
SOA - Repository Artifact Model and
Protocol Specification (S-RAMP)

Foundation

International Business Machines Corporation

Hewlett-Packard Corporation

Software AG

TIBCO Software Inc

Revision 1.0

October 7, 2010

Revision 1.0

Preface

Authors (alphabetically)
Tom Bellwood, IBM

Amardeep Bhattal, IBM

Vince Brunssen, IBM

John Colgrave, IBM

Martin Dvorak, HP

Dan Enache, TIBCO

Steve Fanshier, SAG

Eric Johnson, TIBCO

Diane Jordan, IBM

Bernard Kufluk, IBM

Miroslav Novak, HP

Christopher Peltz, HP

Radek Pospisil, HP

Albert Regner, HP

Martin Smithson, IBM

Gary Woods, SAG

Prasad Yendluri, SAG

Copyright Notice
(c) 2010 Hewlett-Packard Company (HP), International Business Machines Corporation (IBM), Software AG
(SAG) and TIBCO Software Inc. All rights reserved.

Permission to copy and display the SOA Repository Artifact Model and Protocol (the “Specification”), in any
medium without fee or royalty is hereby granted by Hewlett-Packard Company (HP), International Business
Machines Corporation (IBM), Software AG (SAG) and TIBCO Software Inc. (collectively, the "Authors"),
provided that you include the following on ALL copies of this document or portions thereof, that you make:

1. A link or URL to this document at this location:

http://s-ramp.org/2010/s-ramp/specification/documents/{this document name}

2. The copyright notice as shown in the Specification.

The Authors each agree to grant you a royalty-free license, under reasonable, non-discriminatory terms and
conditions to their respective patents that they deem necessary to implement the "SOA Repository Artifact
Model and Protocol” Specification, including all its constituent documents.

THIS DOCUMENT IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE;
THAT THE CONTENTS OF THIS DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION
OF THIS DOCUMENT.

Revision 1.0 Page ii

The names and trademarks of the Authors may NOT be used in any manner, including advertising or publicity
pertaining to this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
Vendors offer tools to facilitate various activities across the life cycle of a SOA artifact, such as design,
assembly, quality assurance, deployment and runtime operation of SOA based applications and business
processes. The lack of a standardized information model and interaction protocol for artifacts and their
metadata residing in a SOA repository, means that tools must be customized for use with each different
vendor’s SOA repository product. This reduces choice, flexibility and adds costs for customers when choosing
tools. This specification defines a SOA artifact data model together with bindings that describe the syntax for
interacting with a SOA repository.

Revision 1.0 Page iii

Table of Contents

PREFACE..II

Authors (alphabetically)...ii

Copyright Notice..ii

Abstract...iii

TABLE OF CONTENTS...IV

LIST OF FIGURES..VII

LIST OF TABLES...VIII

LIST OF EXAMPLES...IX

INTRODUCTION..1

1.1Purpose and Scope..1

1.2Problem Statement and Objectives...1

1.3Use Case Scenarios...1

1.4References..3

1.5Document History...4
1.5.1Conventions and Notation...4
1.5.2XML Namespaces...4
1.5.3Conformance...5

1.6Terminology..6

1.7Abbreviations and Acronyms..6
1.7.1Design Principles...7
1.7.2S-RAMP Schemas...7

ARTIFACT TYPE MODEL...8

2.1Introduction..8

2.2Artifact Type Models..8
2.2.1Artifact Metadata...9
2.2.2Relationships in S-RAMP...9

Revision 1.0 Page iv

2.3The Core Model..10
2.3.1Base Artifact Type...11
2.3.2Document Artifact Types..12
2.3.3Miscellaneous Types...12

2.4Modeling SOA Concepts..13
2.4.1The SOA Model...13

2.4.1.1SOA Model Artifact Types and Relationships...14
2.4.2The Service Implementation Model..15
2.4.3Service Implementation Model Artifact Types...15

2.5Derived Models...17
2.5.1The Policy Model..17
2.5.2The XSD Model...18
2.5.3The WSDL Model...19
2.5.4The SOAPWSDL Model...23

2.6Referencing S-RAMP Artifacts...23

3.CLASSIFICATION SYSTEMS IN S-RAMP..27

4.S-RAMP QUERY MODEL..30

4.1Overview..30

4.2Query Dialect (XPath2) Context...30

4.3Query Expression Predicates...31

4.4Query Functions...32

4.5S-RAMP Query Grammar..34

4.6Stored Queries...36

ACORE MODEL SCHEMA..37

BSOA MODEL SCHEMA..39

CSERVICE IMPLEMENTATION MODEL SCHEMA..45

DDERIVED MODEL SCHEMAS..47

D.1Policy Model Schema...47

D.2XSD Model Schema...48

D.3WSDL Model Schema...50

D.4SOAPWSDL Model Schema...53

Revision 1.0 Page v

EPRE-DEFINED RELATIONSHIPS..55

Revision 1.0 Page vi

List of Figures

Figure 1: Conceptualized UML Model of Core Model Artifacts.. 11

Figure 2: Conceptualized UML Model of SOA Model Artifacts..13

Figure 3: SOA Model Relationships...14

Figure 4: Conceptualized UML Model of Service Implementation Model Artifacts.. 15

Figure 5: Conceptualized UML Model of Policy Model Artifacts...17

Figure 6: Conceptualized UML Model of XSD Model Artifacts...18

Figure 7: Conceptual UML Diagram of WSDL Model: Part 1.. 20

Figure 8: Conceptual UML Diagram of WSDL Model: Part 2.. 21

Figure 9: Conceptual UML Diagram of WSDL Model: Part 3.. 22

FIGURE 10: CONCEPTUALIZED UML DIAGRAM OF THE SOAP WSDL MODEL
..23

Revision 1.0 Page vii

SOA Repository Artifact Model and Protocol – Foundation

List of Tables

Table 1: Design Time Tool Repository Interaction Use Cases.. 2

Table 2: Run Time Tool Repository Interaction Use Cases... 2

Table 3: Monitoring Tool Repository Interaction Use Cases...3

Table 4: Prefixes and XML Namespaces Used in this Specification... 4

Table 5: Artifact Type Models... 8

Table 6: Artifact Models and Types... 24

Table 7: Static Context for S-RAMP Query Expressions.. 30

Table 8: Dynamic Context for S-RAMP Query Expressions...31

Table 9: Query Functions Used in S-RAMP.. 33

TABLE 10: PRE-DEFINED RELATIONSHIPS..55

Revision 0.9 Page viii

List of Examples

Example 1: Artifact Model and Type References.. 25

Example 2: An OWL Ontology..28

Example 3: Query Expressions Using Properties...31

Example 4: Query Expression Using Relationships...32

EXAMPLE 5: QUERY EXPRESSIONS USING RELATIONSHIPS AND
PROPERTIES..32

Revision 0.9 Page ix

Introduction
1.1 Purpose and Scope
The “SOA - Repository Artifact Model and Protocol” (S-RAMP) specification defines a common data model
for SOA repositories to facilitate the use of common tooling and sharing of data. It provides a rich
representation data model that supports query. It includes binding(s) which document the syntax for interaction
with a compliant repository for create, read, update, delete and query operations within the context of each
binding. Initially, only one binding will be defined, but others can be added.

The specification is organized into multiple documents. This document, the SOA - Repository Artifact Model
and Protocol Foundation (hereafter referred to as Foundation) describes the overall goals of S-RAMP and
defines the Artifact Type Model and associated schemas for S-RAMP. It also describes the generic query
grammar used in S-RAMP. The Foundation document is not specific to any binding. Other documents in this
specification provide material specific to a given binding for S-RAMP, including the syntax for interacting with
an S-RAMP compliant repository. Those available at the time of this publication are:

• S-RAMP Atom Binding

When there is a discrepancy between a binding specific document and this Foundation document, the binding
specific document always takes precedence. If there is a discrepancy between schema representations provided
in this document and the S-RAMP schemas of record on s-ramp.org, the schemas of record SHALL take
precedence.

1.2 Problem Statement and Objectives
Service Oriented Architecture (SOA) is an architectural approach to designing applications and business
processes by consuming business logic from reusable software components exposed as network accessible
services. In today’s environment, vendors offer tools to facilitate various activities across the life cycle of a
SOA artifact, such as design, assembly, quality assurance, deployment and runtime operation of SOA based
applications and business processes. The SOA repository provides the foundation for all these activities. This
specification which we term the SOA - Repository Artifact Model and Protocol (S-RAMP) codifies how SOA
information models are represented by artifacts (including their associated metadata) in a SOA repository. This
specification also defines bindings to support interaction with the SOA repository, including create, read,
update, delete, query, and subscription for notifications. It defines the Artifact Type Model and provides various
bindings which define the syntax needed to support interaction with a SOA repository. This approach to
providing flexible access to SOA artifacts will facilitate interoperability and provide customers with more
choices of tools that can be used to interoperate with any S-RAMP compliant SOA repository implementation.

1.3 Use Case Scenarios
Table 1, Table 2 and Table 3 below provide some examples across different portions of the service lifecycle for
which there are various use cases in which an S-RAMP compliant repository could be used. This does not
necessarily imply that all vendors would support every scenario, or use an S-RAMP repository in each of these
scenarios across all portions of the service lifecycle.

Revision 1.0 Page 1

Table 1: Design Time Tool Repository Interaction Use Cases

Tool Category Activities S-RAMP Feature Examples

Integrated
Development
Environment (IDE)

1. Design WSDL and
schemas

2. Publish and consume
services

3. Publish SCA into
repository

4. Shred SCA for impact
analysis

5. Notification to service
developer when WSDL
changes

WsdlDocument

XsdDocument

OWL classifications

PortType

WID
RSA
Together
VisualStudio
Oracle JDeveloper

Business Process
Modeling Tools

1. Publish WSDL
descriptions for
processes

2. Look for process entry
points

3. Search/find services to
use in their business
processes

4. Impact analysis

wsdDocument

XsdDocument

OWL classifications

PortType

WebSphere Business
Modeling

ARIS Platform
Oracle (Collaxa)
TIBCO Business

Studio

Table 2: Run Time Tool Repository Interaction Use Cases

Tool Category Activities S-RAMP Feature Examples

Testing 1. Search to find a
WSDL

2. Understand policies
associated with
WSDL

3. Understand
relationships between
SOA components

4. Notification when
WSDL changes

WsdlDocument

Service

PolicyAttachment

Policy

HP Service Test
Manager
Rational Testing Tools
Itko Lisa

ESB 1. Dynamic routing
based on #services,
requestor type, etc.

