one. The various formats will 486
not be maintained in this document. An automatically generated glossary made from the XSD 487
schema is presented. The actual DTD, XML-Schema and RELAX files are contained in the zip 488
associated with this document. 489
 490
The diagram below, in Figure 6, is an overview of the XML-Schema version of the CRI. 491

Core Components August 2001

Metadata for Core Components Page 24 of 24

Figure 6. XML Schema Overview Diagram 492
 493

 494
495

Core Components August 2001

Metadata for Core Components Page 25 of 25

4.3 Core Component Schema Glossary Details 495
 496
The Glossary is displayed in two formats 497

? ? Main Parent Elements 498

And 499

? ? Alphabetically by main elements and sub-elements (all other child elements). 500

Each item is annotated to describe the specific individual function. It should be noted that the 501
schema is designed to fulfill a flexible set of uses, including: 502

? ? Logical core components 503

? ? Physical component details 504

? ? Assembly documents 505

? ? Compound items 506

? ? Atomic nouns 507

? ? Atomic and compound parts of nouns 508

? ? Process Verbs 509

? ? Reference tables 510

As a guide for implementers, users should be encouraged to first create assembly document 511
references based off their existing DTD, Schema or EDI transaction structures. From this 512
naturally flows the associated component details, and then above those the logical core 513
component models can be derived. The associated noun and part details can then be derived 514
along with verb and reference table details. 515

516

Core Components August 2001

Metadata for Core Components Page 26 of 26

 516

element CoreComponent 517
diagram

namespace http://www.unece.org/cefact/cri/1.0

children MetaInformation DefaultAssembly Assembly

attributes Name Type Use Default Fixed
defaultLocale locales optional en_US
type xs:NMTOKEN required
model xs:string optional physical

annotation documentation documentation documentation This is the root element of the Core Component XML instance
format.$Header:
/cvsroot/corecomponents/schemas/CoreComponent.xsd,v 1.17
2001/10/07 18:33:34 matt Exp $Design notes: The settings of the
type and model attributes determine the particular flavour of core
component represented. From physical or logical model, to atomic
element or compound assembly, an extensive range of
permutations is supported to meet all the essential baseline
representations for e-business artifacts.

The MetaInformation is required for all core components and
describes the Identifiers and Behaviour of the core component. The
Identifiers mechanism is intended to capture primarily UID
references, or alternatively UDDI or can be extended for future
reference systems. (Note: a UID reference can contain versioning
information as a suffix). The annotation is provided for compatibility
with XSchema annotations.

The Behaviour element determines if the core component can be
inherited and changed. Then the Usage element attributes are set
to indicate the type of use for the core component.

 518
 519
 520
 521
 522
 523
 524
 525

Core Components August 2001

Metadata for Core Components Page 27 of 27

 526
element MetaInformation 527

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Identifiers Behaviour

used by element CoreComponent
annotation documentation Static, unchanging from assembly to assembly information.

 528
element DefaultAssembly 529

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Assembly

used by element CoreComponent
attributes Name Type Use Default Fixed

ref xs:string optional
annotation documentation documentation Container that always contains the default assembly. Typically the default

assembly is that has a locale attribute value equivalent to your default
locale.Additional design notes: The DefaultAssembly references Assembly, and
ensures that there is always a primary set of information with which the core
component can be referenced, regardless of whether the core component has an
additional Assembly or not. The additional Assembly is specifically to provide
locale information for other languages in addition to the defaultlocale defined on the
CoreComponent element, as well as alternate assembly details

Core Components August 2001

Metadata for Core Components Page 28 of 28

 530
 531
element Assembly 532

diagram

namespace http://www.unece.org/cefact/cri/1.0

children BaseDetails ExtendedDetails

used by elements CoreComponent DefaultAssembly

attributes Name Type Use Default Fixed
locale locales required
id xs:string optional
externalRef xs:anyURI optional

annotation documentation Contains all structural information for the component.

