OASIS ebXML Registry

Proposal: Event Notification

Category: New Feature

Date: July 31, 2002
Version 0.5
Authors: Nikola Stojanovic, Farrukh Najmi
Table of Contents

21
Abstract

22
Motivation

23
Assumptions

34
External Dependencies

35
Event Notification

35.1
Scope

36
Use Cases

36.1
New service is offered in a neighborhood

36.2
Monitoring interest in User’s business

46.3
Price has gone down

46.4
Object Relocation

46.5
Local Caching of Data from another Registry

47
Registry Information Model

47.1
Subscription

57.1.1
Attribute startDate

57.1.2
Attribute endDate

57.1.3
Attribute notificationInterval

57.2
Selector

67.3
Action

77.3.1
Attribute notificationOption

77.4
Notification

87.5
Auditable Event

98
Registry Service

108.1
Subscribing

108.2
Unsubscribing

108.3
Notifying

108.4
Retrieving

109
Policies

1110
Notes

Status of this Document

This note describes the initial proposal for the Event Notification work item for OASIS ebXML Registry V3.0. It is expected that the Event Notification sub-team of the OASIS ebXML Registry TC will improve upon this initial proposal and then submit it for consideration by ebXML Registry TC at large.

1 Abstract

This document proposes a new feature of the OASIS ebXML Registry targeted for version 3.0. The Event Notification feature enables notification of relevant registry events between a registry and a user or between two registries.

2 Motivation

The following motivations drive this proposal:

1. Enables registry users to express interest in some registry events and to be automatically notified about them without being forced to inquire the registry.

2. Enables the object relocation feature of the cooperating registries.

3. Enables cooperating registries to communicate relevant information in order to keep their data in synch.

3 Assumptions

The following assumptions are made in this proposal:

1. This feature will be mandatory for V3.0 ebXML Registries.

2. Event Notification feature should define a high level model and should abstract away lower protocols.

3. High level model has to tie into ebXML structures and services.

4 External Dependencies

This feature is specific to ebXML Registries and doesn’t imply reliance on any other Event Notification model / specification.

5 Event Notification

[Note]
Event Notification feature allows OASIS ebXML Registries to notify its users and / or other registries about certain registry events. In this way users can be informed about registry events without being forced to inquire the registry and registries can propagate internal changes to other registries whose content might be affected by those changes.

ebXML registries, as explained here, support content-based Notification where interested parties express their interest in a form of a query. This is different then subject (topic) – based Notification where information space is categorized by subjects and interested parties express their interests in those predefined subjects.
5.1 Scope

· It is not possible to express interest in events that go across registries.
· There is no need for “combined events” where one “combined event” can be expressed in terms of combination of “lower level” events.
· There is no need for custom events that are not related to some action on registry objects.
5.2 Use Cases

The following is a list of some use cases that illustrate different ways in which ebXML registries notify users / registries.

5.2.1 New service is offered in a neighborhood

User wishes to know when a new Plumbing service is offered in her town. When that happens she might try to check more about that service and compare it with her current Plumbing service provider’s offering.

5.2.2 Monitoring interest in User’s business

User wishes to know when her CPP has been downloaded in order to evaluate on an ongoing basis the success of her recent advertising campaign. She might also want to analyze who were the interested parties.

5.3 Price has gone down
5.3.1 User wishes to know when the price of a product that she is interested to buy drops below a certain amount. If she buys it she would also like to be notified when the product has been shipped to her.
5.3.2 Object Relocation

A registry may need to know when to update registry objects that it hosts and that reference some other objects that are hosted by other registries. This can happen when referenced registry objects relocate from one host registry to another one. Initially, destination registry might want to know only about relocation event that would affect some of its objects, but not about every single object that was relocated at that time.

5.3.3 Local Caching of Data from another Registry

In order to improve performance and availability of accessing some registry objects, a local registry makes copies of certain objects that are hosted by another registry; when cloned objects are updated at the host registry, local registry needs to update clones as well.

5.4 Registry Information Model
5.4.1 This proposal introduces these new XML elements: Subscription, Selector, Action and Notification. They constitute the foundation of the Event Notification information model. They are defined in the eventNotification.xsd XML Schema file.
5.4.2 It also proposes modification to AuditableEvent element in order to support some of the above mentioned Use Cases. AuditableEvent element is defined in the rim.xsd XML Schema file.
5.4.3 Subscription
Subscriptions are registry objects and as such have identity, could be queried upon, classified, …
[Note]
<element name = "Subscription">