2. Notifications of new
artifacts,
changes/deletions

3. Track information on
lifecycle and
operational state (e.g.,
using classifications,
properties, etc.)

PolicyAttachment

WSDL Parts

Service properties

DataPower
WebSphere ESB
Oracle Service Bus
SAP XI
WebMethods
TIBCO ActiveMatrix

Revision 1.0 Page 2

Policy Mgmt 1. Edit and store policies
2. Query repository for

policies to
deploy/provision

3. Execute (enforce)
policy

4. Update managed
endpoint in repository

PolicyAttachment

policy

service

ServiceEndpoint

AmberPoint
Actional
HP SOA Policy

Enforcer
CentraSite
TIBCO ActiveMatrix

Policy Manager

Table 3: Monitoring Tool Repository Interaction Use Cases

Tool Category Activities S-RAMP Feature Examples

Service Monitoring 1. Retrieve service
definitions from
repository

2. Update service
information with
performance and
availability data

3. Discover
dependencies
between business
services and web
service instance

4. Discover what
organizations provide
a service

5. Discover operational
data for the service
for monitoring

Organization

Service

ServiceInstance

ServiceOperation

user properties

Tivoli CAM for SOA
BAC for SOA
AmberPoint
Actional
WebMethods Insight
TIBCO ActiveMatrix

Service Performance
Manager

1.4 References
This specification shall be used in conjunction with the following publications.

W3C, Extensible Markup Language (XML) 1.0 Specification

W3C, Namespaces in XML 1.0 (Second Edition)

W3C, XML Schema Part 1: Structures Second Edition, version 1.0

W3C, XML Path Language (XPath), version 2.0

W3C, RDF Primer and the associated documents listed therein

W3C, OWL Web Ontology Language Guide

W3C – Web Services Description Language (WSDL), version 1.1

ISO 639.2, Codes for the Representation of Names and Languages

The Open Group, SOA Ontology

Web Services Policy 1.5 – Framework

Web Services Policy 1.5 – Attachment

A Universally Unique IDentifier (UUID) URN Namespace Specification, version 4

Revision 1.0 Page 3

1.5 Document History
This document, version 0.8, is the first version of this document.

1.5.1 Conventions and Notation
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
RFC 2119 [RFC 2119].

The character "|" is used to indicate a choice between alternatives.

The characters "[" and "]" are used to indicate that contained items are to be treated as a group with respect to
cardinality or choice.

This document makes use of many UML Diagrams and a summary of the notation used in those diagrams is
provided here for convenience

• Italicized artifacts are abstract

• Closed arrows indicate inheritance

• Open arrows indicate non containment association relationships

• Filled diamonds ending in open arrows represent composition relationships

• Names associated with arrows indicate Relationship Type names

NOTE: Attributes listed within an artifact box do not indicate cardinality. Users must refer to the document text
and schemas for that information.

1.5.2 XML Namespaces
The XML namespace URI that MUST be used by implementations of this specification is:

http://s-ramp.org/xmlns/2010/s-ramp

Table 4 lists XML namespaces that are used in this specification. The choice of any namespace prefix is
arbitrary and not semantically significant.

Table 4: Prefixes and XML Namespaces Used in this Specification

Prefix XML Namespace Specification(s)

xp2 http://www.w3.org/2005/xpath-functions XPath 2.0

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# RDF namespace

rdfs http://www.w3.org/2000/01/rdf-schema# RDFS namespace

owl http://www.w3.org/2002/07/owl# OWL namespace

s-ramp http://s-ramp.org/xmlns/2010/s-ramp S-RAMP namespace

wsdl http://schemas.xmlsoap.org/wsdl/ WSDL [WSDL 1.1]

wsp http://www.w3.org/TR/2007/REC-ws-policy-20070904 WS-Policy [WS-Policy]

xsd http://www.w3.org/2001/XMLSchema XML Schema [Part 1, 2]

Revision 1.0 Page 4

http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/2007/REC-ws-policy-20070904
http://schemas.xmlsoap.org/wsdl/
http://s-ramp.org/xmlns/2010/s-ramp
http://www.w3.org/2005/xpath-functions
http://s-ramp.org/xmlns/2010/s-ramp

1.5.3 Conformance
An implementation is not compliant with this specification if it fails to satisfy one or more of the MUST or
REQUIRED level requirements defined herein.

The XML Schemas published at http://s-ramp.org take precedence over the normative text within this
specification which takes precedence over the S-RAMP XML Schema in the appendix of this document. The
authoritative S-RAMP XML Schema is published at:

s-ramp.org/2010/specification/schemas

Revision 1.0 Page 5

http://s-ramp.org/

1.6 Terminology

Defined Term Definition

Artifact Type The data type of an S-RAMP artifact

Artifact Type Model The set of all Artifact Types used in the S-RAMP specification

Service Implementation
Model

Set of S-RAMP Artifact Types and relationships which describe the service
implementation layer associated with the SOA Model.

Core Model Set of basic Artifact Types

Policy Model Set of Policy document related derived Artifact Types

Relationship
The logical triple of a Relationship Type, Source and Target. Relationships in S-
RAMP are all directed from a source, to a target

Relationship Type
A name which represents the type of the relationship (e.g., “includedXsds”).
Multiple relationships can share the same Relationship Type.

SOA Model
Set of Artifact Types and relationships used to link The Open Group’s SOA
Ontology artifact types with those in the S-RAMP data model.

WSDL Model Set of WSDL document related derived data types

XSD Model Set of XSD document related derived data types

User Defined Model An S-RAMP model whose content and structure has been defined by the client

1.7 Abbreviations and Acronyms
S-RAMP SOA – Repository Artifact Model and Protocol

UTC Coordinated Universal Time

XPath2 XML Path Language (XPath) 2.0

Revision 1.0 Page 6

1.7.1 Design Principles
There are several high level design principles to which S-RAMP has adhered:

• Use of existing standards where possible (e.g., XML, XML Schema, OWL, XPath2, APP (Atom Publishing Protocol), ASF
(Atom Syndication Format), etc.).

• Vendor neutrality.

• Does not include governance models, but may be used by them.

• Driven by use cases.

• Data model extensibility for new data types, and support for system and user defined metadata.

• Inclusion of an XML Schema based serialization for its data model.

• Use of XPath 2 to describe its query grammar.

• Use of OWL Lite to describe its classification system grammar.

• Separation of the data model from the bindings which describe the interaction APIs clients use to interact with the repository.

1.7.2 S-RAMP Schemas
The schemas for the various S-RAMP Models are provided in the appendices . They closely follow the conceptualized UML diagrams
described in this document. The normative S-RAMP schemas of record define the serialization for S-RAMP and may be found on the
s-ramp.org web site at:

s-ramp.org/2010/specification/schemas

. Notable points concerning the schemas in S-RAMP include:

• Built-in properties are typically represented as attributes.

• Types based on BaseArtifactType use an extension of that type as their base.

• Where practical, Global Element Declarations are provided.

• Extensibility in the Core Model is limited to the ##any attribute on most structures.

• Schemas are provided for serialization purposes and the UML diagrams define the S-RAMP meta-model.

Revision 1.0 Page 7

Artifact Type Model
2.1 Introduction
The S-RAMP Artifact Type Model is a strongly typed data model for SOA repositories which allows interoperability among vendor
repository implementations and tooling, within the context of a specific binding. It will also later serve as a foundation for developing
data exchange and federation models. The Artifact Type Model is presented here using conceptualized UML models. Each of these
models also has a XML Schema representation available in the Appendices.

2.2 Artifact Type Models
An artifact in S-RAMP is a container for all of the metadata that describes it. There are 4 major types of artifacts in S-RAMP. Each of
these Artifact Types is discussed in more detail in later sections:

1. Document Artifact: Those which correspond to a physical document stored in the repository. Several important document
types are pre-defined and have special support in S-RAMP (such as XML Schema or WSDL documents). But any document
type can be placed in the repository.

2. Service Implementation Model Artifact: Those S-RAMP defined artifacts which provide a representation of the service
implementation layer associated with the SOA Model (such as a ServiceOperation or ServiceEndpoint).

3. Derived Artifact: Derived Artifacts (e.g., WSDL PortType, or WS-Policy PolicyExpression) are dynamically instantiated by
the server as a consequence of publishing a document instance whose type is one of those supported with a Derived Model
(see Table 5). These artifacts cannot be created or deleted directly, although clients can edit them to add or remove Generic
relationships, properties and classifications. Derived Artifact Models are managed by the server and kept in synchronization
with the document object with which they are associated. Derived artifacts provide a metadata model of the content
components of a particular document. This allows much more powerful query capabilities at a granularity specific to the
internal components of a document, when it is of a format supported with a Derived Model. Refer to Section 4 for more
information on the query model supported in S-RAMP, as well as to the individual binding document(s) for the query syntax
pertaining to each binding.

4. SOA Model Artifact: Those S-RAMP defined artifacts and relationships as well as those defined in the “SOA Repository
View” of The Open Group’s SOA Ontology, which provides a conceptual representation of a SOA environment. The SOA
Repository View is defined by The Open Groups SOA Ontology draft version 3.2.

5. User Defined Artifact Model: These are created by the client and are part of a User Defined Model. The means by which a
client specifies such a model are beyond the scope of this specification, but some provision is made within S-RAMP schema to
facilitate basic interoperability for such artifacts. Regardless of the internal definition of these artifacts, they SHALL be
serialized in S-RAMP as an instance of UserDefinedArtifactType, which extends BaseArtifactType.

The pre-defined S-RAMP Artifact Types are organized into a set of logical models as summarized in Table 5 below. Each of these is
discussed further in the sections that follow. Note that Derived Artifact Models are currently specified for each of the XSD, WSDL and
WS-Policy document types.

Table 5: Artifact Type Models

Model Purpose

Core Defines the base data types used by the other models

SOA Defines the artifact data types and relationships which are
used to integrate The Open Group’s SOA Ontology object
model into S-RAMP’s data model.

Service Implementation Defines the artifact data types and relationships used to
model the service implementation layer of a SOA
environment.

Derived: XSD Defines logical artifact data types for an XML Schema
document

Derived: WSDL Defines logical artifact data types for a WSDL document

Revision 1.0 Page 8

Derived: SOAPWSDL Defines artifact data types for the SOAP binding of a
WSDL document

Derived: Policy Defines artifact data types for an WS-Policy document

2.2.1 Artifact Metadata
An artifact can contain three major types of metadata. Each is discussed in detail in the sections that follow.

1. Relationships: These are directed associations which describe a conceptual link between two artifact instances. There are
several types of relationships, which are defined below in Section 2.2.2.

2. Properties: These describe various named attributes associated with an artifact instance, and can be built-in or user-defined.
Each S-RAMP property MUST have a single name which is unique to the artifact that it decorates. When present, an S-
RAMP property SHALL have a single value.

3. Classifications: Classification systems in S-RAMP are imported by the server as OWL documents, which define the
classification system to the server. The means by which a client imports the system into the server is implementation specific
and is beyond the scope of this specification. Clients MAY decorate artifacts with references to specific values in a
classification system defined to the server.

Note that Artifact Type and Artifact Model values MUST also be unique.

2.2.2 Relationships in S-RAMP
Relationships in S-RAMP are all directed from a source, to a target. Each relationship instance is the logical triple of the following 3
items of metadata:

1. Relationship Type. This is the name for the type of relationship. A number of these are pre-defined by S-RAMP in the
various Artifact Models (e.g., “includedXsds”, “appliesTo”, …). There can be multiple relationship instances of the same
Relationship Type.

2. Source. This is a reference to the artifact which is on the source side of the directed relationship. Relationships are always
contained by the Source Artifact which “owns” them.

3. Target. This is a reference to the artifact which is on the target side of the directed relationship.

It is possible for a relationship of a given Relationship Type not to have a target, which is termed a “relationship with no targets”. In
this case there is only one relationship instance with that Relationship Type for a given Source. Such relationships have a target
cardinality of “0”. If there is a relationship instance with a given Relationship Type which does have a target, then there CANNOT also
be a relationship instance with that Relationship Type which has no target.

There are 4 types of relationships supported in S-RAMP. Refer to the table in Appendix E for a complete list of pre-defined
relationships, an indication of whether the relationship is derived, and the model in which it occurs.

