Project Team Participants

Editor:
Gunther Stuhec

Sue Probert

Lisa Seaburg

Contributors:
Mike Adcock (in memory) and UBL LCSC

UBL Comment/Proposal 1

Dividing the Qualifiers of Object Class and Property Terms into context driver and adjective parts (ref. Line 1348/ 1434)

Suggestion from Mike Adcock (in memory)

Mike suggested that the Qualifiers of Object Class and Property Terms should be divided into two, namely "Context Driver" and "Adjective" Qualifiers. The "Context Driver" Qualifiers are values from one of the CCTS context driver categories. The "Adjective" Qualifier is any other value that qualifies the object class or property term noun. The "Noun" is the main part of each object class or property term.

On experimentation, UBL has found that this method of including an additional "Adjective" column results in extra semantic clarity in defining property terms and supports the reuse of components as well as the harmonization process.

It is proposed that Property Term "Adjectives" could be separated in the dictionary entry name by a dash and white space from the noun of the property term.

For example:

Either

Item. Maximum- Quantity. Quantity
- here the BIE, "Maximum Quantity" – "Maximum" is not a specific expression of Context Driver, so we define the Property Term as "Maximum Quantity" with "Maximum" as the adjective and "Quantity" as the noun.
or

Order Cancellation. Required- Response. Indicator

where the Order Cancellation document has a BBIE, "Response Required". The noun is "Response" and the adjective is "Required" – so the revised name is now "Required Response". This is more meaningful and is consistent with other Property Terms.
The hyphen ("-") is chosen as a suitable delimiter between a

adjective and a noun. The justifications are as follows:

· The hyphen is a generally accepted character for word conjunction and in common use. A large number of other punctuation characters are not in common use as a word conjunction delimiter that their use would be most unnatural. These punctuation characters include ampersand (&), plus ("+"), etc.

· It is also a print-direction-neutral character, as opposed to other characters such as forward-slash ("/"), back-slash ("\"), comma (","), semi-colon (";"), etc.

· The underscore ("_") is used for separation of qualifiers in dictionary entry names. Thus, its additional overloaded use as a Property Term delimiter is unsuitable.

· The colon (":") is a reserved character for delimiting XML prefix and local names, and may cause confusion and undesirable processing side effects if CCTS is implemented in XML.

· The period (".") has been reserved for delimiting the various components of a dictionary entry name. It is therefore not suitable for further overloaded use as a delimiter to Property Term adjective and noun; indeed, such a use will create an undesirable situation where the Property Term adjective and noun will look like constituent components of a dictionary entry name.

UBL Comment/Proposal 2

Definition of Data Types (ref. Lines 1587 – 1667)

It is not clear how a Data Type is to be defined. Every BCC or BBIE could be described with different characteristics and restrictions.
For example, "Buyer_ Product. Type. Code" has a fixed length of 3 characters and the "Seller_ Product. Code" has a variable length with a minimum of 2 characters and a maximum length of 5 characters. Is it now necessary to define a separate "Data Type" for each of these two BBIEs? What should the names of such Data Types be?

Two possibilities for defining the names are:
a) use the actual names of the BBIEs to produce, say, "Buyer Product Type_ Code. Type" or

b) add the restriction information to the Data Type name to produce, say, "3Characters_ Code. Type". This second possibility is inappropriate since it includes non-semantic information.

The problem is compounded with identifier schemes and code lists. For example, there may be various versions of "International Classification of Disease". Different versions have different code lists. Normally we define the different versions using specific supplementary components (such as Code List. Version. Identifier) but the code lists will be enumerations and the enumerations are restrictions of Data Types. That means we have to define for every code list or identifier scheme a new Data Type. If so, what will be the naming convention for these Data Types?. Should we put all supplementary information which is necessary for the distinction into the Data Type name? For example: "ICD_ V10_ Disease Classification_ Code. Type". This would not be a very efficient way to name a Data Type and it also makes the use of supplementary components needless.
We believe that the use of data types should be for semantic reasons, that is, the variations reflect different semantic uses of the data. This would not typically involve formatting differences – whether a product code is 5 or 3 charcters does not affect it being a product code. However a 3 digit harmonized product code is semantically different from a 7 digit harmonized produce code becuase it reflect a higher aggregation or coarser definitions of the product. That is, a code of 170 for 'wooden products' is semantically different from a code of '1702345' for 'wooden toy rocking horse'. In such a case we could use two different restrictions as data types.