 <complexType>

 <complexContent>

 <extension base = "rim:RegistryObjectType">

 <sequence>

 <element name = "Selector" type="tns:SelectorType"/>

 <element name = "Action" type="tns:ActionType" maxOccurs="unbounded"/>

 </sequence>

 <attribute name = "startDate" use = "optional" type = "dateTime"/>

 <attribute name = "endDate" use = "optional" type = "dateTime"/>

 <attribute name = "notificationInterval" use = "optional" type="duration" />

 </extension>

 </complexContent>

 </complexType>

</element>

5.4.3.1
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

5.4.3.2 Attribute startDate
This attribute denotes the beginning of the subscription. If this attribute is missing subscription starts immediately.
5.4.3.3 Attribute endDate
This attribute denotes the beginning of the subscription. If this attribute is missing subscription never ends.
5.4.4 Attribute notificationInterval
This attribute denotes the beginning of the subscription. If this attribute is missing sending of notifications should happen as soon as relevant events occur.
5.4.5 Selector

This element specifies events of interest that a subscriber is interested in. Assumption is that existing query mechanisms can sufficiently express this domain (event types and event sources) by querying auditable events and corresponding registry objects.
<complexType name = "SelectorType" abstract="true">

 <annotation>

 <documentation xml:lang = "en">

 Abstract Base type for all types of Selectors.

 </documentation>

 </annotation>

</complexType>

<complexType name = "QuerySelectorType">

 <complexContent>

 <extension base = "tns:SelectorType">

 <choice>

 <element ref="query:FilterQuery"/>

 <element ref="query:SQLQuery"/>

 </choice>

 </extension>

 </complexContent>

</complexType>
[Note] Should we subclass QuerySelectorType instead of using choice. Should we also introduce a new abstract class Query as base for FilterQuery and SQLQuery?
5.4.6 Action
Action element denotes how subscriber receives notifications. Subscriber can request more then 1 way of delivery for the same subscription.

At this stage only notification delivery to subscribers is defined. It can be by sending notifications to subscriber’s asynchronous entry point or to subscriber’s email address.
[Note] It is envisioned that subscriber can declare that she would like to retrieve relevant notifications herself by calling a registry services method (TBD – something like sending GetNotificationsRequest to the QueryManager). Do we need a new action type in that case or we just make Action element inside Subscription element optional?
<complexType name = "ActionType" abstract="true">

 <annotation>

 <documentation>

 Abstract Base type for all types of Actions.

 </documentation>

 </annotation>

</complexType>

<complexType name = "NotifyActionType" abstract="true">

 <annotation>

 <documentation xml:lang = "en">

 Abstract Base type for all types of Notify Actions

 </documentation>

 </annotation>

 <complexContent>

 <extension base = "tns:ActionType">

 <attribute name = "notificationOption" default="EventsAndObjects">

 <simpleType>

 <restriction base = "NMTOKEN">

 <enumeration value = "EventRefs"/>

 <enumeration value = "Events"/>

 <enumeration value = "EventsAndObjects"/>

 </restriction>

 </simpleType>

 </attribute>

 </extension>

 </complexContent>

</complexType>

<complexType name = "ListenerNotifyActionType">

 <annotation>

 <documentation xml:lang = "en">

 An ActionType that notifies the specified ServiceBinding

 </documentation>

 </annotation>

 <complexContent>

 <extension base = "tns:NotifyActionType">

 <sequence>

 <element ref="rim:ObjectRef"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name = "EmailNotifyActionType">

 <annotation>

 <documentation xml:lang = "en">

 An ActionType that notifies by sending email to specified email address

 </documentation>

 </annotation>

 <complexContent>

 <extension base = "tns:NotifyActionType">

 <sequence>

 <element ref="rim:EmailAddress"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

5.4.7 Attribute notificationOption

This attribute denotes which notification content is to be associated with a particular action. It matches the hierarchy of notification types, explained in sec 7.4. At the same time it overrides the returnType attribute of the ResponseOption subelement of the AdhocQueryRequest element.
[Note]

Notification
This attribute denotes what is the content of notifications. Notifications could be just references to auditable events, auditable events or both auditable events and affected registry objects. It may also carry the id of the corresponding subscription request in which way subscriber can relate delivered notifications to original subscription request. In case when notifications are light weight (consist of only references to auditable events or of actual auditable events) subscriber would need to retrieve corresponding registry objects afterwards.
<complexType name = "NotificationType" abstract="true">

 <annotation>

 <documentation>

 Abstract Base type for all types of Notifications.