1. Derived Relationships. These are pre-defined relationships which cannot be directly created or deleted by the client.
Cardinalities for such relationships are defined in the applicable Derived Model. All instances of an Artifact Type for which a
Derived Relationship is defined, will always contain that Derived Relationship, even if there are no targets for that
relationship. The S-RAMP serialization of a Derived Relationship uses named elements defined in the schema for the
appropriate Artifact Type definition(s).

2. Modeled Relationships. These refer to the S-RAMP pre-defined relationships which may be edited by the client.
Cardinalities for such relationships are defined in the applicable model (e.g., the Service Implementation Model or Core
Model). All instances of an Artifact Type for which a Modeled Relationship is defined, will always contain that Modeled
Relationship, even if there are no targets for that relationship. The S-RAMP serialization of a Modeled Relationship uses
named elements defined in the schema within the applicable Artifact Type. There are several considerations related to target
cardinality of Modeled Relationships:

• Modeled Relationships with Minimum Cardinality = 0:

• Instances of the Source Artifact can be created independently of the Target Artifact.

• Modeled Relationships with Minimum Cardinality > 0:

• Instances of the Source Artifact cannot be created without the appropriate Target Artifact(s) based upon the required
minimum cardinality of the relationship.

• This can be accomplished by publishing the relevant artifacts at the same time, or by publishing the target artifact(s)
first.

Revision 1.0 Page 9

• Actions which result in the deletion of a relationship instance are not permitted if that would result in a violation of
the minimum cardinality.

• Modeled Relationships with Maximum Cardinality < unbounded:

• Relationship instances cannot be created if that would result in a violation of the maximum cardinality limit for the
Modeled Relationship.

Note that in cases where the minimum cardinality equals the maximum cardinality, such a relationship must be created or
updated in a single step to avoid intermediate states which would violate these requirements.

3. Generic Relationships. These are user-defined ad-hoc directed relationship instances between any two artifacts in S-RAMP.
They always have a minimum cardinality of 0 and an unbounded maximum cardinality. The Relationship Type value of a
Generic Relationship instance is chosen by the client, but it MUST NOT match any pre-defined Relationship Type values
already defined by the S-RAMP Modeled and Derived relationships. (see Appendix E). The S-RAMP serialization of a
Generic Relationship uses the relationship structure defined in the Core Model.

4. User Defined Modeled Relationships. S-RAMP attempts to be compatible with implementations which choose to allow
users the ability to define models of their own which consist of new or existing Artifact Types and any defined relationships
between them, although how and whether such models are supported is beyond the scope of this specification. Such models
are called “User Defined Models”. Since pre-defined relationships in a model are termed “Modeled”, then in this context they
are called “User Defined Modeled Relationships”. The S-RAMP serialization of a User Defined Modeled Relationship uses
the S-RAMP relationship structure defined in the Core Model.

2.3 The Core Model
There is a single “core” model which defines all the basic Artifact Types used throughout S-RAMP. The Core Model contains abstract
base artifacts for document artifacts and derived artifacts (which are associated with certain document types). Most Artifact Types in
the other S-RAMP models are extensions of BaseArtifactType. Figure 1 provides a conceptualized illustration of the Core Model
artifacts. In addition, there are a number of support types used by the core and other models. Note that the class attributes in the UML
diagram are essentially built-in properties. The remaining sub-sections provided additional details on the Core Model.

Revision 1.0 Page 10

Figure 1: Conceptualized UML Model of Core Model Artifacts

2.3.1 Base Artifact Type
The BaseArtifactType is the fundamental abstract type used by all of the artifact models in S-RAMP. It contains all of the common
metadata which describes an artifact instance. All artifact instances which are based on the BaseArtifactType contain the following
metadata:

•Built-in Properties:

o createdBy: A required string assigned by the server identifying the user who created the artifact. S-RAMP does not
define requirements on this value. These are implementation specific.

o createdTimestamp: A required timestamp which is set by the server at the time an artifact is first published. It
conforms to xml:dateTime, referenced to UTC.

o description: This optional property is used to provide a human consumable description of the artifact instance. This
value is set by the client for all non-Derived Artifacts (although implementations MAY support setting it
automatically using introspection. Derived Artifact descriptions are set by the server.

o lastModifiedBy: A required string assigned by the server identifying the user who last updated the artifact. S-
RAMP does not define requirements on this value. These are implementation specific.

o lastModifiedTimestamp: A required timestamp which is updated by the server each time an artifact instance is
modified. It conforms to xml:dateTime, referenced to UTC.

Revision 1.0 Page 11

o name: This required property is used to describe the artifact instance. This value is set by the client for all non-
Derived Artifacts (although implementations MAY support setting it automatically using introspection). Derived
Artifact names are set by the server.

o uuid: A required unique identifier of an artifact instance in the repository1. This value is set for the artifact at the
time of its creation. If the value is not provided by the user, the repository will assign one.

o version: An optional string representing the version of the artifact instance. S-RAMP makes no attempt to define
formatting rules for this property, which are implementation specific.

• Generic Properties:

o property: These are optional properties which are defined by the client. They MUST have a single unique name
(which SHALL NOT duplicate any other property name of any type, and SHALL NOT duplicate any Relationship
Type value). A property name SHALL have 0 or 1 value.

• Generic Relationships:

o relationship: These are optional relationship(s) defined by the client. A relationship contains a Relationship Type
identifying the type of the relationship, and 0 or more target artifact references. Relationship Type values within a
relationship SHALL NOT duplicate the name of any property.

• Classifications:

o classifiedBy: This is a separate class of metadata. It MAY be set by the client with an unbounded upper cardinality
limit. Each value SHALL be a URI which references a specific OWL class from a classification system defined to
the repository. For more on OWL classification systems in S-RAMP, see Section 3.

2.3.2 Document Artifact Types
The DocumentArtifactType is the fundamental abstract data type for all documents represented in the repository, and it extends
BaseArtifactType. This Artifact Type includes several built-in properties:

contentType:

• A string indicating the MIME Media type of the content. This is set by the server as part of processing the publication of the
document. It cannot be changed by the user.

contentSize:

• An integer representing the size of the content in bytes. This is set by the server as part of processing the publication of the
document. It cannot be changed by the user.

The Core Model also includes an XmlDocument type which all XML based document data types extend. The Document type provides
a concrete artifact that can be used to represent arbitrary document types. The DocumentArtifactType itself can also be further extended
for other document types, such as binary data, etc.

Documents which have a Derived Model associated with them cannot be updated in the repository. They must be removed and
republished.

Documents upon which another document has a dependency cannot be deleted.

2.3.3 Miscellaneous Types
There are a few miscellaneous classes in the Core Model:

StoredQuery:

• This is a special Artifact Type which is used to persist queries in the repository. Additional information on this topic is
available in Section 4.

UserDefinedArtifactType:

• The UserDefinedArtifactType allows clients to create their own artifact type when it is not predefined in an S-RAMP model.
The userType property is intended to be used to provide an indication of the object type.

1 S-RAMP uuid values use the Universally Unique IDentifier (UUID) URN Namespace specification, Version 4, random number based
format.

Revision 1.0 Page 12

2.4 Modeling SOA Concepts
S-RAMP supports modeling of business level SOA concepts related to service and process representations and interactions. Since it is
not the mission of S-RAMP to define a “SOA Ontology” for the industry, this specification has chosen to reference work being done by
The Open Group in their “SOA Working Group” on the “SOA Ontology” (see http://www.opengroup.org/projects/soa-ontology/). That
work is compatible with both SCA and BPMN but draws both service and process concepts together at a higher level of abstraction.

S-RAMP supports modeling of SOA concepts using a layered approach:

1. S-RAMP SOA Model

2. S-RAMP Service Implementation Model

The sections below describe how the SOA Ontology work is integrated with S-RAMP as well as the implementation layer underneath
it.

2.4.1 The SOA Model
The S-RAMP SOA Model exists to provide a mechanism to link work done by The Open Group SOA Ontology work group with the
rest of the S-RAMP internal models. It defines a very minimal set of linkages to artifacts defined in the SOA Ontology.

NOTE: The S-RAMP specification SHALL be referential to draft version 3.1 of the SOA Ontology being developed by The Open
Group SOA working group. The SOA Ontology being developed is suitable for use by SOA Repositories. This SOA Ontology
SHALL be considered normative for this specification.

Several S-RAMP modeling features have been defined in order to provide linkage between the SOA Ontology and the S-RAMP data
model. This is done using the S-RAMP SOA Model. Artifact Types in this model are all user instantiated, and are described in the S-
RAMP SOA Model illustrated in Figure 2 below.

Figure 2: Conceptualized UML Model of SOA Model Artifacts

SOA Model artifacts and the SOA Ontology artifacts which the SOA Model references are designed to provide clients the ability to
create conceptual SOA representations. SOA Model Artifacts are all logical artifacts and do not represent or correspond directly to a
document instance as do those in the Derived Models.

S-RAMP provides an XML Schema representation of the S-RAMP SOA Model, including elements corresponding to the base version
of The Open Groups SOA Ontology’s defined artifacts, within the context of the S-RAMP data model. It can be found in Appendix B.

Revision 1.0 Page 13

http://www.opengroup.org/projects/soa-ontology/

2.4.1.1 SOA Model Artifact Types and Relationships
The abstract SoaModelType Artifact Type implicitly acts as a super class for ALL top level SOA Ontology artifacts when they are used
within the context of S-RAMP. This imbues all of them with the properties built into all S-RAMP Artifact Types. S-RAMP adds
several relationships to SOA Ontology Artifacts used in the SOA Model in order to provide a connection from the SOA Ontology
artifacts into the implementation level artifacts described in the Service Implementation Model in Section 2.4.1.1.

SOA Model Artifacts MAY have relationships to Document Artifacts and/or Derived Artifacts in other models, as well as among
themselves. All the relationships defined in the SOA Model are Modeled Relationships. See Section 2.2.2 for behavioral details
associated with Modeled Relationships. The relationships which have been added to artifacts from the SOA Ontology are summarized
in Figure 3 below.

Relationship Name Source Artifact Type
(from SOA
Ontology)

Target Artifact Type (from
S-RAMP Business & Core
Models)

Notes

hasInstance Service ServiceInstance

hasOperation ServiceInterface ServiceOperation

interfaceDefinedBy ServiceInterface DerivedArtifactType This allows one to indicate the Derived Artifact
instance which defines this service interface.
For example, this could be PortType artifact
instance from the WSDL Model.

policyDefinedBy Policy DerivedArtifactType This allows one to link the SOA Model Policy
artifact with a concrete S-RAMP derived
artifact type (e.g., PolicyAttachment)

informationTypeDefinedBy InformationType DerivedArtifactType This allows one to link the SOA Model
InformationType artifact with a concrete S-
RAMP derived artifact type (e.g.,
PolicyAttachment)

Figure 3: SOA Model Relationships

Revision 1.0 Page 14

2.4.2 The Service Implementation Model
S-RAMP defines a “Service Implementation Model” which describes the service implementation layer underneath the SOA Model.
Artifact Types in this model are all user instantiated and most are extensible. Each of these artifacts derives from the
ServiceImplementationModelType and may be created, changed, updated and deleted by the client. There are a number of pre-defined
Modeled Relationships between artifacts of particular types. Figure 4 below illustrates the conceptualized Service Implementation
Model artifacts.

Figure 4: Conceptualized UML Model of Service Implementation Model Artifacts

S-RAMP provides an XML Schema representation of the Service Implementation Model. It can be found in Appendix C. The sub-
sections that follow discuss each of the Service Implementation Artifact types in more detail.