UBL Comment/Proposal 3

Clarification of the use of Data Type qualifiers in a BCC and BBIE (ref. Lines 1629 – 1637)

It is nor very clear, how we can use the Qualifiers of Data Types in the specific BCCs or BBIEs. The best explanation can be seen from the following examples:
Name_ Text. Type

Picture_ Binary Object. Type

Country_ Code. Type

Language_ Code. Type

According to the rules of the CCTS V1.9, the qualifiers of the two Data Types "Name_ Text. Type" and "Picture_ Binary Object. Type" will be used for the representation term of a BCC or BBIE like this:

Person. Surname. Name

Person. Passport. Picture

But how about the qualifiers "Country_ Code. Type" and "Language_ Code. Type"? Can we use these qualifiers for the property terms of each BCC or BBIE or will they just be qualified representation terms?

If we have to define a new Data Type for every specific physical characteristic of a BCC or BBIE (like length, regular patterns etc.), the names of these Data Types will become longer and will include many more qualifiers. How are we to use these qualifiers in the names of BCCs and BBIEs? Do we represent each qualifier term as part of the object class term, property term, their qualifiers and the representation term of each BCC/BBIE? Can the name of a Data Type be different as a BCC/BBIE dictionary entry name? If the names are different, a type awareness is always necessary since we have to know on which Data Type every BCC/BBIE will be based.

UBL Comment/Proposal 4

Clear distinction between Identifier and Codes (ref. Line 2245 through to Table 8-1)

Suggestion from Mike Adcock (in memory)

The distinction in the definition of "Code. Type" and "Identifier. Type" is not clear enough.
The current definition of "Identifier. Type" is: "A character string to identify and distinguish uniquely, one instance of an object in an identification scheme from all other objects in the same scheme together with relevant supplementary information."

The current definition of "Code. Type" is: "A character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an attribute together with relevant supplementary information. Should not be used if the character string identifies an instance of an object class or an object in the real world, in which case the Identifier. Type should be used."

This definitions have the following problems:

· "code" is, according to some dictionaries, normally a synonym of "identifier".

· Everything could be an object. Must then everything be identified with an identifier?

Mike Adcock made a very good suggestion to UBL for the clear and unambiguous definition of code and identifier. The definitions are:

Code. Type – It is character string (letters, figures or symbols). It can be used for all elements that should enable coded value representation in the communication between partners or systems, in place of texts, methods, or characteristics. The list of codes should be relatively stable and should not be subject to frequent alterations (for example, Country Code, Language Code, ...). Codelists should have versions.

Two examples of codes would be:

· Ones from a publicly available code list maintained by an agency generally significant on a world scale, such as ISO, UN, WTO, WCO etc.

· Ones from a community-based and -maintained code list, the community being as small or as large as is necessary for the purpose. Such a list is kept within the community, and the codes could be mis-interpreted outside the community if its source is not known.
Examples are:

· „Country. Identification. Code“ instead of the „Country. Identification. Identifier“
· „Currency. Identification. Code“ instead of the „Currency. Identificaiton. Identifier“
· „Language. Identification. Code“ instead of the „Language. Identification. Identifier“
· „Reason. Type. Code“ instead of a string of words

· „Location. Identification. Code“ instead of the name of a place and its country
· „Commodity. Identification. Code“ instead of a description which most probably would have 'including' and 'excluding' phrases
Identifier. Type – A character string to identify and distinguish uniquely, one instance of an logical or real object in an identification scheme from all other objects in the same scheme together with relevant supplementary information. Instead of being ‘restricted’, the number of forms should constantly increase (for example, as for Product Identification, Order Identification,...). New Identifiers are always being added and the list of identifiers cannot be versioned.

In some cases it may be that it is not possible to distinguish between "Identifier" and "Code" for coded values. This is particularly applicable if an object is identified uniquely using a coded value and this coded value also replaces a longer text. For example, this includes the coded values for "Country", "Currency", "Organization", "Region" and so on. If the list of coded values proves to be consistent, then the"Code. Type" can be used for the individual coded values.

