Symptoms Automation Framework Technical Discussions
23/09/2010

Summary

· Consensus on the need for finer grained interfaces
· Consensus on that there are benefits of keeping some sort of Types store, namely: metadata on Symptoms and Prescriptions to assist collaborative and authoring tools and their interoperability.

· Consensus on that we keep the Case Manager role

· Consensus on that we should keep the spec implementation agnostic and possibly add bindings (WS-*, REST) in Appendices
Teleconference Minutes
Pre-TC identified issues

· 29/10/2009

· Issue 0018: discusses both symptoms and catalogue as well. may be put in a profile. Dave mentions (Marcelo +1) that it involves both the symptom contents and the delivery mechanisms and both should be discussed.

· Issue 0023: this might be irrelevant since a symptoms type was introduced. Marcelo will report back on this next week.

· Issue 0030: scope might have been identified with three attributes, reporter, subject and one more not as yet identified but missing from the current spec. Dave and Marcelo to have a look at this one.

· Issue 0043: involves partial matches and composability of signatures. This needs to be discussed further. Jeff suggested that decomposing is difficult and we should instead discuss composition from simpler parts. Vivian mentions resemblance to SQL stored procedures and how Abdi discussed functional XPath for specific problems. Marcelo, Paul, Dave, Stavros agree with focusing on composability.

· Issue 0044: might not be important to specify in the spec?

· Issue 0046: Dave sees this as straightforward but we should still discuss it further. Vivian suggests in order to avoid dependencies we could apply the best possible prescription and then get feedback from the symptom source on the efficacy and repeat the cycle if necessary.

· Issues 0047, 0048, 0049 agreed to defer to next meeting due to time constraints
· 05/11/2009

· Issue 47 – Versioning

· Vivian: Could use namespaces in Spec for versioning.

· Paul: Version the entities themselves (in the catalog), ie: Protocol type or example, URI:Av1, URI:Av2.

· Jeff: Needed for compatibility between newer/older releases (but doesn’t preclude using namespaces). Goes hand-in-hand with Extensibility.

· Issue 48 – Extensibility

Vivian: JSTL, tacked on an open ended datatype for every entity. Allow free content (at your own risk). SAF uses extensibility for Protocol.Process, Symptom.Content, etc. Allows extensibility for Practitioner, Symptoms Emitter. But energy domain consumers (for example) may need additional fields that we haven’t considered. Use at your own risk.
· Issue 49 – Symptom grouping (by emitter)

· Jeff: Could capture in the signature, but emitter is uniquely positioned to provide.

· Alvin: On/Off (state). Alarmid.

· Vivian: Prototypes show this is important for performance
· 12/11/2009

· Issue 23 – Keywords
Marcello: even if symptoms have different name they could still have same meaning as derived by keyword.
Jeff: this is still a valid issue. Could we put keywords it in the signature?
Vivian: don’t think it will speed up diagnosis/filtering process
Dave recommends to keep this issue open.
· Issue 30 – Scopes
Marcelo identified three scopes: reported syndrome scope; scope of what caused the syndrome; and scope of what is affected by prescription. Dave suggests we keep this issue open (and perhaps see what happens on the prescription side)

Interfaces and Types Store (mostly)
· 10/06/2010

· SAF interfaces

· We would like to have more fine grained interfaces, e.g. for taking protocols to link them to syndromes. There are currently some preliminary ideas in place in terms of a resource model and HTTP interface, very straightforward for each entity (i.e. Syndrome, Protocol, etc).

· Should we put Symptom types in catalogue? Who puts them there? To build syndromes you need them, and probably the symptom emitters put them there.

· Is it the same with Protocols? Who gives the prescription types? E.g. linux-specific practitioner publishes prescriptiontype and someone that writes a protocol will use that to create its protocols. Publishing prescriptiontypes into the catalogue might be valuable for knowing which arguments to extract for this prescriptiontype. It should be more than just the type (i.e. URI) perhaps a list of arguments or a description, because we need to know how to write the directive. Same for symptom type, content is needed or its structure.

· Diagnostician is a symptom handler, who can list supported types, but why would he need to do that? He is dumb in that respect; he only maps them to the symptom store contents.

· Perhaps we need some sort of registration process for symptom emitters and practitioners? And their supported types? At FLE we have played with both registration of an extended POC, but also discovery.
· An operation that is missing is associating a protocol to a syndrome, but do we need to support this through the SAF framework -possibly as a convenience operation.

· What is the subject-relevant information that we could have? Subject is only needed in matching within the signature and protocols. If we define another first-order entity, we could add some fields in the subject, but we should be careful not to clutter the spec unnecessarily
· 17/06/2010

· SAF interfaces

· Resource Model – reviewed Stavros’ doc.

· Subject/Reporter as 1st order entities? Jeff – Seems too convoluted.
· SAF Type Registry

· This would be a new entity for the purposes of housing SymptomType & PrescriptionType entries.
· Likely operations on the registry:

· registerSymptomType

· registerPrescriptionType

· listSymptomType

· listPrescriptionType
· Could provide additional information, such as Type owner, parameter signature (for PrescriptionType). An example of the latter – A prescription type of ‘Reboot’ might be associated with a hostname parameter. The registry could house that information, allowing a Protocol author to properly code the Protocol directive.
· Alvin – instances could be registered as well, ie: practitioners, emitters, diagnosticians, etc. May defer discussion on this. Stavros – leave as an implementation detail.
· Currently SymptomType & PrescriptionType are returned by SymptomSource & Practitioner (respectively). Alvin – would keep these, as they have value in isolation.
· Alvin – Some confusion of CatalogEditor. Does it make sense as a role? Stavros’ point was to capture this role as one that invokes operations on the Catalog interfaces.

· 28/06/2010

· Interfaces – more granular operations on the catalog. Introduction of type registry.

· Questions about type registry.

· Vivian – useful for authoring syndromes/protocols. Not mandatory to register types.

· Vivian – could include symptom types, protocol types, prescription type, and syndrome type. Need more than what is in the symptom store.

· Paul L – like this concept
· 12/07/2010

· Spec changes

· CatalogueSource

· Vivian: CatalogueSource makes more sense than CatalogueEditor, the latter sounds like more centralized.

· Stavros: CatalogueSource sounds like someone providing a whole Catalogue while we want to move to more fine grained options. In our use case we also have many entities potentially contributing to the Catalogue.

· Jeff: CatalogueContributor?

· Alvin: likes CatalogueSource as Editor might not be available and Source is more realistic.

· Dave: Source might restrict semantics, but Editor may not capture the potentially most common use case of someone actually providing a whole Catalogue

· Case Manager

· Dave: if we remove it, Diagnostician takes more responsibilities and we need to capture all Case Manager’s duties elsewhere.

· Leaving it in will give us more flexibility to do more things (e.g. get info from many Diagnosticians etc). Decided to keep Case Manager.

· Type Registry

· Throw it in the spec and review it

· Interfaces

· Roles implement interfaces (which are normative).

· Stavros: isn’t there a problem with the term Interfaces in that it might imply specific (i.e. WS) implementations?

· Dave: we should keep Interfaces separate from implementations of course. Keep relevant chapter abstract from WS.

· Dave: once we merge model, interfaces, and main spec, do we want to approve as a Committee Draft? It may be useful as a public reference.

· Vivian: use XQuery as opposed to XPath (as per the latest discussions), as it is more powerful and flexible. It was also Tom Rutt’s recommendation
· 19/07/2010
· Spec changes

· Catalogue Source, Paul doesn’t like the term either. But “Contributor” and “Editor” have connotations to how Syndromes are created and should also be avoided.

· Types Store might include semantic information as well, e.g. schema for the Symptom content, and arguments for Prescription Types, as this is going or be very handy for Symptom and Protocol/Prescription constructors or handlers. Is this an extension to the Catalog or a separate store? Implementation details remain abstracted. Paul: why before we didn’t think about this? Dave: drilling down in the Cloud use case, we discovered that significant value is in integrating domains, hence knowing what is happening in other domains, and this is very helpful. Paul: Types store might not be needed since Syndrome author defines syndromes and symptoms first and then emitters “adopt” the specified symptoms types. Stavros: what if emitters exist already, and a client wants to build his system from scratch and wants to know what is already available? Vivian: if we cannot strongly favor the importance of the Types Store, we could add this info as extension to the Catalog or Symptoms Store. Paul: from the point of view of interoperability maybe it is better to increase the flexibility of existing roles instead of adding a new one. Vivian: maybe put down a couple of options and vote on them (if we cannot reach consensus).
· 26/07/2010

· Spec changes

· Types Store: would anyone use it decoupled from the Catalogue? Types are strongly linked to Syndromes and Protocols so maybe they are meant to be in the same entity/store. Alvin: believes it should be kept separate architecturally.

· Jeff: we may have to define first class entities for Prescription and Symptom types because we may need more things defined along with them, e.g. content schema for symptoms, arguments for prescriptions etc.

· We cannot safely detect existing symptom types by scanning the symptoms store because some symptoms type instances may have not been emitted yet (e.g. if they’re rare or if building a SAF from scratch). Jeff: we could also make use of schemas instead of trying to determine this from the symptoms store.

· Jeff: symptom emitters register once with the types store and then just emit symptoms. Paul: doesn’t agree cause this violates the “dumb” emitters principle. Symptom emitters should not even know the existence of such stores.

· Jeff: if we focus on Prescription we can see that such a types store is very helpful in defining Protocols by knowing the parameters/arguments needed to construct Prescriptions (and hence writing the directive properly). Paul argues that this is possibly out of scope: how authors write their Protocols should not be of concern to SAF users. However, if this is about interoperability of authoring tools then the Types Store makes sense, as it would help the ecosystem to grow.

· Paul: before we commit to using a Types Store we should have a look at existing standards so that we avoid duplication. A similar sounding “knowledge repository” standard under OMG seemed particularly complex and doesn’t probably constitute prior art.

· Vivian: Types Store makes more sense if it is to hold all types (and “metadata”) for all SAF elements (i.e. Symptoms, Syndromes, Protocols, Prescriptions)

· 20/09/2010

· Types store is to promote collaborative and authoring tools. Without it domain experts would have to use out-of-SAF means to exchange knowledge and build a SAF system. It will probably be logically separated from Symptoms store and Catalogue because it may be federated and used in different ways than those
Email Threads

· June 2010: Spec changes (Stavros, Jeff, Dave, Vivian)
Some changes I propose for the main spec based on our recent discussions:

- CatalogueSource -> CatalogueEditor (or something that denotes the more fine grained control)

 Jeff – makes sense.
- Case Manager -> remove? We have no real use for a Case Manager in the spec and certainly not in our implementation. I think this is redundant unless we consider adding "Case" as well as a concept –which might complicate things.

Jeff – Case Manager is an Orchestrator, and seems to be implementation specific.

What are the differences with the Diagnostician? If the Case Manager is reduced to only forwarding stuff to the Diagnostician, couldn't we just do without him?

The idea originally of having a separate Case Manager was to possibly integrate several Diagnosticians with different specialities. I'm not real worried one way or another, as it is not normative in the spec and only serves to guide. It might be better to loose the CM and just have on Diagnostician and then hint that more complex renderings of the spec are possible.

OK, that makes some sense. In my mind, Diagnosticians can differ only in terms of how sophisticated they're –from the SAF perspective, they merely check Syndrome signatures from one or more Catalogues against the Symptoms in one or more Symptom stores. Is that what you mean by "different specialties"?

Yes. But there may be cases where the "knowledge" cannot be held entirely in the catalogue. In these cases that Diagnostician might also be specialized in other ways as well.

- Add TypeRegistry –maybe with a better name? Also, this by no means mandates the actual existence of a registry in the system, but simply a point where users can find existing types. How this is to be implemented is a detail out of the spec (e.g. could be implemented as an actual registry/store, or as a query mechanism that collects this information from the various places in the framework).

Jeff – Why wouldn’t the Catalog be a good place to store the Type information? Answering my own question: Architecturally, it is probably best to separate Practitioner/SymptomEmitter registered information from CatalogEditor supplied information. In an implementation, a single data store could be used for both (simplifying administration, maintenance, etc). Does that sound about right?

Kind of agree. We should not mandate implementations. We had a discussion with Dave about this, he might be able to chip in, but generally, the Catalogue contains the "knowledge" in your system in a sense. The symptom and prescription types are building blocks but not really knowledge, so they should be kept separately.

Basically you guys have the same view I do. One could implement them as one thing, but generally I see the catalogue as more dynamic that the TyeRegistry. I also like Stavros' knowledge line of thinking. I would model them separately in the spec for these reasons. Implementers are free to render it how they wish.

Good, so it seems we all (?) agree on this.

That's the plan.

- I have some issues with the interfaces as set out in the spec. "Interfaces" imply specific interaction semantics, and the way they are currently spelled out makes me uncomfortable. In a sense, what we have there are not interfaces, but Roles! But we already have the term role for the active roles in the framework, so this makes things tricky (imagine: "The role of SymptomHandler can be taken by the role of Diagnostician" :-\) And these roles have some operations which we should spell out not in the common format ("getPrescriptionTypes" etc) but in a more loose way ("get/list prescription types"). Then in the relevant appendix we make it more concrete with specificities, e.g. REST.

Jeff – I think the first column in our Interface table is just the ‘name’ of the Interface, not a role. For example, SymptomHandler is not a role, but just the name of an interface. Agree that the operations should be defined in a loose way.

Yes Jeff you are right here.

 Yes I know it's the name of the interface as it is, but conceptually it's something like a role: SymptomEmitter and PrescriptionEmitter don't even have operations in them! Which means they're there simply to denote that an entity in the system (e.g. Practitioner) has this specific rights/permissions/role. Exact terminology is eluding me right now, but I hope you guys understand what I mean...

Here are my terms:

A Role is an entity in the system that may (or may not) implement certain Interfaces. It really is just that simple. The Interfaces are normative and the role aren't.

I am still a bit uncomfortable, something bugs me here. What is an Interface with no operations?

I see where you are struggling. Think of the operation-less interfaces as having to implement some client side capabilities, e.g. they make calls on the service operations of other interfaces. But your right "Interface" might not be the right term. "Interaction Pattern"?

CatalogueSource -> CatalogueEditor”, I think semantically CatalogueSource hints more where the knowledge base comes from, rather than who is maintain it – CatalogueEditor. CatalogueSource makes more sense from reading the whole paragraph as well.