2.4.3 Service Implementation Model Artifact Types
The primary Artifact Type from which all Service Implementation Model Artifacts extend is the abstract
ServiceImplementationModelType. The concrete Service Implementation Model Artifacts which extend it are designed to provide the
implementation layer below the SOA Model which allows clients to build SOA representations. Service Implementation Model
Artifacts are all logical artifacts and do not represent or correspond directly to a document instance as do those in the Derived Models.

Service Implementation Model Artifacts MAY have relationships to Document Artifacts and/or Derived Artifacts in other models, as
well as among themselves. All the relationships shown in the Service Implementation Model are Modeled Relationships. See Section
2.2.2 for behavioral details associated with Modeled Relationships. Of note for the ServiceImplementationModelType is the
documentation Modeled Relationship which allows any artifact in the Service Implementation Model to reference a document
describing it.

The concrete Service Implementation Model Artifact Types are then:

Organization

Revision 1.0 Page 15

• The Organization type is used to describe an organizational entity. It is a subclass of the “Human Actor” artifact defined in
the SOA Ontology. Clients can define an unlimited number of organizations and can use the provides relationship to link an
Organization to any Service Implementation Model Artifact

ServiceInstance

• The ServiceInstance Artifact Type represents deployed instance(s) of a service. For example, a Web service running in
WebSphere, or Oracle Fusion, etc. The describedBy Modeled Relationship can be used to reference document artifact(s) that
describe it.

ServiceEndpoint

• The ServiceEndpoint Artifact Type represents a physical location at which the Service instance can be invoked, using its url
Modeled Property. The endpointdefinedBy Modeled Relationship allows indicating the Derived Artifact instance which
defines this Service endpoint is defined. For example, this could be a Port artifact instance from the WSDL Model.

ServiceOperation

• The ServiceOperation Artifact Type represents the specific operation performed by the Service. The operationDefinedBy
Modeled Relationship can be used to link a ServiceOperation with a Derived Artifact which defines it. For example this could
be an Operation artifact instance from the WSDL Model.

Revision 1.0 Page 16

2.5 Derived Models
The sections which follow describe the logical models which are constructed by the repository in response to publication of a document
for which a Derived Model is defined. The server parses these documents upon publication, dynamically constructing Derived
Artifacts corresponding to the major data type components of the document. Every Derived Artifact instance has a relatedDocument
relationship to the document from which it was created. The artifacts and relationships in a Derived Model provide a powerful tool for
searching the repository based on specific components of such a document (e.g., a WSDL PortType, etc.). In most cases, the UML
model diagrams illustrated in this section are adequate to define the Artifact Types and the Derived Relationships between them, so
these sections are correspondingly brief.

Appendix D describes all of the Derived Model schemas defined in S-RAMP.

2.5.1 The Policy Model
The Policy Model describes the Artifact Types which correspond to the primary components of a WS-Policy document. Policy
expressions can be in a stand alone policy document, or embedded in another document such as a WSDL. Figure 5 below is a
conceptual UML based illustration of the Policy Model:

Figure 5: Conceptualized UML Model of Policy Model Artifacts

All appliesTo relationships are instantiated in the repository based on the content in the policy attachment document. There is no
restriction on the artifacts it can reference.

Revision 1.0 Page 17

2.5.2 The XSD Model
The XSD Model describes the Artifact Types which correspond to components of an XSD document stored in the repository, and yields
structural metadata useful in performing queries. The conceptual UML model describing the XSD Model is illustrated in Figure 6.

Figure 6: Conceptualized UML Model of XSD Model Artifacts

Note that an XSD document MAY include, import, or redefine other XSD documents. These capabilities are modeled using the
includedXsds, importedXsds and redefinedXsds Derived Relationships, respectively.

A SimpleTypeDeclaration artifact instance is generated for each global simple type defined in the associated XML Schema document.
Similarly, a ComplexTypeDefinition instance is generated for each global complex type defined in that XML Schema document. Each
global attribute declared in the XML Schema document will generate a corresponding AttributeDeclaration artifact instance, and

Revision 1.0 Page 18

finally, each global element declared in the XML Schema document will generate a corresponding ElementDeclaration artifact
instance.

While it is possible to construct a more fine-grained model of an XML Schema document, this level of modeling provides a suitably
rich context for discovery queries without creating an overly complex model.

2.5.3 The WSDL Model
The WSDL Model is one of the most complex Derived Models, owing to the complexity of WSDL itself. The WSDL Model contains
substantial richness because of the value in being able to perform highly refined queries using logical artifact representations of most of
a WSDL document’s constituent components.

Figure 7 and Figure 8 below provides a conceptual UML model representing the logical artifacts and their Derived Relationships in the
WSDL Model. This model is intended to mirror the structure of a WSDL file. In most cases, the artifact names exactly match
corresponding data types in WSDL (e.g., Message, PortType, Operation, Binding, Service, Port, and so on). These figures are actually
one diagram presented in two pieces for legibility.

Note that aggregation relationships in these diagrams are modeled as Derived Relationships in the WSDL Model schema found in
Appendix D.3.

Note that the WsdlExtension Artifact Type illustrated in Figure 8 below is used to model extensibility elements for any given WSDL
element. This supports WSDL extensions which the repository does not recognize.

Revision 1.0 Page 19

Figure 7: Conceptual UML Diagram of WSDL Model: Part 1

Revision 1.0 Page 20

Figure 8: Conceptual UML Diagram of WSDL Model: Part 2

Revision 1.0 Page 21

The WsdlDerivedArtifactType is a modeling convenience from which all WSDL related metadata artifacts extend. It contains a
namespace attribute which is the namespace of the WSDL document and it applies to every Derived Artifact instance for that
Document. It also has an extension Derived Relationship which serves to identify the set of WSDL extensions which apply to the
Derived Artifact.

Figure 9 below illustrates a conceptual UML model representing the portions of the WSDL Model which describe the relevant
document artifacts and Derived Relationships for the associated WSDL document. A WSDL document can import, include and
redefine XSD document(s), as well as import other WSDL documents. Similarly, an XSD document can import, include and redefine
other XSD documents. The model supports each of these capabilities with the Derived Relationships shown in the diagram.

Figure 9: Conceptual UML Diagram of WSDL Model: Part 3

Revision 1.0 Page 22

2.5.4 The SOAPWSDL Model
The SOAPWSDL Model contains the SOAP 1.1 binding specific WSDL Model artifacts for WSDL 1.1. It is separated into its own
Model and schema to simplify its use. Figure 10 below illustrates a conceptual UML model of the relevant SOAP WSDL Model
artifacts.

Figure 10: Conceptualized UML Diagram of the SOAP WSDL Model

2.6 Referencing S-RAMP Artifacts
This section describes the syntax for referencing Artifact Type(s) in the S-RAMP bindings. The use of the references described in this
section to operate on S-RAMP artifacts is specific to the binding used (e.g., the S-RAMP Atom Binding). Please refer to the
appropriate binding specific document of this specification for details.

The following referential syntax applies:

/s-ramp/{ArtifactModel}/{ArtifactType}

Note that each successive component of this syntax is optional. Specifically

• A reference of “/s-ramp” refers to all Artifact Types in all models

• A reference of “/s-ramp/{Artifact Model}” refers to all Artifact Types within the specified Artifact Model.

• References of the form “//{ArtifactModel}” or “//{ArtifactType}” are also permitted.

Table 6 below provides the valid values for Artifact Model and Artifact Types. Abstract types are not included since they cannot be
instantiated.

Revision 1.0 Page 23

Table 6: Artifact Models and Types

Artifact Model Artifact Type

core Document

XmlDocument

xsd XsdDocument

AttributeDeclaration

XsdType

ElementDeclaration

SimpleTypeDeclaration

ComplexTypeDeclaration

policy PolicyDocument

PolicyExpression

PolicyAttachment

soapWsdl SoapAddress

SoapBinding

wsdl WsdlDocument

WsdlService

Port

WsdlExtension

Part

Message

Fault

PortType

Operation

OperationInput

OperationOutput

Binding

BindingOperation

BindingOperationInput

BindingOperationOutput

BindingOperationFault

serviceImplementation Organization

ServiceEndpoint

ServiceInstance

ServiceOperation

Revision 1.0 Page 24

user {User Defined Artifact Type}

soa {See The Open Group’s SOA Ontology for the normative list
of Artifact names. They are reproduced here for clarity.}

HumanActor

Choreography

ChoreographyProcess

Collaboration

CollaborationProcess

Composition

Effect

Element

Event

InformationType

Orchestration

OrchestrationProcess

Policy

PolicySubject

Process

Service

ServiceContract

ServiceComposition

ServiceInterface

System

Task

Below are some examples of valid S-RAMP model and Artifact Type references.

Example 1: Artifact Model and Type References

/s-ramp

o References all Artifact Types in the repository

/s-ramp/xsd or //xsd

o References all Artifact Types in the XSD Model (e.g., XsdDocument, XsdType, …)

/s-ramp/xsd/XsdType or //XsdType

o References the XsdType Artifact Type in the XSD Model

/s-ramp/soa/Service

Revision 1.0 Page 25

o References all Service Artifacts Types in the SOA Model (included by reference to The Open Group’s
SOA Ontology)

/s-ramp/wsdl/Port

o References the Port Artifact Type in the WSDL Model

Revision 1.0 Page 26

3. Classification Systems in S-RAMP
A classification system allows classification values to be organized in a hierarchy, allowing artifacts to be grouped into sets and to
identify subsets within those sets. Query and display of all artifacts in a set then becomes possible and provides a simple yet powerful
means of classifying and finding related objects. Artifact instances in the repository MAY have classification values applied to them.

A simple example of a classification system hierarchy is a geographical region hierarchy that could, for example, be used to indicate
which location produced an artifact. Using '/' to delineate levels in the hierarchy and ',' to separate members at the same level, one part
of an example hierarchy could be World / Asia / Japan, China. The hierarchy could also contain World / Europe / United Kingdom,
Germany. In other words, subsets of World are Asia and Europe, subsets of Asia are Japan and China, and subsets of Europe are United
Kingdom and Germany. To find artifacts produced by teams in Asia, a search can be issued to return artifacts classified by the Asia
classification. To give the behavior desired, a repository implementation interprets this query as requiring the retrieval of artifacts
classified by Asia and its sub-groups i.e. Asia or Japan or China.

Classification systems used in S-RAMP are expressed in the Web Ontology Language (OWL) which builds upon the Resource
Description Framework (RDF). The RDF/XML serialization format is commonly used for files containing OWL constructs and is a
format that SHALL be understood by an S-RAMP repository. OWL consists of three increasingly expressive sublanguages, OWL Lite,
OWL DL and OWL Full. The W3C "OWL Web Ontology Language Overview" document indicates that "OWL Lite supports those
users primarily needing a classification hierarchy and simple constraints", and accordingly the OWL elements that S-RAMP uses to
define classification systems come from OWL Lite. To enable the classification capabilities required in S-RAMP, a restricted set of
OWL Lite elements is sufficient. Also, it should be noted that multiple inheritance will not be supported in S-RAMP.