 </documentation>

 </annotation>

 <attribute name = "id" use = "optional" type="string" />

</complexType>
<element name="Notification" type="tns:NotificationType" />

<complexType name = "EventRefsNotificationType">

 <complexContent>

 <extension base = "tns:NotificationType">

 <sequence minOccurs="0" maxOccurs="unbounded">

 <element ref="rim:ObjectRefList"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name = "EventsNotificationType">

 <complexContent>

 <extension base = "tns:NotificationType">

 <sequence minOccurs="0" maxOccurs="unbounded">

 <element ref="rim:AuditableEvent" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name = "EventsAndObjectsNotificationType">

 <complexContent>

 <extension base = "tns:NotificationType">

 <sequence minOccurs="0" maxOccurs="unbounded">

 <element ref="rim:AuditableEvent"/>

 <element ref="rim:RegistryObjectList"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>
5.5 Auditable Event
Currently auditable events persist all predefined event types for each registry object. This proposal assumes that auditable events will also persist events that are caused by subscriptions. In order to support above use cases, this proposal recommends a few changes to AuditableEvent:

1. Instead of requiring that one auditable event is associated with only one registry object it allows that one auditable event can be associated with many registry objects. This might be the case when one relocate objects request (see Cooperating registries proposal) might relocate many registry objects.
[Note] The registryObject attribute is no longer used but kept for backward compatibility. Should it be removed?
2. Each auditable event is associated with originating request (see Cooperating registries proposal and RegistryRequestType in rs.xsd). In that way one request can result in many auditable events.
3. Change event types from hard coded enumerations to LongName. This is a common pattern in RIM when in addition to predefined values there might be a need for custom declared ones (in this case to support custom events).
4. There is also a need for additional predefined event types: “Downloaded” and “Relocated”. First one is to support Use Case “Monitoring interest in User’s business” and second one is to support Use Case “Object Relocation”.
<complexType name = "AuditableEventType">

 <complexContent>

 <extension base = "tns:RegistryObjectType">

 <sequence>

 <element ref="tns:ObjectRefList" minOccurs="1" maxOccurs="1"/>

 </sequence>

 <attribute name = "eventType" use = "required" type = "tns:LongName"/>

 <attribute name = "registryObject" use = "optional" type = "IDREF"/>

 <attribute name = "timestamp" use = "required" type = "dateTime"/>

 <attribute name = "user" use = "required" type = "IDREF"/>

 <attribute name = "requestId" use = "required" type = "string"/>

 </extension>

 </complexContent>

</complexType>

5.5.1 <element name = "AuditableEvent" type = "tns:AuditableEventType"/>

5.5.1.1
	
	
	
	
	
	

	
	
	
	
	
	

5.5.1.2

6 Registry Service

This chapter describes the various operations that manage the life cycle of a federation and its membership. A key design objective is to allow federation life cycle operations to be done using existing LifeCycleManager interface of the registry in a stylized manner.
[Note] Include section that explains operational steps for Event Notification.
[Note] Error codes for all Event Notification registry services need to be defined.
[Note]
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·

6.1

6.1.1 Subscribing
· A Subscription is created by submitting a Subscription instance to a registry using SubmitObjectsRequest.
· A registry may reject subscription request.

6.2 Unsubscribing
· A subscriber can stop subscription by sending a RemoveObjectsRequest to the registry where original subscription was sent.
· A registry itself may remove a subscription instance after it has expired.
[Note] Is deprecated step required for subscriptions?
6.3 Notifying
· A registry must send notifications for subscriptions that are not expired.
[Note] ListenerNotifyAction (see section 7.3) interface needs to be defined.
6.4 Retrieving

· A subscriber may choose to retrieve notification instead of waiting for a registry to send them.
[Note] GetNotificationsRequest and GetNotificationsResponse (see section 7.3) need to be defined.

[Note]
[Note]
[Note]
6.4.1

·
·
·
·
6.4.2

6.4.3

·
·
·
7 Policies
8 There might be several registry specific characteristics that might differ between different registries. These characteristics could be seen as some kind of configuration / policy parameters. It seems that natural home for those parameters would be Registry class, and in case of cooperation registries Federation class (for Registry and Federation definitions see Cooperating Registries proposal). Registry parameters that are related to Event Notification might define:
· What is audited and whether dynamic Auditing (don’t audit everything all the time) is supported or not.
· Whether only Registered actors (use the terminology from security sections) can subscribe. This might not be a policy, but a spec requirement.
· What action types are supported.
· Who can be notified of what (security concerns that some events has to be kept private).
· When to purge Subscriptions and related Notifications / Events.
· How long is the retention period in which Events and / or Notifications for undelivered pending notifications won’t be purged?

As this functionality is beyond the scope of this proposal, it is assumed that there will be an effort to design policy management in which case Event Notification policy parameters would follow that design.
9 Notes

These notes are here to not loose the thought and will be merged into the proposal later.

· What to do with user defined subject (topic) – based notifications?

· Do we need a Subscriber class? When registry deletes subscription who is the User?
· Do we need discovery of supported Events / Notifications (what event type, source, …)?
· Filter Query changes to support new objects like Subscriptions.

�PAGE \# "'Page: '#'�'" ��

