From: IHE IT Infrastructure Technical Committee

To: OASIS Registry Technical Committee

Re: Issues regarding XDS profile of ebXML Registry standard

14 Dec 2005

As we mentioned in our phone call, we have three areas of concern in our use of the registry standard and appreciate your group looking into these issues.

1) ebMS binding as a way to bind to SMTP transport

2) MTOM binding for use with modern web services and as another possible intermediate binding for SMTP transport

3) Use of the optional parameter feature of Stored Queries

ebMS and MTOM

IHE has need of a binding for ebXML Registry that will operate over an SMTP transport. With version 2 registry, we profiled the use of ebMS. As we look forward to version 3 registry, we still need a binding to SMTP, but the choice of protocol is not as clear.

We understand that ebMS is currently between versions and the Registry TC is awaiting the release of version 3 ebMS. This is clearly one choice as it offers a binding to SMTP.

We have always had issues with the use of SOAP with Attachments since that specification never reached ‘Recommendation’ status within W3C. We understand that MTOM is overtaking SwA in several ways. It is available in at least three implementations. Also, it is specified differently from SwA. SwA is directly bound to HTTP whereas MTOM can be bound to a variety of lower layer protocols. The possibility of a MTOM binding to SMTP has not yet been ruled out as a protocol binding to service our needs.

Optional parameter feature of Stored Queries

As we mentioned in a recent T-CON, our goal is to stop using SQL in the interface for XDS and instead rely on Stored Queries. Our analysis of this feature leads us to believe that there may be an issue in using our existing SQL queries in a Stored Query environment. In this matter we would appreciate education if we are wrong or an update if we are right.

A simplified example is shown below to illustrate our concern. This example comes from XDS year 2, section 3.16.4.1.4.2 Find SubmissionSets.

The raw query is:

SELECT ss.id

FROM RegistryPackage ss, ExternalIdentifier patId, Classification c, ExternalIdentifier sid, Slot dateTime, Slot ap, Classification ctc

WHERE c.classifiedObject = ss.id

AND c.classificationNode = 'urn:uuid:a54d6aa5-d40d-43f9-88c5-b4633d873bdd'

AND ss.status = 'Approved'

AND (ss.id = patId.registryobject AND

 patId.identificationScheme='urn:uuid:6b5aea1a-874d-4603-a4bc-96a0a7b38446' AND

 patId.value = $patientId)

AND (sid.registryobject = ss.id AND

 sid.identificationScheme = 'urn:uuid:554ac39e-e3fe-47fe-b233-965d2a147832' AND

 sid.value IN $sourceIds)

AND (dateTime.parent = ss.id AND

 dateTime.name = $dateTimeAtt AND

 dateTime.value >= $dateTimeFrom AND

 dateTime.value < $dateTimeTo)

AND (ap.parent = ss.id AND

 ap.name = 'authorPerson' AND

 ap.value LIKE $authorPattern)

AND (ctc.classifiedObject = ss.id AND

 ctc.classificationScheme= 'urn:uuid:aa543740-bdda-424e-8c96-df4873be8500' AND

 ctc.nodeRepresentation IN $contentTypeCodes)

If we focus on a small critical part and look at the set of clauses that restrict the query centered on the ‘dateTime’ Slot, the relevant clauses are:
	FROM Slot dateTime
	(1) taken from FROM clause

	AND (dateTime.parent = ss.id AND
	(2)

	dateTime.name = $dateTimeAtt AND
	(3)

	dateTime.value >= $dateTimeFrom AND
	(4)

	dateTime.value < $dateTimeTo)
	(5)

If ‘dateTime’ is of interest for a specific invocation of this query then $dateTimeAtt, $dateTimeFrom, and $dateTimeTo will all be specified in the query invocation.

In the Registry Services Specification, section 6.3.2.1 Specifying Query Invocation Parameters, paragraph 1 states:

A registry MUST prune any predicates of the stored query that contain parameters that were not supplied by the client during invocation of the stored query.

If we look at the case where $dateTimeAtt, $dateTimeFrom, and $dateTimeTo are all excluded from the query invocation, we see two interpretations:

Interpretation #1

Lines 2-5 are removed from the query since this defines a top-level predicate. A scan of the query shows that query variable ‘Slot dateTime’ is no longer needed and it is removed. We would interpret this as a correct execution of the intent of the query.

Interpretation #2

Lines 2-5 are removed from the query since this defines a top-level predicate. This leaves line 1 in the query. We would interpret this as an incorrect execution of the intent of the query since the query variable ‘Slot dateTime’ is left in the query. It is our experience with the Postgres database that this query variable is not optimized out thus introducing a serious performance problem.

The fundamental differences in the two interpretations are:

1) The predicate scope to be pruned, top-level predicate vs. sub-predicate. Both are predicates.

2) Pruning of un-referenced query variables from the FROM clause.