The elements that SHALL be supported and a brief description of each follow (refer to the W3C documents detailing OWL and RDF
for further detail on these elements).

rdf:ID

• In an element which requires a resource to be identified, an rdf:ID attribute MAY be used. This attribute has slightly different
behavior to rdf:about, including the requirement that the value only appear once in the scope of a document, so it provides a
useful check when defining distinct resources. In RDF and OWL, resources are identified by using URIs. The attribute value is
a string indicating a URI fragment relative to the currently in-scope base value (typically set using the xml:base attribute).

rdf:about

• As an alternative to using an rdf:ID attribute to identify a resource, an rdf:about attribute MAY be used. The attribute value is
either a string indicating an absolute URI, or a string indicating a relative URI resolved against the currently in-scope base
value (typically set using the xml:base attribute).

owl:Ontology

• In OWL, classification systems are represented by an OWL ontology. The ontology groups a number of related classifications
together. In the example the geographical regions classification system would be defined using an owl:Ontology element.

owl:Imports

• owl:Imports elements are permitted under owl:Ontology. This means that classes declared in the ontology MAY subclass
classes declared in any imported ontologies, although multiple inheritance is not permitted. How owl ontologies are imported
is vendor specific and therefore the resolution of owl:import references is also vendor specific.

owl:Class

• In OWL, classifications are represented by OWL classes. In the example, the World, Europe, Asia, United Kingdom,
Germany, Japan and China classifications would be defined using an owl:Class element.

rdfs:subClassOf

Revision 1.0 Page 27

• To define the hierarchy, classes are related to each other via the rdfs:subClassOf element. If class B is declared to be a
subclass of class A, then the instances of class B represent a subset of the instances of class A. In the example, Asia would be
declared to be a subclass of World, Japan a subclass of Asia, and so on.

rdfs:label

• Ontologies and classes MAY be given a human readable name using the rdfs:label element. Names in multiple languages are
supported by this element, using the xml:lang attribute.

rdfs:comment

• Ontologies and classes MAY be given a human readable comment or description using the rdfs:comment element. Comments
in multiple languages are also supported by this element using the xml:lang attribute.

All other OWL elements are not supported (in terms of OWL Lite this means that property-related elements, and the
owl:equivalentClass, owl:imports, owl:intersectionOf, and versioning elements are not supported).

OWL files used in S-RAMP MUST conform to the following rules, which result in ontologies that are self-contained in a single OWL
file:

• There MUST be exactly one owl:Ontology element in any OWL file
• A class MUST only be defined in one ontology

The example ontology can be expressed in OWL as follows:

Example 2: An OWL Ontology

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

 <!ENTITY owl "http://www.w3.org/2002/07/owl#">

 <!ENTITY ns_region "http://www.regions.com/geographicalregion">

]>

<rdf:RDF

 xmlns:xsd="&xsd;"

 xmlns:rdf="&rdf;"

 xmlns:rdfs="&rdfs;"

 xmlns:owl="&owl;"

 xmlns:ns_region="&ns_region;"

 xml:base="&ns_region;"

>

 <!-- ontology -->

 <owl:Ontology rdf:ID="">

 <rdfs:label>Geographical Regions</rdfs:label>

 <rdfs:comment>An ontology used to provide classifications describing geographical
regions.</rdfs:comment>

 </owl:Ontology>

 <!-- root class -->

Revision 1.0 Page 28

 <owl:Class rdf:ID="World">

 <rdfs:label>World</rdfs:label>

 <rdfs:label xml:lang="en">World</rdfs:label>

 <rdfs:label xml:lang="fr">Monde</rdfs:label>

 </owl:Class>

 <!-- sub classes -->

 <owl:Class rdf:ID="Asia">

 <rdfs:subClassOf rdf:resource="&ns_region;#World"/>

 <rdfs:label>Asia</rdfs:label>

 </owl:Class>

 <owl:Class rdf:ID="Europe">

 <rdfs:subClassOf rdf:resource="&ns_region;#World"/>

 <rdfs:label>Europe</rdfs:label>

 </owl:Class>

 <!-- sub sub classes -->

 <owl:Class rdf:ID="Japan">

 <rdfs:subClassOf rdf:resource="&ns_region;#Asia"/>

 <rdfs:label>Japan</rdfs:label>

 </owl:Class>

 <owl:Class rdf:ID="China">

 <rdfs:subClassOf rdf:resource="&ns_region;#Asia"/>

 <rdfs:label>China</rdfs:label>

 </owl:Class>

 <owl:Class rdf:ID="UnitedKingdom">

 <rdfs:subClassOf rdf:resource="&ns_region;#Europe"/>

 <rdfs:label>United Kingdom</rdfs:label>

 </owl:Class>

 <owl:Class rdf:ID="Germany">

 <rdfs:subClassOf rdf:resource="&ns_region;#Europe"/>

 <rdfs:label>Germany</rdfs:label>

 </owl:Class>

</rdf:RDF>

Some points of interest in the foregoing example:

• An rdfs:comment element is shown within the Geographical Regions owl:ontology element, but comments may be used in
owl:Class constructs if desired.

• rdfs:label elements have generally been used with no xml:lang attribute specified. However, multiple rdfs:label elements
MAY be specified within an owl:Ontology or owl:Class element, and these may contain a variety of xml:lang attribute values
(and an rdfs:label element with no xml:lang attribute may be specified in addition to elements with such attributes present).
This is illustrated by the World class in the ontology defined above. An owl:Ontology or owl:Class element SHOULD contain
only one rdfs:label element with a given xml:lang value to ensure well-defined behavior when requesting a label for a specific
language.

• The behavior of rdfs:comment elements with respect to xml:lang attributes is identical to the behavior for rdfs:label elements.

Revision 1.0 Page 29

• Although the example shows a single root class which the other classes’ subclass either directly or indirectly, multiple root
classes are permitted in an ontology. Also permitted are stand-alone classes that neither subclasses some parent class nor are
themselves parents to other child classes.

• Multiple inheritance (a class being a subclass of multiple parent classes) is NOT permitted.

Revision 1.0 Page 30

4. S-RAMP Query Model
4.1 Overview
The S-RAMP specification supports a robust query interface which compliant implementations MUST support. It provides a way to
find repository artifacts using a rich set of constraints. The query expression in S-RAMP uses an XPath 2.0 based dialect. Refer to
Section 4.5 for additional information on the S-RAMP query grammar. The expression predicates act as filters to identify matching
artifact instances. Filtering can be done based upon artifact metadata, including properties, relationships and classifications. Complex
criteria can be formed. One can for example, search for “all services which are categorized as being in production”, or find “all the
XML Schema documents which are referenced by any WSDL document”, and so on. Queries are executed against a set of S-RAMP
artifacts using the criteria provided and the result returned is a set of S-RAMP artifacts. Furthermore, all artifact types both concrete
and abstract are eligible for use in the query expressions.

Specific request and response syntax for executing query requests is, however, binding specific. Details can be found in the relevant
binding document(s) of this specification. This document covers the common features of an S-RAMP query, independent of their
invocation syntax.

4.2 Query Dialect (XPath2) Context
Since the S-RAMP query model is based on XPath2, this specification defines a static context for the information available during
static analysis of a query expression prior to its evaluation, as well as a dynamic context for the information available when the
expression is evaluated.

Static analysis of query expressions is performed using the following static context:

Table 7: Static Context for S-RAMP Query Expressions

Component Value

XPath 1.0 Compatibility Mode False

Statically known namespaces See Table 1

Default element/type namespaces “s-ramp”

Default function namespace “s-ramp”

In-scope schema definitions S-RAMP schemas are defined on the s-ramp.org web site. A copy is included in the
Appendices of this document.

In-scope variables Only the variables used in a template based query expression (typically applies to Stored
Query)

Context item static type element([namespace of this specification], record)

Function signatures Functions defined in XQuery 1.0 and XPath 2.0 Functions and Operators document
(http://www.w3.org/TR/xquery-operators/), plus functions defined in Section 4.4

Statically known collations none

Default collation http://www.w3.org/2005/xpath-functions/collation/codepoint

Base URI none

Statically known documents none

Statically known collections none

Statically known default
collection type

none

The following dynamic context defines the default values which are available during evaluation of an S-RAMP query expression:

Revision 1.0 Page 31

http://www.w3.org/2005/xpath-functions/collation/codepoint
http://www.w3.org/TR/xquery-operators/

Table 8: Dynamic Context for S-RAMP Query Expressions

Component Value

context item dynamic; node changes during evaluation of the expression

context position 1

context size 1

Variable values none

Function implementations function implementations are on a per-server basis

Current dateTime date and time on server against which request is made

Implicit time zone UTC+/-0

Available documents none

Available collections none

Default collection “s-ramp”

The domain of an S-RAMP query is the structure of the data model defined by its schemas, using the Artifact Model and Artifact Type
reference syntax described in Table 6.

Additional features and limitations of S-RAMP query support:

• Uses the XPath2 default Axis of ancestor / child

• The XPath abbreviated paths below are not supported

o ‘..’

• XPath2 Node types are not supported

o Comment, text and so on are not relevant in an S-RAMP query

4.3 Query Expression Predicates
The default namespace assumed in an S-RAMP query is “s-ramp”. S-RAMP query expressions allow filtering of the path expression
using XPath 2.0 predicates, in the form:

{path-expression}[{predicate}]

where:

{path-expression} = /s-ramp/{ArtifactModel}/{ArtifactType}

which corresponds to the S-RAMP Artifact Model and Type reference syntax (see Table 6); and:

{predicate}

is an XPath2 predicate which conforms to the S-RAMP query grammar (see Section 4.5).

When evaluated, the predicate returns true or false, and thus filters the set of artifacts returned from the query. Predicates can use
combinations of artifact properties, relationships and classifications. The predicate sets the context for evaluating the query, making it
wider or narrower. If a query predicate uses a property which is not defined on an artifact instance whose scope is within the path-
expression, then the predicate is false for that artifact and it is not returned from the query. Several examples follow:

Example 3: Query Expressions Using Properties

/s-ramp/xsd/XsdDocument[@someProperty]

Revision 1.0 Page 32

 Returns XsdDocument artifact instances which have a generic property named “someProperty”.

/s-ramp/xsd/XsdDocument[@name = 'bob']

 Returns XsdDocument artifact instances which have an artifact name whose value is “bob”.

/s-ramp/serviceImplementation/ServiceInstance[@someProperty =‘high’]

 Returns ServiceInstance artifact instances having a generic property called someProperty
whose value equals ‘high’.

 If the requested property is not defined on the artifact within the set of artifacts
selected for search, then the predicate is false and that artifact is therefore not returned.

Example 4: Query Expression Using Relationships

/s-ramp/wsdl/WsdlDocument[includedXsds]

o Returns all the WsdlDocument artifact instance(s) representing WSDL documents for which the query
predicate evaluates to a non-empty context. The context here consists of the targets of the
includedXsds relationship, therefore any WsdlDocument artifact which has at least one includedXsds
relationship is returned.

o If the relationship in the predicate is not defined on a given artifact within the set of
artifacts selected for search, then the predicate expression is false and that artifact is not
returned.

Example 5: Query Expressions Using Relationships and Properties

/s-ramp/wsdl/WsdlDocument[includedXsds[@someProperty=’true’]]

o Only WsdlDocument artifact instances corresponding to WSDL documents which have at least one
includedXsds relationship instance, that has a property name of “someProperty”, whose value is
“true” will be returned.

o If the relationship in the predicate is not defined on a given artifact whose scope is within the
path expression, then the predicate evaluates to false and that artifact is not returned.

4.4 Query Functions
S-RAMP defines a number of its own query functions in addition to using some already defined in XPath 2.0.

This includes functions which provide several useful simplifications associated with how an artifact is classified. These query
functions use the following syntax:

s-ramp:{function-name}({artifact}, {category-value-1}, {category-value-2}, …)

Table 9 below lists the functions used in S-RAMP. Each of the examples for the classification based functions it describes assumes the
following conceptual OWL ontology:

• class color

o class red

o class white

• class taste

o class sour

Revision 1.0 Page 33

o class sweet

o class spicy

where this ontology is used to classify a set of WsdlService artifact instances:

• name = ”Bread” classifiedBy = [“white”, “sweet”]

• name = ”Wine” classifiedBy = [“red”, “sweet”]

• name = ”Chili” classifiedBy = [“red”, “spicy"]

and each of the classifiedBy URI references to these will be abbreviated simply as the class name here for brevity:

Table 9: Query Functions Used in S-RAMP

Function Descriptions & Examples

s-ramp:classifiedByAnyOf Returns all artifact instances classified by at least one of the specified
OWL URIs or their subtypes.

Syntax: classifiedByAnyOf({artifact},
{classifiedBy_1}, {classifiedBy_2},…)

Using the classification example setup preceding this table, this
example returns all 3 WsdlService artifact instances:

/s-ramp/wsdl/WsdlService[classifiedByAnyOf(., ‘taste’)]

This example returns the Wine and Chili WsdlService artifact instances:

/s-ramp/wsdl/WsdlService[classifiedByAnyOf(., ‘red’,
‘spicy’)]

s-ramp:classifiedByAllOf Returns all artifact instances classified by every one of the specified
OWL URIs or their subtypes.

Syntax: classifiedByAllOf({artifact},
{classifiedBy_1}, {classifiedBy_2},…)

This example returns all 3 WsdlService artifact instances:

/s-ramp/wsdl/WsdlService[classifiedByAllOf(., ‘taste’)]

This example returns only the Wine WsdlService artifact instance:

/s-ramp/wsdl/WsdlService[classifiedByAllOf(., ‘red’,
‘sweet’)]

s-ramp:exactlyClassifiedByAnyOf Returns all artifact instances classified by at least one of the specified
OWL URIs. Subtypes are not considered:

Syntax: exactlyclassifiedByAnyOf({artifact},
{classifiedBy_1}, {classifiedBy_2},…)

This example returns none of the WsdlService artifact instances:

/s-ramp/wsdl/WsdlService[exactlyClassifiedByAnyOf(.,
‘taste’)]

This example returns only the Wine and Chili WsdlService artifact
instances:

Revision 1.0 Page 34

/s-ramp/wsdl/WsdlService[exactlyClassifiedByAnyOf(., ‘red’,
‘taste’)]

s-ramp:exactlyClassifiedByAllOf Returns all artifact instances classified by every one of the specified
OWL URIs. Subtypes are not considered:

Syntax: exactlyclassifiedByAllOf({artifact},
{classifiedBy_1}, {classifiedBy_2},…)

This example returns none of the WsdlService artifact instances:

/s-ramp/wsdl/WsdlService[exactlyClassifiedByAllOf(.,
‘taste’)]

This example returns only the Wine WsdlService artifact instance:

/s-ramp/wsdl/WsdlService[exactlyClassifiedByAllOf(., ‘red’,
‘sweet’)]

xp2:matches This is the XPath 2.0 matches function, which returns an xsd:boolean
indicating whether {value} of its first argument matches the regular
{expression} that is its second argument.

Syntax: matches({value}, {expression})

The expression may use wildcards, but only in the form ‘.*’

This example returns all artifact instances (of any Artifact Type) from
the Service Implementation Model, whose artifact name matches
‘.*account.*’, and a user-defined version property whose value is ‘1’.

Note: if a property or relationship has no namespace, the default
namespace is “s-ramp”:

/s-ramp/serviceImplementation[xp2:matches(@name, ‘*account.*
‘) and @version = ’1’]

4.5 S-RAMP Query Grammar
This section describes the XPath2 based query grammar used in S-RAMP. It is based on a redacted subset of the XPath 2.0 grammar.

QName ::=

 [http://www.w3.org/TR/REC-xml-names/#NT-QName]

s-ramp query ::=

artifact -set

| artifact -set ‘[‘ predicate ‘] |

| artifact -set ‘[‘ predicate ‘]’ ‘/’ subartifact-set

artifact- set::=

location-path

Revision 1.0 Page 35

location-path::=

/s-ramp

|/s-ramp/<artifact-model>

| /s-ramp/<artifact-model>/<artifact-type>

| //<artifact-type>

subartifact-set:: =

relationship-path

| relationship-path ‘[‘ predicate ‘]’

| relationship-path ‘[‘ predicate ‘]’ ‘/’ subartifact-set

| FunctionCall

relationship-path::=

any-outgoing-relationship

| <s-ramp-relationship-type>

any-outgoing-relationship::=

outgoing

any-incoming-relationship:: =

incoming

Predicate::=

Expr

Expr::=

AndExpr

AndExpr::=

OrExpr

| AndExpr 'and' OrExpr

OrExpr::=

EqualityExpr

| OrExpr 'or' EqualityExpr

EqualityExpr::=

subartifact-set

|ForwardPropertyStep
| ForwardPropertyStep '=' PrimaryExpr
| ForwardPropertyStep '!=' PrimaryExpr
| ForwardPropertyStep '<' PrimaryExpr
| ForwardPropertyStep '>' PrimaryExpr
| ForwardPropertyStep '<=' PrimaryExpr
| ForwardPropertyStep '>=' PrimaryExpr

| '(' Expr ')'

Revision 1.0 Page 36

PropertyQName ::=

 QName

PrimaryExpr ::=

Literal
| Number

|'$' <PropertyQName>

ForwardPropertyStep ::=

 Subaartifact-set’/’@<PropertyQName>|@<PropertyQName>

FunctionCall ::=

FunctionName '(' (Argument (',' Argument)*)? ')'

Argument ::=

Expr

Literal ::=

'"' [^"]* '"' | "'" [^']* "'"

Number ::=

Digits ('.' Digits?)? | '.' Digits

Digits ::=

[0-9]+

FunctionName ::=

 QName – NodeType

NodeType ::=

'comment'

| 'text'

| 'processing-instruction'

| 'node'

4.6 Stored Queries
S-RAMP provides support for storing queries in the repository using the StoredQuery Artifact Type (refer to Section 2.3 for UML
representation). This can be convenient because it allows quick execution of a frequently performed query. The syntax associated
with creation, retrieval, update and deletion of a Stored Query is binding specific. Refer to the appropriate binding document of this
specification for details.

The StoredQuery Artifact Type does NOT extend BaseArtifactType as do most other Artifact Types in S-RAMP, which means it is
simpler and possesses only these built-in attributes:

• queryName:The name of the Stored Query instance. This must be unique.

• queryExpression: The specification of the query expression.

Revision 1.0 Page 37

A StoredQuery MAY also contain a list of propertyName values. These are used to indicate to the server that the results returned from
the execution of the query SHALL include values for those property names when they are present in the artifact instance(s) returned.
This can be valuable in bindings which may not necessarily return the complete artifact in query results. The actual format of the query
response is binding specific.

Revision 1.0 Page 38

A Core Model Schema
For convenience, an S-RAMP Core Model Schema xsd file is also provided at:

http://s-ramp.org/2010/specification/schemas/coremodel.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema

targetNamespace="http://s-ramp.org/xmlns/2010/s-ramp" version="1.0"
xmlns:tns="http://s-ramp.org/xmlns/2010/s-ramp"
xmlns:s-ramp="http://s-ramp.org/xmlns/2010/s-ramp"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

 <xsd:import namespace="http://www.w3.org/1999/xlink" schemaLocation="http://www.w3.org/1999/xlink.xsd" />
 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2009/01/xml.xsd"/>

 <!-- Core data types: -->

 <!-- Base type for almost all Artifacts in S-RAMP. Most other types in S-RAMP extend
 this one. Extensions of BaseArtifactType are limited to attributes. -->
 <xsd:complexType abstract="true" name="BaseArtifactType">
 <xsd:sequence>
 <xsd:element ref="tns:classifiedBy" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="tns:relationship" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="tns:property" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="description" type="xsd:string" use="optional"/>
 <xsd:attribute name="createdBy" type="xsd:string" use="required"/>
 <xsd:attribute name="version" type="xsd:string" use="optional"/>
 <xsd:attribute name="uuid" type="xsd:string" use="required"/>
 <xsd:attribute name="createdTimestamp" type="xsd:dateTime" use="required"/>
 <xsd:attribute name="lastModifiedTimestamp" type="xsd:dateTime" use="required"/>
 <xsd:attribute name="lastModifiedBy" type="xsd:string" use="required"/>

<xsd:anyAttribute namespace="##any"/>
 </xsd:complexType>

 <!-- Base type for all Derived Artifacts in S-RAMP -->
 <xsd:complexType abstract="true" name="DerivedArtifactType">
 <xsd:complexContent>
 <xsd:extension base="s-ramp:BaseArtifactType">
 <xsd:sequence>
 <xsd:element name="relatedDocument" type="tns:target" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Base type for all Documents in S-RAMP -->
 <xsd:complexType abstract="true" name="DocumentArtifactType">
 <xsd:complexContent>
 <xsd:extension base="s-ramp:BaseArtifactType">
 <xsd:attribute name="contentType" type="xsd:string"/>
 <xsd:attribute name="contentSize" type="xsd:long"/>
 <xsd:anyAttribute namespace="##any"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Base Type for all XML documents. Specific document types extend XmlDocument -->
 <xsd:complexType name="XmlDocument">
 <xsd:complexContent>
 <xsd:extension base="s-ramp:DocumentArtifactType">
 <xsd:attribute name="contentEncoding" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Base type for all User Defined Artifacts in S-RAMP -->
 <xsd:complexType name="UserDefinedArtifactType">

Revision 1.0 Page 39

http://www.w3/

 <xsd:complexContent>
 <xsd:extension base="s-ramp:BaseArtifactType">
 <xsd:attribute name="userType" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Relationship target artifact's UUID. Used by all types of relationships -->
 <xsd:complexType name="target">
 <xsd:simpleContent>
 <xsd:extension base=”xsd:string”>
 <xsd:anyAttribute namespace=”##any”/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- Global Element Declarations -->

 <!-- Relationship element used for all GENERIC (user-defined) Relationships -->
 <xsd:element name="relationship">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:relationshipType" minOccurs="1" maxOccurs="1" />
 <xsd:element name="relationshipTarget" type="tns:target" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##any"/>
 </xsd:complexType>
 </xsd:element>

 <!-- Stored Queries Artifact element -->
 <xsd:element name="StoredQuery">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:propertyName" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="tns:queryExpression" />
 </xsd:sequence>
 <xsd:attribute name="queryName" type="xsd:string"/>
 <xsd:anyAttribute namespace="##any"/>
 </xsd:complexType>
 </xsd:element>

 <!-- Property -->
 <xsd:element name="property">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:propertyName" minOccurs="1" maxOccurs="1" />
 <xsd:element ref="tns:propertyValue" minOccurs="1" maxOccurs="1" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##any"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="relationshipType" type="xsd:string"/>
 <xsd:element name="classifiedBy" type="xsd:anyURI"/>
 <xsd:element name="propertyName" type="xsd:string" />
 <xsd:element name="propertyValue" type="xsd:string"/>