 533
 534
element Assembly/BaseDetails 535

diagram

namespace http://www.unece.org/cefact/cri/1.0

Core Components August 2001

Metadata for Core Components Page 29 of 29

children ElementName Label Description ExtensionDefinitions PhysicalDetail

annotation documentation documentation Basic details about this component.The BaseDetails capture the primitive
information about a core component. The ElementName is either the atomic XML
tagname (for the default locale) or root tag name for compound or complex items.
For permitted values lists, the ElementName similarly points to the default
associated element, or may simply be EMPTY if not applicable. Label is the human
readable text to be displayed on a form or printed on a report associated with this
core component, and again the default locale language applies. The Description is
a short text documentation of the core component, while attributes on Description
allow referencing to extended content fully documenting the item. The Attributes
equate exactly to XML markup attributes and solve the problem of referencing
attributes of attributes within a message instance. The Attributes element block
allows attributes to be detailed in-line, or by referencing to another UID address
where extended information about the attribute can be referenced.

 536
element Assembly/ExtendedDetails 537

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Processes Link018B5C30 Schemas ContextGroup Context Model

Core Components August 2001

Metadata for Core Components Page 30 of 30

annotation documentation documentation Extended Details.The ExtendedDetails group is a set of optional items providing
advanced information about the core component. These are optional and therefore
are intended for different types of core component to handle the extended details
they may require. For example the Associations provide the ability to provide a
mapping crosswalk of equivalent or similar items within an industry and across
different industry domains.

 538
 539
Schema CoreComponent.xsd 540
 541
 542
targetNamespace: http://www.unece.org/cefact/cri/1.0

 543
Elements Simple types
Assembly baseDataTypes
Context contextTypes
CoreComponent locales
DefaultAssembly regexpTypes
DefaultValue
ExternalValueList
Function
GroupItems
Item
MapValue
MaxValue
MetaInformation
MinValue
PermittedValues
PhysicalDetail
Process
ReferenceAction
ReferenceValues
SetValue
ValidationExp
Value
ValueItem
ValueRule
 544

545

Core Components August 2001

Metadata for Core Components Page 31 of 31

4.4 Alphabetical Listing of Structure Components. 545
 546
element Assembly 547

diagram

namespace http://www.unece.org/cefact/cri/1.0

children BaseDetails ExtendedDetails

used by elements CoreComponent DefaultAssembly
attributes Name Type Use Default Fixed

locale locales required
id xs:string optional
externalRef xs:anyURI optional

annotation documentation Contains all structural information for the component.
 548
 549
element Assembly/BaseDetails 550

diagram

Core Components August 2001

Metadata for Core Components Page 32 of 32

namespace http://www.unece.org/cefact/cri/1.0

children ElementName Label Description ExtensionDefinitions PhysicalDetail

annotation documentation documentation Basic details about this component.The BaseDetails capture the primitive
information about a core component. The ElementName is either the atomic XML
tagname (for the default locale) or root tag name for compound or complex items.
For permitted values lists, the ElementName similarly points to the default
associated element, or may simply be EMPTY if not applicable. Label is the human
readable text to be displayed on a form or printed on a report associated with this
core component, and again the default locale language applies. The Description is
a short text documentation of the core component, while attributes on Description
allow referencing to extended content fully documenting the item. The Attributes
equate exactly to XML markup attributes and solve the problem of referencing
attributes of attributes within a message instance. The Attributes element block
allows attributes to be detailed in-line, or by referencing to another UID address
where extended information about the attribute can be referenced.

 551
 552
element Assembly/BaseDetails/ElementName 553

diagram

namespace http://www.unece.org/cefact/cri/1.0

type xs:string

annotation documentation documentation XML name of the component.Design notes: A default name to be used for an XML
tag. This is not a mandated name. Since the UID provides an independent
identifier implementers are free to use alternate tag label names as needed.
However this name is a useful reference and should be used if a local
implementation does not already have an equivalent. Typically this entry should
also be a valid XML name, but should not be assumed to be (i.e. transformation
tools should validate for white space, invalid characters and replace accordingly as
required by the specific application).

 554
 555
element Assembly/BaseDetails/Label 556

diagram

namespace http://www.unece.org/cefact/cri/1.0

type xs:string

annotation documentation documentation Human readable text to be used when displaying content in print or form.Design
notes: Human readable label. Language text should correspond to the locale
setting.

