URL Interface to OASIS ebXML Registry

Best Practices

May 3, 2002

This version:

http://groups.yahoo.com/ebxmlrr-dev/files/ebxmlrr-uioer-0_4.doc

Latest version:

http://groups.yahoo.com/ebxmlrr-dev/files/ebxmlrr-uioer-0_4.doc

Contributors:

Matthew MacKenzie (XML Global)

Farrukh Najmi (SUN Microsystems)

Table Of Contents

1URL Interface to OASIS ebXML Registry

Best Practices
1
Table Of Contents
2
Introduction
3
URL Access Point for the URL-based interface
3
URL Syntax for Retrieving Registry Objects and Repository Items
3
getRegistryObject Action
3
getRepositoryItem Action
4
Extending the Functionality of Actions
4
Error Reporting
4
Security and Access Control Considerations
5

Introduction

While the ebXML Registry specification does not make specific mention of it, the fact that vendors who implement the specification often supply a web based interface to their ebXML Registry based products is generally accepted. This assumption that web interfaces to ebXML Registries exist or will exist eventually leads to issues pertaining to how these registries could be integrated simply and predictably with other web technologies.

The purpose of this paper is to describe a simple way of referring to and searching for objects that are managed by an ebXML Registry version 2 instance. The syntax suggested in this document will not define its own URI scheme, as LDAP did, it will be totally dependent upon HTTP to provide the network protocol.

[CBF: this is as it should be. IMO, you don’t want a standard scheme.

You can certainly recommend one, but please don’t try to force a single canonical path and query syntax. It is unnecessary.]

URL Access Point for the URL-based interface

The URL assigned as the Access Point for URL-based access to registry objects may vary from host to host and vendor to vendor. Implementations should advertise, or mention in their documentation what this URL should be. For example:

Sample Registry web interface root URL: http://registry.example.com/ebreg
Sample Resultant Access Point URL: http://registry.example.com/ebreg/urlInterface
[CBF: this is goodness. The “interface” could easily be an HTML Form that the user can GET from the registry’s base URI.]
URL Syntax for Retrieving Registry Objects and Repository Items

This section defines the actions that can be performed using the URL-based interface. This document only defines one such action, the “GetObject” action. An implementer of this best practice may implement other actions.
[CBF: why define this in terms of an action? HTTP and the URI provides all the semantics you should need IMO. Let HTTP do the heavy lifting.]
getRegistryObject Action

The getRegistryObject action is used to retrieve registry objects directly. The syntax is as follows:

http://example.registry.com/ebreg/urlInterface/getRegistryObject?parameter=value
Parameters that must be supported:

· id
 - The UUID of the required Registry Object.

Example:

http://registry.example.com/ebreg/urlInterface/getRegistryObject?id=6E383C7E-538D-11D6-8DC0-00039366D620
getRepositoryItem Action

The getRepositoryItem action is used to retrieve repository items directly from their underlying storage. The syntax is as follows:

http://example.registry.com/ebreg/urlInterface/getRepositoryItem?parameter=value
Parameters that must be supported:

· id
 - The UUID of the required Repository Item.

Extending the Functionality of Actions

As long as the minimal parameters described for each action are implemented, vendors may extend the functionality of any action by adding URL query parameters.

Error Reporting

An implementation of this best practice should report errors using the http status code and status message. The status message can vary by locale and vendor, but should be reasonably informative where possible. Possible error codes:

· 404 – Used if the object or item doesn’t exist.

· 400 – Used in situations where the request was malformed.
· 401 – Used if the client did not present valid access credentials.

· 403 – Used if the request is forbidden, and supplying access credentials will not help the request to be allowed.

· 500 – Internal error.

Additionally, an implementation of this best practice may implement other http codes, as described in RFC 2616 (HTTP 1.1). The codes above are discussed in this document only to indicate that they be used to signal application state; it is assumed that an implementation of this best practice supports http 1.1.

Security and Access Control Considerations

Security considerations vary from implementation to implementation, and are generally out of the scope of this document, however, it is assumed that either Basic or MD5 authentication, as defined in RFC 2617, may be used in conjunction with an implementation of this best practice. Further, it is expected that steps may be made to protect the HTTP conversation between a client and an implementation of this best practice using SSL (Secure Socket Layer).

[CBF: There’s more that needs to be covered IMO. First off, I think that just like some (the good ones) HTML docs have metadata that identifies their URI, you will want to have the same for objects retrieved from the registry. This allows the flexibility of each registry to provide its own implementation yet preserving the ability for the objects registered with it to be retrieved via the Web. I think that there needs to be some means by which the information retrieved from a registry query be self identifying (it contains the URI that can be used to access it directly with HTTP GET) so that once retrieved, this information can be passed around or used in other contexts (such as providing the URI of a BPSS instance in a CPA).

Additionally, I think that you want to encourage the use of content negotiation so that the user agent can indicate what representation of the retrieved resource it prefers or can accept (use of HTTP Accept header field). In other words, a human in front of a browser may want a transformed representation in (X)HTML where as an ebxml component might want the raw XML, etc.]
� As defined in ebXML Registry Information Model, Version 2.0, Section 7.4.1

� As defined in ebXML Registry Information Model, Version 2.0, Section 7.4.1