<xsd:element name="queryExpression" type="xsd:string"/>
 <!-- The sourceId and targetId contain the UUID's corresponding to a
 relationship's source and target -->
 <xsd:element name="sourceId" type="xsd:string"/>
 <xsd:element name="targetId" type="xsd:string"/>

 </xsd:schema>

Revision 1.0 Page 40

B SOA Model Schema
For convenience, an S-RAMP SOA Model Schema xsd file is also provided at:

http://s-ramp.org/2010/specification/schemas/soamodel.xsd

NOTE: this schema is based upon the state of the SOA Ontology work at the time of publication. It will be revised as necessary to
reflect any changes made by the TOG SOA Ontology group upon final publication.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

xmlns:tns="http://s-ramp.org/xmlns/2010/s-ramp"

xmlns:s-ramp="http://s-ramp.org/xmlns/2010/s-ramp"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://s-ramp.org/xmlns/2010/s-ramp"

elementFormDefault="qualified" version="1.0">

<xsd:include schemaLocation="coremodel.xsd"/>

<xsd:include schemaLocation="serviceimplementationmodel.xsd"/>

<xsd:complexType abstract="true" name="SoaModelType">

<xsd:complexContent>

<xsd:extension base="s-ramp:BaseArtifactType">

<xsd:sequence>

<!-- Modeled Relationship to abstract DocumentArtifactType-->

<xsd:element minOccurs="0" name="documentation"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ServiceInterface">

<xsd:complexContent>

<xsd:extension base="tns:SoaModelType">

<xsd:sequence>

<!-- Modeled Relationship to abstract DocumentArtifactType: -->

<xsd:element minOccurs="0" maxOccurs="1" name="interfaceDefinedBy"

type="s-ramp:DerivedArtifactType">

</xsd:element>

<!-- Modeled Relationship to ServiceOperation: -->

<xsd:element minOccurs="0" name="hasOperation"

type="s-ramp:target">

</xsd:element>

<!-- Modeled Relationship to InformationType: -->

<xsd:element minOccurs="0" name="hasOutput"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

<!-- Modeled Relationship to InformationType: -->

<xsd:element minOccurs="0" name="hasInput"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

<!-- Modeled Relationship to Service: -->

<xsd:element minOccurs="0" name="isInterfaceOf"

type="s-ramp:target" maxOccurs="unbounded">

Revision 1.0 Page 41

</xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Service">

<xsd:complexContent>

<xsd:extension base="tns:Element">

<xsd:sequence>

<!-- Modeled Relationship to ServiceContract: -->

<xsd:element minOccurs="0" name="hasContract"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

<!-- Modeled Relationship to ServiceInterface: -->

<xsd:element minOccurs="1" name="hasInterface"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

<!-- Modeled Relationship to ServiceInstance: -->

<xsd:element minOccurs="0" maxOccurs="1"

name="hasInstance" type="s-ramp:target">

</xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Effect">

<xsd:complexContent>

<xsd:extension base="tns:SoaModelType">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Event">

<xsd:complexContent>

<xsd:extension base="tns:SoaModelType">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="InformationType">

<xsd:complexContent>

<xsd:extension base="tns:SoaModelType">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Policy">

<xsd:complexContent>

<xsd:extension base="tns:SoaModelType">

<xsd:sequence>

<!-- Modeled Relationship to PolicySubject: -->

<xsd:element minOccurs="0" name="appliesTo"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

Revision 1.0 Page 42

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="PolicySubject">

<xsd:complexContent>

<xsd:extension base="tns:SoaModelType">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="HumanActor">

<xsd:complexContent>

<xsd:extension base="tns:Element">

<xsd:sequence>

<!-- Modeled Relationship to Task: -->

<xsd:element minOccurs="0" name="does"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

<!-- Modeled Relationship to Policy: -->

<xsd:element minOccurs="0" name="setsPolicy"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Element">

<xsd:complexContent>

<xsd:extension base="tns:PolicySubject">

<xsd:sequence>

<!-- Modeled Relationship to Element: -->

<xsd:element minOccurs="0" name="represents"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

<!-- Modeled Relationship to Element: -->

<xsd:element minOccurs="0" name="uses"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element><!-- Modeled Relationship to Service: -->

<xsd:element minOccurs="0" name="performs"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

<!-- Modeled Relationship to Orchestration: -->

<xsd:element minOccurs="0" name="directsOrchestration"

type="s-ramp:target" maxOccurs="1">

</xsd:element>

<!-- Modeled Relationship to OrchestrationProcess: -->

<xsd:element minOccurs="0" name="directsOrchestrationProcess"

type="s-ramp:target" maxOccurs="1">

</xsd:element>

<!-- Modeled Relationship to Event: -->

<xsd:element minOccurs="0" name="generates"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

Revision 1.0 Page 43

<!-- Modeled Relationship to Event: -->

<xsd:element minOccurs="0" name="respondsTo"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ServiceContract">

<xsd:complexContent>

<xsd:extension base="s-ramp:PolicySubject">

<xsd:sequence>

<!-- Modeled Relationship to HumanActor: -->

<xsd:element minOccurs="0" name="involvesParty"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

<!-- Modeled Relationship to Effect: -->

<xsd:element minOccurs="1" name="specifies"

type="s-ramp:target" maxOccurs="unbounded">

</xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="System">

<xsd:complexContent>

<xsd:extension base="tns:Element">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Composition">

<xsd:complexContent>

<xsd:extension base="tns:System">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Choreography">

<xsd:complexContent>

<xsd:extension base="tns:Composition">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Collaboration">

<xsd:complexContent>

<xsd:extension base="tns:Composition">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Orchestration">

<xsd:complexContent>

Revision 1.0 Page 44

<xsd:extension base="tns:Composition">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Process">

<xsd:complexContent>

<xsd:extension base="tns:Composition">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ChoreographyProcess">

<xsd:complexContent>

<xsd:extension base="tns:Process">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="CollaborationProcess">

<xsd:complexContent>

<xsd:extension base="tns:Process">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="OrchestrationProcess">

<xsd:complexContent>

<xsd:extension base="tns:Process">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Task">

<xsd:complexContent>

<xsd:extension base="tns:Element">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ServiceComposition">

<xsd:complexContent>

<xsd:extension base="tns:Composition"></xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

Revision 1.0 Page 45

C Service Implementation Model Schema
For convenience, an S-RAMP Service Implementation Model Schema xsd file is also provided at:

http://s-ramp.org/2010/specification/schemas/serviceimplementationmodel.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema

xmlns:tns="http://s-ramp.org/xmlns/2010/s-ramp"
xmlns:s-ramp="http://s-ramp.org/xmlns/2010/s-ramp"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://s-ramp.org/xmlns/2010/s-ramp"
elementFormDefault="qualified" version="1.0">

<xsd:include schemaLocation="coremodel.xsd"/>
<xsd:include schemaLocation="soamodel.xsd"/>

<!-- All Service Implementation Model artifacts inherit from ServiceImplementationModelType. Service
Implementation Model Artifacts
 can have associated documents. Service Implementation Model Artifacts can have dependencies upon other
Service
 Implementation Model Artifacts. -->

<!-- Service Model Artifact Type -->
<xsd:complexType name="ServiceImplementationModelType" abstract="true">

<xsd:complexContent>
<xsd:extension base="s-ramp:BaseArtifactType">

<xsd:sequence>
<!-- Modeled Relationship(s) to documentArtifactType: -->
<xsd:element name="documentation" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
<xsd:anyAttribute namespace="##any"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ServiceInstance">
<xsd:complexContent>

<xsd:extension base="tns:ServiceImplementationModelType">
<xsd:sequence>

<!-- Modeled Relationship(s) to ServiceInstance(s): -->
<xsd:element name="uses" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />
<!-- Modeled Relationship(s) to ServiceEndpoint(s): -->
<xsd:element name="describedBy" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="extension" type="tns:ExtensionType" minOccurs="0"/>
<xsd:element name="end" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
<xsd:anyAttribute namespace="##any"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ServiceOperation">
<xsd:complexContent>

<xsd:extension base="tns:ServiceImplementationModelType">
<xsd:sequence>

<!-- Modeled Relationship to the DerivedArtifactType that defines this ServiceOperation: -->
<xsd:element name="operationDefinedBy" type="s-ramp:target" minOccurs="0" maxOccurs="1" />
<xsd:element name="extension" type="tns:ExtensionType" minOccurs="0"/>
<xsd:element name="end" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:anyAttribute namespace="##any"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ServiceEndpoint">
<xsd:complexContent>

<xsd:extension base="tns:ServiceImplementationModelType">
<xsd:sequence>

Revision 1.0 Page 46

http://s-ramp.org/2010/specification/schemas/serviceimplementationmodel.xsd

<!-- Modeled Relationship with DerivedArtifactType which defines this ServiceEndpoint: -->
<xsd:element name="endpointDefinedBy" type="s-ramp:target" minOccurs="0" maxOccurs="1" />
<xsd:element name="extension" type="tns:ExtensionType" minOccurs="0"/>
<xsd:element name="end" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="url" type="xsd:anyURI"/>
<xsd:anyAttribute namespace="##any"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<!-- Organization artifact Type. -->
 <xsd:complexType name="Organization">

<xsd:complexContent>
<xsd:extension base="s-ramp:HumanActor">

<xsd:sequence>
<!-- Modeled Relationship(s) to ServiceImplementationModelType: -->
<xsd:element name="provides" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="extension" type="tns:ExtensionType" minOccurs="0"/>
<xsd:element name="end" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
 <xsd:anyAttribute namespace="##any"/>

</xsd:extension>
</xsd:complexContent>

 </xsd:complexType>

 <!-- Generic Extension Type for all un-used element extension points in tns -->
 <xsd:complexType name="ExtensionType">
 <xsd:sequence>
 <xsd:any processContents="lax" minOccurs="1"
 maxOccurs="unbounded" namespace="##targetNamespace"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##any"/>
 </xsd:complexType>

 </xsd:schema>

Revision 1.0 Page 47

D Derived Model Schemas
The subsections which follow define the schemas associated with each of the defined Derived Models in S-RAMP.