 557
 558
element Assembly/BaseDetails/Description 559

diagram

namespace http://www.unece.org/cefact/cri/1.0

type xs:string

Core Components August 2001

Metadata for Core Components Page 33 of 33

 560
 561
element Assembly/BaseDetails/ExtensionDefinitions 562

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Extension

annotation documentation documentation These are a powerful facility that allows mapping of core component to external
syntax, such as HTML, SQL, et al.
These are optional, but the type reference can be any syntax keyword, while Item
contains the syntax value.
Extension contains the type, ie. HTML, SQL, eDesign notes: This mechanism is a
catchall. Implementers will require their own specific local extensions. This system
provides this, and allows any physical syntax detail to be represented and retrieved.
An example is a SQL representation of a particular physical component noun.

 563
 564
element Assembly/BaseDetails/ExtensionDefinitions/Extension 565

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Item

attributes Name Type Use Default Fixed
name xs:string required
type xs:string required

annotation documentation documentation Allows use such as type="SQL"Design notes: used to allow representation of
physical syntax detail as a programming support device, where programmers
require explicit ability to capture syntax related details. The type is the physical
type (such as SQL or XForm) of the particular syntax. The name is the reference
value to this item. Typically this will be the UID with a suffix to denote its use, such
as OAG023000:SQL that can therefore be directly referenced in an XPath or similar
lookup.

Core Components August 2001

Metadata for Core Components Page 34 of 34

 566
 567
element Assembly/ExtendedDetails 568

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Processes Associations Schemas ContextGroup Context Model

annotation documentation documentation Extended Details.The ExtendedDetails group is a set of optional items providing
advanced information about the core component. These are optional and therefore
are intended for different types of core component to handle the extended details
they may require. For example the Associations provide the ability to provide a
mapping crosswalk of equivalent or similar items within an industry and across
different industry domains.

Core Components August 2001

Metadata for Core Components Page 35 of 35

 569
 570
element Assembly/ExtendedDetails/Processes 571

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Process

annotation documentation documentation List of processes. Design notes: provides linkage to BPSS via a simple mechanism
to optionally capture the actual process steps, and then link the formal BPSS
definitions of those to the steps. Can be used to either declare a component verb,
or to associate a process to a core component, such as a transaction, or vice versa.
(This part of the CRI will be refined in collaboration with the BPSS working group).

 572
 573
element Assembly/ExtendedDetails/Associations 574

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Association Components

annotation documentation List of components and other things that this component is associated with. This is optional
because ebXML Registry typically manages simple associations. Compound relationships
however require the extended mechanisms provided here.

Core Components August 2001

Metadata for Core Components Page 36 of 36

 575
 576
element Assembly/ExtendedDetails/Associations/Association 577

diagram

namespace http://www.unece.org/cefact/cri/1.0

attributes Name Type Use Default Fixed
reference xs:string required
taxonomy xs:string optional
relationship xs:NMTOKEN required
registry xs:string optional

annotation documentation Design notes: reference contains the lookup reference value of the related item (usually UID); the
taxonomy notes the reference system being used and relationship marks the type of association.
The registry contains an alias to the physical address of the registry containing the associated
artifact. If left blank, then default is the current registry (using an address alias provides much
simpler maintenance over physical URI locations).

 578
 579
element Assembly/ExtendedDetails/Associations/Components 580

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Component

annotation documentation documentation documentation
documentation

This allows associated elements.Example: ZIP code
requires City and State as required fields, and Country as
optional.This also supports modelling tools thru the
Direction attribute.Design notes: The Dependency differs
from Associations in that this lays down items that belong
together, such as ZIP code, City, State, Address and
determines optional or required relations. Also for
modelling tools, the Direction is included.