Examples:

· “Person. Identification. Identifier” is an identification given or taken by a person, such as ther name, social security number, etc

· “Item. Identification. Identifier” is an identification given to an article, an item, a product distinguishing these down to the level of detail that it is a particular make/model of car, of a window, can of beans etc. And here is a subtlety. Often this identification was called a 'product code' or "product number'. We need to keep these as synonyms but keep to the preferred term 'item identifier' to avoid misinterpretation. This is an example of an identifier that identifies a set of things.

· “Serial. Number. Identifier” The unique identification given to a single instance of an article, item, product etc. This allows the unique identification of one particular car or part of a car, such as a chassis number, engine number etc. As can be seen from the example, this is often known as 'a number' although it may actually comprise letters and symbols as well as numeric characters. This is an example of an identifier that identifies a unique instance of something within a set of things. For example one specific window of a particular design and construction.

· “Bank. Account. Identifier” The unique identification of a single account at a bank. Again, this is commonly known as an Account No. although it may actually comprise letters and symbols as well as numeric characters.
UBL Comment/Proposal 5

New Supplementary Components (ref. Line 2245 and Table 8-1)

a) In the case of Code. Types

The supplementary code "Code List. Agency. Identifier" represents the unique identifier from the responsible agency of the specific code list. This identifier comes from the code list of the UN/CEFACT data element 3055. This code list does not have all agencies from every code list included within it.

The problem identified by UBL is, how can we fully distinguish any code list and make this interoperable without any mutual trading partner agreements being in place beforehand? The current supplementary components "Code List. Agency. Name" and "Code List. Uniform Resource. Identifier" are not sufficient because a) the names in "Code List. Agency. Name" are free text and require a manual agreement between the exchanging parties and b) the "Code List. Uniform Resource. Identifiers" are not very stable nor can they always be defined as an invokable URI. Therefore it makes sense to represent the responsible agency by other unique and international code lists or identifier schemes, like the DUNS number.

To doing this, two further supplementary components are necessary:
· Code List. Agency. Scheme. Identifier– Identifies the ID schema that represents the context for identifying the agency. Note: This attribute is necessary, if the value in Code List. Agency. Identifier is not based on UN/CEFACT data element 3055.

· Code List. Agency Scheme Agency. Identifier– Identifies the agency that listAgencySchemeID manages. This attribute can only contain values from DE 3055 (excluding roles).
Note: This attribute is necessary, if the value in Code List. Agency. Identifier is not based on UN/CEFACT data element 3055.

The following examples illustrate the precise distinction of code lists by utilising these proposed extra supplementary components:

a.) Standardized codes whose code lists are managed by an agency from the code list DE 3055.

	Code
	Standard

	Code List. Identifier
	Code list for standard code

	Code List. Version. Identifier
	Code list version

	Code List. Agency. Identifier
	Agency from DE 3055 (excluding roles)

	Code List. Agency Scheme. Identifier
	-

	Code List. Agency Scheme Agency. Identifier
	-

b.) Proprietary codes whose code lists are managed by an agency that is identified by using a standard.

	Code
	Proprietary

	Code List. Identifier
	Code list for the propriety code

	Code List. Version. Identifier
	Version of the code list

	Code List. Agency. Identifier
	Standardized ID for the agency (normally the company that manages the code list)

	Code List. Agency Scheme. Identifier
	ID schema for the schemeAgencyId

	Code List. Agency Scheme Agency. Identifier
	Agency DE 3055 that manages the standardized ID ‘listAgencyId’

c.) Proprietary codes whose code lists are managed by an agency that is identified without the use of a standard.

	Code
	Proprietary

	Code List. Identifier
	Code list for the proprietary code

	Code List. Version. Identifier
	Code list version

	Code List. Agency. Identifier
	Standardized ID for the agency (normally the company that manages the code list)

	Code List. Agency Scheme. Identifier
	ID schema for the schemeAgencyId

	Code List. Agency Scheme Agency. Identifier
	‘ZZZ’ (mutually defined from DE 3055)

d.) Proprietary codes whose code lists are managed by an agency that is specified by using a role or that is not specified at all.