D.1 Policy Model Schema
For convenience, an S-RAMP Policy Model Schema xsd file is also provided at:

http://s-ramp.org/2010/specification/schemas/policymodel.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

xmlns:tns="http://s-ramp.org/xmlns/2010/s-ramp"

xmlns:s-ramp="http://s-ramp.org/xmlns/2010/s-ramp"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://s-ramp.org/xmlns/2010/s-ramp"

elementFormDefault="qualified" version="1.0">

<xsd:include schemaLocation="coremodel.xsd"/>

<xsd:complexType name="PolicyAttachment">

<xsd:complexContent>

<xsd:extension base="s-ramp:DerivedArtifactType">

<xsd:sequence>

<!-- Derived Relationship to any other artifact (BaseArtifactType): -->

<xsd:element name="appliesTo" type="s-ramp:target" minOccurs="1" maxOccurs="unbounded" />

<!-- Derived Relationship to a Policy Expression artifact: -->

<xsd:element name="policies" type="s-ramp:target" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="PolicyExpression">

<xsd:complexContent>

<xsd:extension base="s-ramp:DerivedArtifactType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="PolicyDocument">

<xsd:complexContent>

<xsd:extension base="s-ramp:XmlDocument"/>

</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

Revision 1.0 Page 48

D.2 XSD Model Schema
For convenience, an S-RAMP XSD Model Schema xsd file is also provided at:

http://s-ramp.org/2010/specification/schemas/xsdmodel.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

xmlns:tns="http://s-ramp.org/xmlns/2010/s-ramp"

xmlns:s-ramp="http://s-ramp.org/xmlns/2010/s-ramp"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://s-ramp.org/xmlns/2010/s-ramp"

elementFormDefault="qualified" version="1.0">

<xsd:include schemaLocation="coremodel.xsd"/>

<xsd:complexType name="XsdDocument">

<xsd:complexContent>

<xsd:extension base="s-ramp:XmlDocument">

<xsd:sequence>

<!-- Derived Relationships with (other)XmlDocument artifact(s): -->

<xsd:element name="importedXsds" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="includedXsds" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="redefinedXsds" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AttributeDeclaration">

<xsd:complexContent>

<xsd:extension base="s-ramp:DerivedArtifactType">

<xsd:attribute name="NCName" type="xsd:NCName"/>

<xsd:attribute name="namespace" type="xsd:anyURI"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ElementDeclaration">

<xsd:complexContent>

<xsd:extension base="s-ramp:DerivedArtifactType">

<xsd:attribute name="NCName" type="xsd:NCName"/>

<xsd:attribute name="namespace" type="xsd:anyURI"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="XsdType" abstract="true">

<xsd:complexContent>

<xsd:extension base="s-ramp:DerivedArtifactType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ComplexTypeDeclaration">

<xsd:complexContent>

<xsd:extension base="tns:XsdType">

<xsd:attribute name="NCName" type="xsd:NCName"/>

<xsd:attribute name="namespace" type="xsd:anyURI"/>

</xsd:extension>

Revision 1.0 Page 49

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="SimpleTypeDeclaration">

<xsd:complexContent>

<xsd:extension base="tns:XsdType">

<xsd:attribute name="NCName" type="xsd:NCName"/>

<xsd:attribute name="namespace" type="xsd:anyURI"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

Revision 1.0 Page 50

D.3 WSDL Model Schema
For convenience, an S-RAMP WSDL Model Schema xsd file is also provided at:

http://s-ramp.org/2010/specification/schemas/wsdlmodel.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:tns="http://s-ramp.org/xmlns/2010/s-ramp"

xmlns:s-ramp="http://s-ramp.org/xmlns/2010/s-ramp"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://s-ramp.org/xmlns/2010/s-ramp"

elementFormDefault="qualified" version="1.0">

<xsd:include schemaLocation="coremodel.xsd"/>

<xsd:include schemaLocation="xsdmodel.xsd"/>

<xsd:include schemaLocation="policymodel.xsd"/>

<xsd:complexType name="WsdlDocument">

<xsd:complexContent>

<xsd:extension base="s-ramp:XmlDocument">

<xsd:sequence>

<!-- Derived Relationships: -->

<xsd:element name="importedXsds" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="includedXsds" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="redefinedXsds" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="importedWsdls" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

<xsd:attribute name="targetNamespace" type="xsd:anyURI" use="optional"/>

<xsd:attribute name="xsdTargetNamespaces" type="xsd:anyURI" use="optional"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="WsdlDerivedArtifactType" abstract="true">

<xsd:complexContent>

<xsd:extension base="s-ramp:DerivedArtifactType">

<xsd:sequence>

<!-- Modeled "extension" relationship to any wsdlExtension artifact(s) -->

<xsd:element name="extension" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

<xsd:attribute name="namespace" type="xsd:anyURI"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="WsdlService">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

<xsd:sequence>

<!-- Derived Relationship to Port(s) this Service has: -->

<xsd:element name="port" type="s-ramp:target" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Port">

<xsd:complexContent>

Revision 1.0 Page 51

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

<xsd:sequence>

<!-- Derived Relationships with Binding artifact: -->

<xsd:element name="Binding" type="s-ramp:target" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Binding">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

<xsd:sequence>

<!-- Derived Relationship to BindingOperation(s): -->

<xsd:element name="bindingOperation" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

<!-- Derived Relationship with this Binding's PortType: -->

<xsd:element name="portType" type="s-ramp:target" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="PortType">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

<xsd:sequence>

<!-- Derived Relationship to this PortType's Operation(s): -->

<xsd:element name="operation" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="BindingOperation">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

<xsd:sequence>

<!-- Derived Relationship to BindingOperationFault(s) for this BindingOperation: -->

<xsd:element name="fault" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

<!-- Derived Relationship to BindingOperationInput for this BindingOperation: -->

<xsd:element name="input" type="s-ramp:target" minOccurs="0" maxOccurs="1" />

<!-- Derived Relationship to BindingOperationOutput for this BindingOperation: -->

<xsd:element name="output" type="s-ramp:target" minOccurs="0" maxOccurs="1" />

<!-- Derived Relationship with Operation artifact: -->

<xsd:element name="operation" type="s-ramp:target"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="BindingOperationInput">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="BindingOperationFault">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType"/>

</xsd:complexContent>

Revision 1.0 Page 52

</xsd:complexType>

<xsd:complexType name="Operation">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

<xsd:sequence>

<!-- Derived Relationships to OperationInput and OperationOutput for this Operation: -->

<xsd:element name="input" type="s-ramp:target" />

<xsd:element name="output" type="s-ramp:target" />

<!-- Derived Relationship for fault(s) associated with this Operation: -->

<xsd:element name="fault" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

<!-- Only request / response is modeled -->

</xsd:complexType>

<xsd:complexType name="OperationInput">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

<xsd:sequence>

<!-- Derived Relationship with Operation artifact: -->

<xsd:element name="operation" type="s-ramp:target" />

<!-- Derived Relationship with Message artifact: -->

<xsd:element name="message" type="s-ramp:target" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Fault">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

<xsd:sequence>

<!-- Derived Relationship with Message artifact: -->

<xsd:element name="message" type="s-ramp:target" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Message">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

<xsd:sequence>

<!-- Derived Relationship to Part(s) of this Message: -->

<xsd:element name="part" type="s-ramp:target" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Part">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

<xsd:sequence>

<!-- Derived Relationships with ElementDeclaraion and XSDType artifacts: -->

<xsd:element name="type" type="s-ramp:target" minOccurs="0" maxOccurs="1" />

<xsd:element name="element" type="s-ramp:target" minOccurs="0" maxOccurs="1" />

</xsd:sequence>

</xsd:extension>

Revision 1.0 Page 53

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="BindingOperationOutput">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="OperationOutput">

<xsd:complexContent>

<xsd:extension base="tns:NamedWsdlDerivedArtifactType">

<xsd:sequence>

<!-- Derived Relationship with Message for this OperationOutput: -->

<xsd:element name="message" type="s-ramp:target"/>

</xsd:sequence>

<xsd:attribute name="outputNCName" type="xsd:NCName" use="optional"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="NamedWsdlDerivedArtifactType" abstract="true">

<xsd:complexContent>

<xsd:extension base="tns:WsdlDerivedArtifactType">

<xsd:attribute name="NCName" type="xsd:NCName" use="optional"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="WsdlExtension">

<xsd:complexContent>

<xsd:extension base="s-ramp:DerivedArtifactType">

<xsd:attribute name="NCName" type="xsd:NCName" use="optional"/>

<xsd:attribute name="namespace" type="xsd:anyURI"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

D.4 SOAPWSDL Model Schema
For convenience, an S-RAMP SOAP WSDL Model Schema xsd file is also provided at:

http://s-ramp.org/2010/specification/schemas/soapwsdlmodel.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

xmlns:tns="http://s-ramp.org/xmlns/2010/s-ramp"

xmlns:s-ramp="http://s-ramp.org/xmlns/2010/s-ramp"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://s-ramp.org/xmlns/2010/s-ramp"

elementFormDefault="qualified" version="1.0">

<xsd:include schemaLocation="coremodel.xsd"/>

<xsd:include schemaLocation="wsdlmodel.xsd"/>

<xsd:complexType name="SoapAddress">

<xsd:complexContent>

Revision 1.0 Page 54

<xsd:extension base="s-ramp:WsdlExtension">

<xsd:attribute name="soapLocation" type="xsd:anyURI"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="SoapBinding">

<xsd:complexContent>

<xsd:extension base="s-ramp:WsdlExtension">

<xsd:attribute name="style" type="xsd:string"/>

<xsd:attribute name="transport" type="xsd:string"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

Revision 1.0 Page 55

E Pre-defined Relationships
This appendix summarizes all of the pre-defined relationships in S-RAMP.

Table 10: Pre-defined Relationships

Model Name Derived
Model?

Artifact Type Name Relationship Type Name

Core Yes DerivedArtifactType relatedDocument

SOA No

SoaModelType documentation

Service hasInstance

Policy policyDefinedBy

InformationType informationTypeDefinedBy

ServiceInterface hasOperation

{See SOA Ontology for remaining Artifacts and relationships}

Service
Implementation

No

ServiceImplementationModelType documentation

Operation provides

ServiceInstance
uses

hasServiceEndpoint

ServiceOperation operationDefinedBy

ServiceEndpoint endpointDefinedBy

Policy Yes

PolicyAttachment
appliesTo

policies

XsdDocument

importedXsds

includedXsds

redefinedXsds

WSDL Yes

WsdlDocument

importedXsds

includedXsds

redefinedXsds

importedWsdls

WsdlDerivedArtifactType extension

WsdlService port

Port binding

Binding bindingOperation

portType

Revision 1.0 Page 56

PortType operation

BindingOperation

fault

input

output

operation

Operation

input

output

fault

OperationInput
operation

message

Fault message

Message part

Part
type

element

OperationOutput message

Revision 1.0 Page 57

	Preface
	Authors (alphabetically)
	Copyright Notice
	Abstract

	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	Introduction
	1.1 Purpose and Scope
	1.2 Problem Statement and Objectives
	1.3 Use Case Scenarios
	1.4 References
	1.5 Document History
	1.5.1 Conventions and Notation
	1.5.2 XML Namespaces
	1.5.3 Conformance

	1.6 Terminology
	1.7 Abbreviations and Acronyms
	1.7.1 Design Principles
	1.7.2 S-RAMP Schemas

	Artifact Type Model
	2.1 Introduction
	2.2 Artifact Type Models
	2.2.1 Artifact Metadata
	2.2.2 Relationships in S-RAMP

	2.3 The Core Model
	2.3.1 Base Artifact Type
	2.3.2 Document Artifact Types
	2.3.3 Miscellaneous Types

	2.4 Modeling SOA Concepts
	2.4.1 The SOA Model
	2.4.1.1 SOA Model Artifact Types and Relationships

	2.4.2 The Service Implementation Model
	2.4.3 Service Implementation Model Artifact Types

	2.5 Derived Models
	2.5.1 The Policy Model
	2.5.2 The XSD Model
	2.5.3 The WSDL Model
	2.5.4 The SOAPWSDL Model

	2.6 Referencing S-RAMP Artifacts

	3. Classification Systems in S-RAMP
	4. S-RAMP Query Model
	4.1 Overview
	4.2 Query Dialect (XPath2) Context
	4.3 Query Expression Predicates
	4.4 Query Functions
	4.5 S-RAMP Query Grammar
	4.6 Stored Queries

	A Core Model Schema
	B SOA Model Schema
	C Service Implementation Model Schema
	D Derived Model Schemas
	D.1 Policy Model Schema
	D.2 XSD Model Schema
	D.3 WSDL Model Schema
	D.4 SOAPWSDL Model Schema

	E Pre-defined Relationships