Core Components August 2001

Metadata for Core Components Page 37 of 37

 581
 582
element Assembly/ExtendedDetails/Associations/Components/Component 583

diagram

namespace http://www.unece.org/cefact/cri/1.0

children PhysicalDetail

attributes Name Type Use Default Fixed
name xs:string required
objType xs:string optional
objMode xs:string optional
use xs:NMTOKEN required
relation xs:NMTOKEN required
direction xs:NMTOKEN required
UIDreference xs:string optional
taxonomy xs:NMTOKEN optional
registry xs:string optional
note xs:string optional

 584
 585
element Assembly/ExtendedDetails/Schemas 586

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Schema

attributes Name Type Use Default Fixed
type

annotation documentation An XML or other schema describing the component. This schema must be placed in its own
namespace, such as http://www.w3c.org/2001/XML-Schema or http://relaxng.org/ns/structure/0.9

 587
 588
element Assembly/ExtendedDetails/Schemas/Schema 589

diagram

namespace http://www.unece.org/cefact/cri/1.0

attributes Name Type Use Default Fixed

Core Components August 2001

Metadata for Core Components Page 38 of 38

location xs:anyURI optional
type xs:string required W3C

 590
 591
element Assembly/ExtendedDetails/ContextGroup 592

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Context

annotation documentation documentation Grouping for context modifiers.Design notes: Context reference mechanisms are
still under development by the modelling working group members. The mechanism
here is a start point and provides basic functionality that will doubtless be refined for
later specification releases.

 593
 594
element Assembly/ExtendedDetails/Model 595

diagram

namespace http://www.unece.org/cefact/cri/1.0

children ObjectClass PropertyTerm RepresentationTerm BusinessTerm

annotation documentation documentation Support for core component model definitionsDesign notes: This section captures
the logical model details from the core component discovery working group results
and makes it available in a consistent XML form directed by the registry
management services, tracking and controls. See the core components
specifications for more details of the catalogue provided.

 596
 597
element Assembly/ExtendedDetails/Model/ObjectClass 598

diagram

namespace http://www.unece.org/cefact/cri/1.0

type xs:string

 599
 600
element Assembly/ExtendedDetails/Model/PropertyTerm 601

diagram

namespace http://www.unece.org/cefact/cri/1.0

type xs:string

Core Components August 2001

Metadata for Core Components Page 39 of 39

 602
 603
element Assembly/ExtendedDetails/Model/RepresentationTerm 604

diagram

namespace http://www.unece.org/cefact/cri/1.0

type xs:string

 605
 606
element Assembly/ExtendedDetails/Model/BusinessTerm 607

diagram

namespace http://www.unece.org/cefact/cri/1.0

type xs:string

 608
 609
element Context 610

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Rule

used by elements Assembly/ExtendedDetails/ContextGroup Assembly/ExtendedDetails
attributes Name Type Use Default Fixed

locale locales required
id xs:string optional

annotation documentation A Context modifier.

 611
 612
element Context/Rule 613

diagram

namespace http://www.unece.org/cefact/cri/1.0

attributes Name Type Use Default Fixed
type contextTypes required
name xs:string required
value xs:string required
classificationSchem
e

xs:string optional

label xs:string optional
annotation documentation documentation Context Rule Design notes: Basic mechanisms for capturing rule details.

Implementers should note however that no formal rule syntax is intended and that

Core Components August 2001

Metadata for Core Components Page 40 of 40

individual vendors will likely support their own mechanisms first before consistent
methods are standardized.

 614
 615
element CoreComponent 616

diagram

namespace http://www.unece.org/cefact/cri/1.0

children MetaInformation DefaultAssembly Assembly

attributes Name Type Use Default Fixed
defaultLocale locales optional en_US
type xs:NMTOKEN required
model xs:string optional physical

annotation documentation documentation documentation This is the root element of the Core Component XML instance
format.$Header:
/cvsroot/corecomponents/schemas/CoreComponent.xsd,v 1.17
2001/10/07 18:33:34 matt Exp $Design notes: The settings of the
type and model attributes determine the particular flavour of core
component represented. From physical or logical model, to atomic
element or compound assembly, an extensive range of
permutations is supported to meet all the essential baseline
representations for e-business artifacts.

The MetaInformation is required for all core components and
describes the Identifiers and Behaviour of the core component. The
Identifiers mechanism is intended to capture primarily UID
references, or alternatively UDDI or can be extended for future
reference systems. (Note: a UID reference can contain versioning
information as a suffix). The annotation is provided for compatibility
with XSchema annotations.

The Behaviour element determines if the core component can be
inherited and changed. Then the Usage element attributes are set
to indicate the type of use for the core component.

Core Components August 2001

Metadata for Core Components Page 41 of 41

 617
 618
element DefaultAssembly 619

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Assembly

used by element CoreComponent
attributes Name Type Use Default Fixed

ref xs:string optional
annotation documentation documentation Container that always contains the default assembly. Typically the default

assembly is that has a locale attribute value equivalent to your default
locale.Additional design notes: The DefaultAssembly references Assembly, and
ensures that there is always a primary set of information with which the core
component can be referenced, regardless of whether the core component has an
additional Assembly or not. The additional Assembly is specifically to provide
locale information for other languages in addition to the defaultlocale defined on the
CoreComponent element, as well as alternate assembly details

 620
 621
element DefaultValue 622

diagram

namespace http://www.unece.org/cefact/cri/1.0

children SetValue

used by elements PermittedValues ReferenceValues
 623
 624
element ExternalValueList 625

diagram

namespace http://www.unece.org/cefact/cri/1.0

Core Components August 2001

Metadata for Core Components Page 42 of 42

children ValidationExp

used by elements PermittedValues ReferenceValues

attributes Name Type Use Default Fixed
reference xs:string required
taxonomy xs:NMTOKEN required
registry xs:string

annotation documentation Design notes: List of allowed values for an item. The values can be stored externally, or can be
referenced via a UID lookup. Optionally a Validation Expression can also provide a picture mask to
constrain the content as well.

 626
 627
element Function 628

diagram

namespace http://www.unece.org/cefact/cri/1.0

children ReferenceValues Output

used by element Process
attributes Name Type Use Default Fixed

itemName xs:string optional
itemReference xs:string optional
UIDReference xs:string optional

annotation documentation Design notes: Allows referencing to a verb function as part of a business process steps.
 629
 630
element Function/Output 631

diagram

namespace http://www.unece.org/cefact/cri/1.0

attributes Name Type Use Default Fixed
businessRule xs:string optional
itemName xs:string optional
processClassUID xs:string optional
functionClassUID xs:string optional

Core Components August 2001

Metadata for Core Components Page 43 of 43

annotation documentation Design notes: Business process may result in some output. This provides a basic means to
reference these. Again, this is intended as a start point from which to refine and develop based on
fielded experience.

 632
 633
element GroupItems 634

diagram

namespace http://www.unece.org/cefact/cri/1.0

children ValueItem

used by element ReferenceValues
attributes Name Type Use Default Fixed

comment xs:string
 635
 636
element Item 637

diagram

namespace http://www.unece.org/cefact/cri/1.0

type restriction of xs:string

used by element Assembly/BaseDetails/ExtensionDefinitions/Extension

annotation documentation Design notes: used to allow representation of physical syntax detail. The Item will contain some
reference, such as SQLdatatype, and then instance contains the representation value, such as
VARCHAR, and so on.

 638
 639
element MapValue 640

diagram

namespace http://www.unece.org/cefact/cri/1.0

type extension of xs:string

attributes Name Type Use Default Fixed
key xs:string required
default xs:boolean optional

annotation documentation A key=value pair.

Core Components August 2001

Metadata for Core Components Page 44 of 44

 641
 642
element MaxValue 643

diagram

namespace http://www.unece.org/cefact/cri/1.0

children SetValue

used by element ValueRule
 644
 645
element MetaInformation 646

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Identifiers Behaviour

used by element CoreComponent
annotation documentation Static, unchanging from assembly to assembly information.

 647
 648
element MetaInformation/Identifiers 649

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Identifier

annotation documentation List of identifiers
 650
 651
element MetaInformation/Identifiers/Identifier 652

diagram

namespace http://www.unece.org/cefact/cri/1.0

Core Components August 2001

Metadata for Core Components Page 45 of 45

attributes Name Type Use Default Fixed
type xs:string required
value xs:string required

annotation documentation An ID instance.
 653
 654
element MetaInformation/Behaviour 655

diagram

namespace http://www.unece.org/cefact/cri/1.0

children ExplanationOfUse

attributes Name Type Use Default Fixed
isRestrictable xs:boolean optional false
isExtendable xs:boolean optional true

annotation documentation Describes how this component should behave.
 656
 657
element MetaInformation/Behaviour/ExplanationOfUse 658

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Usage

annotation documentation Explain usage.

 659
 660
element MetaInformation/Behaviour/ExplanationOfUse/Usage 661

diagram

namespace http://www.unece.org/cefact/cri/1.0

attributes Name Type Use Default Fixed
type xs:NMTOKEN required
instance xs:NMTOKEN required

annotation documentation Design notes: Allows fine control over how the component should be used. Can allow broad use
“any”, or explicit use, “part”, “assemblydoc”, and so on.

Core Components August 2001

Metadata for Core Components Page 46 of 46

 662
 663
element MinValue 664

diagram

namespace http://www.unece.org/cefact/cri/1.0

children SetValue

used by element ValueRule
 665
 666
element PermittedValues 667

diagram

namespace http://www.unece.org/cefact/cri/1.0

children DefaultValue ValueRule ExternalValueList ValueItem

used by element PhysicalDetail/Constraints

 668
 669
element PhysicalDetail 670

diagram

namespace http://www.unece.org/cefact/cri/1.0

children Constraints

Core Components August 2001

Metadata for Core Components Page 47 of 47

used by elements Assembly/BaseDetails Assembly/ExtendedDetails/Associations/Components/Component
annotation documentation documentation Describes physical attributes of the component.Design notes: PhysicalDetail is

provided here as an option. This allows inline declarations of simple physical
components where appropriate, particularly of part child items that will not be used
later as standalone entities. Typically however, this will be eschewed in favour of
providing a lookup reference value of the related item (usually UID) contained in a
separate CRI definition.

The PhysicalDetail section of the CRI allows implementation of the full information
characteristics of the core component in the real world context. An example is a
date core component, that is then physically detailed as Month / Day / Year
structural encoding. Each of these individual items is documented further below.

 671
 672
element PhysicalDetail/Constraints 673

diagram

namespace http://www.unece.org/cefact/cri/1.0

children PermittedValues ValidationExp ReferenceValues Value

attributes Name Type Use Default Fixed
minLength xs:int optional 1
maxLength xs:int optional 99
baseDataType baseDataTypes optional string

annotation documentation Design notes: The Constraints section is multi-purposed. Part provides compatibility to legacy EDI
element dictionary definitions and COBOL copybook definitions; other parts support modern
programming languages with Regular Expression and schema syntax parsing capabilities.

 674
 675
element Process 676

diagram

namespace http://www.unece.org/cefact/cri/1.0

Core Components August 2001

Metadata for Core Components Page 48 of 48

children Function Process

used by elements Process Assembly/ExtendedDetails/Processes

attributes Name Type Use Default Fixed
name xs:string required
classification xs:string optional
UIDReference xs:string optional

 677
 678
element ReferenceAction 679

diagram

namespace http://www.unece.org/cefact/cri/1.0

used by element ReferenceValues
attributes Name Type Use Default Fixed

functionName xs:string required
reference xs:string required
taxonomy xs:NMTOKEN required
registry xs:string

 680
 681
element ReferenceValues 682

diagram

namespace http://www.unece.org/cefact/cri/1.0

children ExternalValueList GroupItems DefaultValue ReferenceAction

used by elements PhysicalDetail/Constraints Function

annotation documentation documentation These differ from Permitted values, when used this describes a matrix of values
associated with the item.Since the structure of these values is unknown, a function
is associated to process them.

 683
 684
element SetValue 685

diagram

namespace http://www.unece.org/cefact/cri/1.0

Core Components August 2001

Metadata for Core Components Page 49 of 49

used by elements DefaultValue MaxValue MinValue
attributes Name Type Use Default Fixed

assignedValue xs:string
computeValueRuleU
ID

xs:string

action xs:NMTOKEN optional assign
 686
 687
element ValidationExp 688

diagram

namespace http://www.unece.org/cefact/cri/1.0

used by elements PhysicalDetail/Constraints ExternalValueList
attributes Name Type Use Default Fixed

mask xs:string required
type regexpTypes required
comment xs:string optional

annotation documentation Regular Expression Constraint

 689
 690
element Value 691

diagram

namespace http://www.unece.org/cefact/cri/1.0

used by element PhysicalDetail/Constraints

attributes Name Type Use Default Fixed
default xs:boolean optional

annotation documentation Standard value.
 692
 693
element ValueItem 694

diagram

namespace http://www.unece.org/cefact/cri/1.0

used by elements GroupItems PermittedValues
attributes Name Type Use Default Fixed

displaycode xs:string
value xs:string required
comment xs:string

Core Components August 2001

Metadata for Core Components Page 50 of 50

 695
 696
element ValueRule 697

diagram

namespace http://www.unece.org/cefact/cri/1.0

children MinValue MaxValue

used by element PermittedValues
 698
 699
simpleType baseDataTypes 700

namespace http://www.unece.org/cefact/cri/1.0

type restriction of xs:string

used by attribute PhysicalDetail/Constraints/@baseDataType
facets enumeration time

enumeration datetime
enumeration string
enumeration double
enumeration float
enumeration number
enumeration integer
enumeration text
enumeration boolean
enumeration list
enumeration char
enumeration byte
enumeration codevalue
enumeration currency

annotation documentation Possible values for PhysicalDetail@baseDataType
 701
 702
simpleType contextTypes 703

namespace http://www.unece.org/cefact/cri/1.0

type restriction of xs:string

used by attribute Context/Rule/@type

facets enumeration GeoPolitical
enumeration BusinessProcess
enumeration Industry
enumeration Language
enumeration Product
enumeration Platform
enumeration Custom

annotation documentation Possible values for Context@type.
 704
 705
simpleType locales 706

namespace http://www.unece.org/cefact/cri/1.0

type restriction of xs:string

Core Components August 2001

Metadata for Core Components Page 51 of 51

used by attributes CoreComponent/@defaultLocale Assembly/@locale Context/@locale
facets enumeration da_DK

enumeration de_AT
enumeration de_AT_EURO
enumeration de_CH
enumeration de_DE
enumeration de_DE_EURO
enumeration de_LU
enumeration de_LU_EURO
enumeration el_GR
enumeration en_CA
enumeration en_GB
enumeration en_IE
enumeration en_IE_EURO
enumeration en_US
enumeration es_ES
enumeration es_ES_EURO
enumeration fi_FI
enumeration fi_FI_EURO
enumeration fr_BE
enumeration fr_BE_EURO
enumeration fr_CA
enumeration fr_CH
enumeration fr_FR
enumeration fr_FR_EURO
enumeration fr_LU
enumeration fr_LU_EURO
enumeration it_CH
enumeration it_IT
enumeration it_IT_EURO
enumeration ja_JP
enumeration ko_KR
enumeration nl_BE
enumeration nl_BE_EURO
enumeration nl_NL
enumeration nl_NL_EURO
enumeration no_NO
enumeration no_NO_B
enumeration pt_PT
enumeration pt_PT_EURO
enumeration sv_SE
enumeration tr_TR
enumeration zh_CN
enumeration zh_TW
enumeration OTHER

annotation documentation List of all locales supported.

 707
 708
simpleType regexpTypes 709

namespace http://www.unece.org/cefact/cri/1.0

type restriction of xs:string

used by attribute ValidationExp/@type
facets enumeration POSIX

enumeration GNU
enumeration PERL
enumeration JAKARTA
enumeration SQL
enumeration COBOL
enumeration EDI
enumeration OTHER

annotation documentation Possible values for Regexp@type
710

Core Components August 2001

Metadata for Core Components Page 52 of 52

 710

A Addendum 711
 712
Sample Core Component XML instances. These have been converted directly from the latest 713
core component library specifications (Word documents) using an automated process that 714
extracts to a text file delimited format and hence to the CRI format. These are of course logical 715
CRI entries, not physical CRI entries. 716
 717
The full details are available as two separate XML instance files; only a fragment is given here 718
as illustrative documentation. 719
 720
Figure 7. Fragment of Core Components 721
 722
 <?xml version="1.0" encoding="UTF-8" ?> 723
 <CoreComponents> 724

 <CoreComponent defaultLocale="en_US" type="Noun" model="logical"> 725
<MetaInformation> 726

<annotation> 727
 <documentation type="description">UN default code 728

component</documentation> 729
 </annotation> 730
<Identifiers> 731

 <Identifier type="UID" value="UN000105" /> 732
 </Identifiers> 733
 <Behaviour isRestrictable="true" isExtensable="true" /> 734
<ExplanationOfUse> 735

 <Usage type="assemblydoc" instance="element" /> 736
 </ExplanationOfUse> 737

 </MetaInformation> 738
<DefaultAssembly> 739

<Assembly locale="en_US"> 740
<BaseDetails> 741

 <ElementName>Amount</ElementName> 742
 <Label>Amount</Label> 743
 <Description extendedDescription="" 744

extendedMIMEtype="HTML">A number of monetary 745
units specified in a currency where the unit of 746
currency is explicit or implied.</Description> 747

 <ExtensionDefinitions /> 748
<PhysicalDetail> 749

 <Constraints baseDataType="string" /> 750
 </PhysicalDetail> 751

 </BaseDetails> 752
<ExtendedDetails> 753

 <Processes /> 754
<Associations> 755

Core Components August 2001

Metadata for Core Components Page 53 of 53

 <Association reference="UN000105" 756
taxonomy="UID" relationship="equivalent" 757
registry="" /> 758

<Components> 759
 <Component name="Amount. Content 760

(000106) - Amount Currency. 761
Identification. Code (000107)" use="any" 762
relation="any" direction="either" 763
UIDreference="UN000105" taxonomy="other" 764
registry="" /> 765

 </Components> 766
 </Associations> 767
 <Schemas /> 768
 <Context locale="" /> 769
<Model> 770

 <ObjectClass>Amount</ObjectClass> 771
 <PropertyTerm>Type</PropertyTerm> 772

 </Model> 773
 </ExtendedDetails> 774

 </Assembly> 775
 </DefaultAssembly> 776

 </CoreComponent> 777
<CoreComponent> 778

<MetaInformation> 779
<annotation> 780

 <documentation type="description">UN default code 781
component</documentation> 782

 </annotation> 783
<Identifiers> 784

 <Identifier type="UID" value="UN000089" /> 785
 </Identifiers> 786
 <Behaviour isRestrictable="true" isExtensable="true" /> 787
<ExplanationOfUse> 788

 <Usage type="assemblydoc" instance="element" /> 789
 </ExplanationOfUse> 790

 </MetaInformation> 791
<DefaultAssembly> 792

<Assembly locale="en_US"> 793
<BaseDetails> 794

 <ElementName>Code</ElementName> 795
 <Label>Code</Label> 796
 <Description extendedDescription="" 797

extendedMIMEtype="HTML">A character string 798
(letters, figures or symbols) that for brevity and/or 799
language independence may be used to represent 800
or replace a definitive value or text of an attribute 801
together with relevant supplementary 802
information.</Description> 803

 <ExtensionDefinitions /> 804
<PhysicalDetail> 805

Core Components August 2001

Metadata for Core Components Page 54 of 54

 <Constraints baseDataType="string" /> 806
 </PhysicalDetail> 807

 </BaseDetails> 808
<ExtendedDetails> 809

 <Processes /> 810
<Associations> 811

 <Association reference="UN000089" 812
taxonomy="UID" relationship="equivalent" 813
registry="" /> 814

<Components> 815
 <Component name="Code. Content (000091) - 816

Code List. Identifier (000092) - Code List. 817
Agency. Identifier (000093) - Code List. 818
Version. Identifier (000099) - Code. Name 819
(000100) - Language. Code (000075)" 820
use="any" relation="any" direction="either" 821
UIDreference="UN000089" taxonomy="other" 822
registry="" /> 823

 </Components> 824
 </Associations> 825
 <Schemas /> 826
 <Context locale="" /> 827
<Model> 828

 <ObjectClass>Code</ObjectClass> 829
 <PropertyTerm>Type</PropertyTerm> 830

 </Model> 831
 </ExtendedDetails> 832

 </Assembly> 833
 </DefaultAssembly> 834

 </CoreComponent> 835
 836

 </CoreComponents> 837