The role is specified as a prefix in the tag name. listID and listVersionID can optionally be used as attributes if there is more than one code list. If there is only one code list, no attributes are required.

	Code
	Proprietary

	Code List. Identifier
	ID schema for the proprietary identifier

	Code List. Version. Identifier
	ID schema version

	Code List. Agency. Identifier
	-

	Code List. Agency Scheme. Identifier
	-

	Code List. Agency Scheme Agency. Identifier
	-

b) In the case of Identifier. Types

The supplementary code "Identification Scheme. Agency. Identifier" represents the unique identifier from the responsible agency of the specific identification scheme of the identifiers. This identifier comes from the code list of the UN/CEFACT data element 3055. This code list does not have all agencies from every Identification Scheme in it.

The problem is now, how we can distinguish a identification scheme and makes this interoperable without any manual agreements beforehand. The current supplementary components "Identification Scheme. Agency. Name" and "Identification Scheme. Uniform Resource. Identifier" are insufficient because the names in "Identification Scheme. Agency. Name" are free text and need a manual agreement between the exchanging parties and "Identification Scheme. Uniform Resource. Identifier" are not very stable nor can they always be defined as an invokable URI. Therefore it makes sense to represent the responsible agency by other unique and international code lists or identifier schemes, like the DUNS number.

To doing this, two further supplementary components are necessary:

· Identification Scheme. Agency.Scheme. Identifier – Identifies the ID schema that represents the context for identifying the agency. Note: This attribute is necessary, if the value in Identification Scheme. Agency. Identifier is not based on UN/CEFACT data element 3055.

· Identification Scheme. Agency Scheme Agency. Identifier – Identifies the agency that listAgencySchemeID manages. This attribute can only contain values from DE 3055 (excluding roles).
Note: This attribute is necessary, if the value in Identification Scheme. Agency. Identifier is not based on UN/CEFACT data element 3055.

The following examples illustrates the precise distinction of Identification Schemes by using these proposed extra supplementary components:

a.) Standardized Identifiers whose ID schema is managed by an agency from code list DE 3055.

	Identifier
	Standard

	Identification Scheme. Identifier
	ID schema for the standard identifier

	Identification Scheme. Version. Identifier
	ID schema version

	Identification Scheme. Agency. Identifier
	Agency from DE 3055 (excluding roles)

	Identification Scheme. Agency Scheme. Identifier
	-

	Identification Scheme. Agency Scheme Agency. Identifier
	-

b.) Proprietary identifier whose ID schema is managed by an agency that is identified using a standard.

	Identifier
	Proprietary

	Identification Scheme. Identifier
	ID schema for the proprietary identifier

	Identification Scheme. Version. Identifier
	ID schema version

	Identification Scheme. Agency. Identifier
	Standardized ID for the agency (generally the company that manages the proprietary identifier)

	Identification Scheme. Agency Scheme. Identifier
	ID schema for the schemeAgencyId

	Identification Scheme. Agency Scheme Agency. Identifier
	Agency from DE 3055 that manages the standardized ID ‘schemeAgencyId’

c.) Proprietary identifier whose ID schema is managed by an agency that is identified without using a standard.

	Identifier
	Proprietary

	Identification Scheme. Identifier
	ID schema for the proprietary identifier

	Identification Scheme. Version. Identifier
	ID schema version

	Identification Scheme. Agency. Identifier
	Standardized ID for the agency (generally the company that manages the proprietary identifier)

	Identification Scheme. Agency Scheme. Identifier
	ID schema for the schemeAgencyId

	Identification Scheme. Agency Scheme Agency. Identifier
	‘ZZZ’ (mutually defined from DE 3055)

d.) Proprietary identifier whose ID schema is managed by an agency that is specified by a role or is not specified at all.

The role is specified as a prefix in the tag name. Optionally, schemeID and schemeVersionID can be used as attributes if more than one ID schema exists. If there is only one ID schema, then no attributes are required.

	Identifier
	Proprietary

	Identification Scheme. Identifier
	ID schema for the proprietary identifier

	Identification Scheme. Version. Identifier
	ID schema version

	Identification Scheme. Agency. Identifier
	-

	Identification Scheme. Agency Scheme. Identifier
	-

	Identification Scheme. Agency Scheme Agency. Identifier
	-

UBL Comment/Proposal 6

New Core Component Types (ref. Line 2245 and Table 8-1)

UBL has identified the requirement for the following additional CCTs:

a) Ratio. Type

„Ratio. Type“ is a value expressing the ratio per specified unit and a rate basis unit.

„Ratio. Type“ can be used to represent the value of a physical or quantitative dimension relative to a quantitative or measure unit, for example kilometers per hour, kilogram per meter, pieces per time, count per minute. This is especially necessary, if a code for a specific ration is not existing in the UN/ECE Recommendation #20 code list.
The content component of „Ratio. Type“ includes the rate value and will be represented in decimal.

“Ratio. Type” comprises the following supplementary components:

· Ratio. Unit. Code – The units of a rate are represented in accordance with UN/ECE Recommendation #20 – except of a ratio codes.
· Ratio. Basis Unit. Code – The basis unit of a rate are represented in accordance with UN/ECE Recommendation #20 – except of a ratio codes.
· Ratio Unit Code. List Version. Identifier The version of unit code list and basis unit code list. Note: The default version is the 2002 version of the set of Common Codes from UN/ECE Recommendation 20.

Examples are:

Vehicle. Maximum- Speed. Ratio
(exp. Vehicle. Maximum- Speed. Ratio

Content= "20"

Ratio. Unit. Code= "KM"

Ratio. Basis Unit. Code= "MIN"

The Rate. Type can not be used for exchange or discount rates of monetary amounts because the unit codes represent only the physical (time, measure and quantity) codes. The rates for amounts must be created by the definition of ACCs or the use of the CCT "numeric".

c) URI. Type

"URI. Type" is a digital and unique address that is represented by the Unified Resource Identifier (URI) (compare IETF RFC 1738, IETF RFC 1808, IETF RFC 2396 and IETF RFC 2732).

"URI. Type" is a Core Component Type that could be used to represent global Data Types (GDTs) for e-mail addresses, Web pages, as well as documents or information found on Web pages.

The content component of URI. Type is based on the convention of the URI scheme. The syntax of this scheme is specified in the recommendation IETF RFC 2396. A URI comprises the schema (in other words, how a resource is to be accessed) followed by a colon and the schema-specific part. The schema-specific part is in each case only of importance to the service that is connected with the respective schema. A resource can have multiple URIs. On the one hand, reflection can mean that a resource can be physically located in multiple positions, and on the other can be accessed by using different protocols that are specified by the schema name. Example: A file can be referenced by http and ftp.

URI. Type comprises the following supplementary components:

· URI. Language. Code – If the attachment is a document or text then the language of the attachment can be represented correspondingly IETF RFC 1766 or IETF RFC 3066.

· URI. Protocol. Identifier – If the URI schemas above are not sufficient to determine the protocol of the address, then an additional URI schema in accordance with the specifications of IETF RFC 2717 can be requested. It is also possible to define the corresponding protocol type by using the additional specifications in the "protocolID" attribute. The code from the code list UN/EDIFACT DE 3155 "Communication Address Code Qualifier" is used for this type of protocol:

· AB – SITA (Communications number assigned by Societe Internationale de Telecommunications Aeronautiques (SITA)).

· AD – AT&T mailbox - AT&T mailbox identifier.

· AF – U.S. Defense Switched Network - The switched telecommunications network of the United States Department of Defense.

· AN – O.F.T.P. (ODETTE File Transfer Protocol) - ODETTE File Transfer Protocol.

· AO – Uniform Resource Location (URL) - Identification of the Uniform Resource Location (URL) Synonym: World wide web address.

· EM – Electronic Mail . Exchange of Mail by electronic means (SMTP).

· EI – EDI transmission - Number identifying the service and service user.

· FT – FTAM - File transfer access method according to ISO.

· GM – GEIS (General Electric Information Service) mailbox - The communication number identifies a GEIS mailbox.

· IM – Internal mail - Internal mail address/number.

· SW – S.W.I.F.T. - Communications address assigned by Society for Worldwide Interbank Financial Telecommunications s.c.

· XF – X.400 address - The X.400 address.

· The code is missing for the following protocols (the respective code suggestions are to be submitted to the UN/CEFACT Forum for standardization purposes):

· ms – Microsoft Mail (Example: MM)

· ccmail – CC-Mail (Example: CC)

a) Markup Language. Type

 "Markup Language. Type" is a core component type which could be used for the representation of values in other Markup Languages, which could be based on examples of different XML standards or EDI standards.

It is very useful to have a core component type for carrying specific kinds of information in other Markup Languages because some Markup Languages are the standard language for the expression of specific information. For example "MathML" http://www.w3.org/1999/07/REC-MathML-19990707/ is a very common language for the representation of mathematical formulas and "SVG" will be used for the representation of vector graphics. etc.

The content component of "Markup Language. Type" includes an instance based on a specific Markup Language.
Following supplementary components are necessary:

· Markup Language. Type. Code – Describes the format of the binary content if the format from "mimeCode" is ambiguous.

· Markup Language. Type. Name - The textual equivalent of the type code.

· Markup Language. Version. Identifier – Identifies the version of a Markup Language.

· Markup Language. Agency. Name – The name of the agency that manages this Markup Language.

· Markup Language. Agency. Identifier – Identifies the agency that manages this Markup Language. The default agencies used are those from DE 3055 but roles defined in DE 3055 cannot be used.

· Markup Language. Agency Scheme. Identifier – Identifies the ID schema that represents the context for identifying the agency. Note: This attribute is necessary, if the value in Markup Language. Agency. Identifier is not based on UN/CEFACT data element 3055.

· Markup Language. Agency Scheme Agency. Identifier – Identifies the agency that listAgencySchemeID manages. This attribute can only contain values from DE 3055 (excluding roles). Note: This attribute is necessary, if the value in Markup Language. Agency. Identifier is not based on UN/CEFACT data element 3055.

· Markup Language. MIME. Code – Identifies the type of medium (image, audio, video, application) of the Markup Language in accordance with the MIME type definition in IETF RFC 2046 or the MIME type recommendations based on it.

· Markup Language. Character Set. Code – Identifies the particular character record of text data of the Markup Language.

· Markup Language. Encoding. Code – Specifies the decoding algorithm of the Markup Language.

· Markup Language. Language. Identifier – The identifier of the language used in the corresponding instance of the Markup Language.

· Markup Language. Uniform Resource. Identifier – This identifier defines the Uniform Resource Identifier that identifies where the instance is located.

· Markup Language. Scheme Uniform Resource. Identifier – The identifier defines the Scheme Uniform Resource Identifier that identifies where the scheme of the specific Markup Language is located.

UBL Comment/Proposal 7

New Representation Terms (ref. Lines 2257-2258 and Table 8-3)

UBL identified the requirement for the following additional secondary RTs.

a) Date Time. Type

· Day - a gregorian day that recurs, specifically a day of the month such as the 5th of the month. Arbitrary recurring days are not supported by this datatype. The ·value space· of gDay is the space of a set of calendar dates as defined in § 3 of [ISO 8601]. Specifically, it is a set of one-day long, monthly periodic instances.

· Duration – represents a duration of time. The ·value space· of duration is a six-dimensional space where the coordinates designate the Gregorian year, month, day, hour, minute, and second components defined in § 5.5.3.2 of [ISO 8601], respectively. These components are ordered in their significance by their order of appearance i.e. as year, month, day, hour, minute, and second.

· Month – represents a gregorian month that recurs every year.

· Month Day – a gregorian date that recurs, specifically a day of the year such as the third of May.

· Year – This representation term represents a gregorian calendar year.

· Year Month – This representation term represents a specific gregorian month in a specific gregorian year.

b) Numeric. Type

· Factor – represents a numerical factor for mathematical reasons.

· Float – represents long numerical string in a specific convention. It corresponds to the IEEE single-precision 32-bit floating point type [IEEE 754-1985].

· Integer – represents a number without any decimals.

c) Text. Type

· Description – A free form field that can be used to give a text description of an object.

· Note – A free form field that contains supplementary information
d) Measure. Type
· Size – A measure on a graded scale (eg. shoe size, clothing sizes)
· Weight – A measure of mass
· Volume – A measure of dimension
UBL Comment/Proposal 8

Use of ACCs/ABIEs as Semantic Packages and List Containers

Some of the ACCs as well as the ABIEs could be defined as semantic packages or list containers as described below.

a) Semantic Package
A semantic package is an ACC/ABIE, which contains semantically equivalent BCCs/BBIEs or ASCCs/ASBIEs. These components with semantically equivalent information should be based on the same representation term, if they are BCCs/BBIEs, or on the same object class term of ACCs/ABIEs, if they are ASCCs/ASBIEs.

This semantic package helps the modeller to define a clear and common structure of business information. A semantic package can be used for templates within empty business information where the modeller knows with which kind of components he will have to complete the specific business information or business document. Furthermore, the same semantic package can be used in different business information or business documents.
Any ACC/ABIE which would be defined as a semantic container should be distinct from all other ACCs/ABIEs through being given a specific name (such as the extension ". Package" instead of ". Details" and the use of plural names for its object class term).

For example (re-use):
Transport Equipment. Package

Provider- Type. Code

Owner- Type. Code

The ABIE, "Transport Equipment. Package". The ACC/ABIE which will be defined as a semantic package should be distinguished from the other ACCs/ABIEs by a specific name. This semantic package might contain two BBIEs, "Provider_ Type. Code" and "Owner_Type. Code". By recognising that "Provider" and "Owner" are Property Term adjectives we see potential re-the use of the Property noun, "Type".
Further example:

Parties. Package (ABIE as a semantical package)

Buyer_ Party. Party (ASBIE based on ACC "Party")

Seller_ Party. Party (ASBIE based on ACC "Party")

Manufacturer_ Party. Party (ASBIE based on ACC "Party")

Note from UBL LCSC about using Semantic Packages:

For the purpose of schema implementation awareness, it is noted that a semantic package is equivalent to locally defining the contents of a global ABIE having the same contents as the semantic package. In other words, it is possible to define a global type with the same contents as a given semantic package, and replacing the semantic package with a local element reference to the global type. For reusability and various advantages associated with reusing types, the semantic container ends itself readily to being implemented with global type schemas.

Awareness of such a relationship between the concepts of semantic packages and global/local schema implementation issues would, it is hoped, enable interested implementors to proceed with their developments with greater schema design considerations.

b) List Container

A list container is an ACC/ABIE which has one and only one ASCC/ASBIE but which allows this single ASCC/ASBIE to be repeated infinitely.

A list container could be used for the separation of ACCs/ABIEs which can be repeated infinitely from the other components at the same level. This would help processing and modelling as it is not very helpful to have such repeated components mixed up with other components at the same level.

Any ACC/ABIE which would be defined as a list container should be distinct from all other ACCs/ABIEs by means of a different name (such as the extension ". List" instead of ". Details" and the use of plural names for its object class term).

For example:

Items. List (ABIE as a list container)

Product. Item (ASBIE which can be repeated infinitely)

UBL Comment/Proposal 9

Rationalisation of the metadata that the current CCTS required.

There is an overlap of definitions between data types and representation terms. If ever we needed to qualify a Data type it can be the same as the Representation Term qualifier (which UBL rarely uses). We could happily exist with all Representation Terms being Data Types and thats it – they are effectively to same thing. Can anyone come up with an example of why these would be different?

None of this convoluted problems would exist if we simplifed the meta-model. The name of the BIEs gives the semantics to identify a consistent, logical piece of information. The concern about specific physical characterics is confusing the real issues of defining semantic, syntax-neutral, core components.
UBL Comment/Proposal 10

Use of Qualifiers for Object Class Terms and Property Terms

More clarification in use of qualifiers for object class terms and property terms.

Should the qualifier come from one of the context drivers only? Or can we use other terms for the definition of qualifiers?

UBL Editorial

Line 2284 –

7.4.1 Stored Aggregate Business Information Entities must be changed in

7.4.1 Stored Business Information Entity

Line 2372 –

7.4.5 Stored Association Core Component Properties must be changed in

7.4.5 Stored Association Business Information Entity Properties

