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Let me start by apologizing for jumping into this rather late in the process and for possibly revisiting 
stale issues. I hope that this pedantic diatribe, from which text may be freely copied, will contribute to a 
more precise reframing of the spec – assuming, of course, that this is still an active project and someone 
out there wants a corrected v2.0. 
 
Straigh�orward nits, correc�ons, and sugges�ons: 

• Section 2.1.1: {nit} the definition of GF_POW is somewhat sloppy because, however you 
interpret the ellipsis, the smallest power that can be computed by the formula, as given, is 
GF_MUL(X,X) = X2; even “GF_POW(X, i) = GF_MUL(X, GF_MUL(X, … , GF_MUL(X, 
GF_MUL(X,1))…)), with exactly i calls to GF_MUL, if i>0 and 1 if i=0,” would be more accurate. 

• Section 2.2.1: It might help to identify S, at least in passing, as the matrix of random share-
generating polynomials that must be evaluated on share ids (in 1st column) to produce shares, 
and that F is precisely that evaluation – in much the same way I is referred to as an 
“interpolation function” in 2.2.2. 

• {nit} “pseudo code” should probably be “pseudocode” (unless this is a “which side of the pond 
you’re on” issue) 

• CheckErrors: Since share[i] is a single byte iden�fier, what does “if share_id[i] not unique” really 
mean inside a loop on i? There should be pseudocode for something that captures this C++: 
(“length as vector doesn’t agree with its cardinality as a set”): 
 
 std::vector<byte> share_ids; 
 std::set<byte> setOfNumbers(share_ids.begin(), share_ids.end()); 

  if (setOfNumbers.size() != share_ids.size()) 
   throw 7; // "share ID values are not unique"; 

 
• CalculateShares: “S[i][0] = secret[i]” should be moved out of the inner loop on j. 
• Sec�on 2.2.2: L(i)(U) is introduced twice, and in its defini�on “GF_SUM” should be “GF_ADD.” It 

could also be described as something like the “value of the i-th Lagrange polynomial.” 
• “I (U, V) = GF_SUM(X[i], m)” should be “I (U, V) = GF_SUM(X, m)” – GF_SUM takes a vector as 

first argument, not a byte – and, for a similar reason, GF_PROD in the defini�on of X[i] should be 
GF_MUL.” 

• In “share[i] = a vector of shares (i = 0 … m)...” the range should be “(i = 0 … m-1),” which would 
than agree with the ranges in CheckErrors and RecombineShares. 

• “The pseudo code [sic] algorithm for recombining the n shares…” should be “The pseudocode for 
recombining the m shares…” 

• CheckErrors: there’s no need to compare the length of share[0] with itself, so the range here 
should be “i = 1 to m – 1.”  

• The S matrix constructed in the pseudocode of 2.2.1 for CalculateShares is the transpose of the S 
matrix of D.1.2, possibly causing confusion. (It did, in fact, confuse me for a time, when I skipped 
over the definitions and tried to reconcile the computations that followed in those two 
sections.) I suggest transposing D.1.2, simply using a different symbol for S in that section, or 
adding a note calling out the change of notation. What’s amusing is that the code for 
RecombineShares amounts to construc�ng the S matrix in the D.1.2 orienta�on. 



• Section 2.3: “the following tables apply,” “The following EXP and LOG tables are used for each 
defined polynomial,” and “Note: tables are defined such that…” should be replaced by precise 
defini�ons: “Each pair of tables is defined as the powers and discrete logs of a suitable field 
element (a specific “primitive polynomial”) in each representa�on” (see below for those 
elements). That they are inverse func�ons (away from 0) is worth men�oning but it is NOT the 
basis for their defini�on – as one of the two equally likely ways of parsing the third of these 
sentences would imply. 

• Section 2.4: errors in test vectors – the pseudocode in 2.2.1 correctly says R is of length (m-1)L, 
but the test vectors here provide nL bytes for each R. The random vectors in E.2.1 are of the 
correct length, and I can validate all those tests. 

• Sec�on D.1.1: “Thus, P contains the follow [sic] elements” 
• App. E. "…for both the polynomial and the polynomial [sic]" should be something like "in both of 

our chosen representations." 
• The titles of sections E.*.1, E.2 (P011D is missing!), and E.*.2 could/should be better! Isn’t the 

look-up table approach also "GF(256)-based?" Perhaps, “Implementation using look-up tables,” 
"Using the table of powers of a primitive element," or even “Using the cyclic structure of the 
multiplicative group” juxtaposed with "Using polynomial arithmetic" would work – but, yeah, 
they're all ugly choices! 

 
More substantive comments as well as more nits, that (may) require discussion: 
  

• Section 2.1 (until otherwise noted): {nit} “[TSS]...provides a mechanism to be able to…” is 
awkward; perhaps: “[TSS] …allows us to…?” 

• “…referred to as either k-of-n or m-of-n where k or m…”  I think it is en�rely permissible to 
change the “k” to “m” throughout the leading quote and eliminate the two back-reference “k” 
alterna�ves as they add nothing but confusion to the presenta�on. If anyone feels squeamish 
about this, an editorial remark could be added about the minor change. 
 

• "Shamir’s scheme is based on polynomial interpolation. For interoperable systems the [sic] 
polynomial must be specified. The maximum number of shares or splits is determined by the 
specific polynomial." 

  
"Polynomial interpolation" in the first sentence, refers to the process of finding the unique polynomial, 
f(x), of degree m-1 over GF(28) whose graph {(x,y) ∈ GF(28) x GF(28) | y=f(x)} passes through the m points 
(share_id[i], share[i]), i=0,…,m-1, corresponding to a selection of m of the n shares; that such an f(x) 
exists is guaranteed by construction of the shares.  
 
In the second sentence, "polynomial" refers to an irreducible polynomial p of degree 8 over GF(2) whose 
maximal ideal <p> in the polynomial ring GF(2)[X] leads to an identification (“representation”) of GF(28) 
with the quotient field GF(2)[X]/<p>. It thus provides a concrete realization of the addition and 
multiplication operations in GF(28) (as those induced by grade-school polynomial arithme�c performed 
modulo p), and by natural extension, the GF(28)[X] arithmetic used throughout the paper. Use of the 
definite article with “polynomial” is inappropriate as there is no proper antecedent to which “the 
polynomial” could possibly refer, and it is likely to mislead the uninitiated into thinking it somehow 
refers to the same word in the preceding sentence. It doesn’t. 
 
The claim in the third sentence is incorrect: the maximum number of shares is determined by the choice 
of field, not its representation. In TSS over GF(28), a random polynomial S ∈ GF(28)[X] selected for share 



production can only be evaluated on the 255 non-zero elements of GF(28) (called “share ids” in the 
draft), thereby yielding at most 255 shares. (We take S to be of degree m-1 to obtain a threshold value 
of m. One byte, s ∈ GF(28), of a possibly longer secret is inserted into S as its constant term, ensuring 
that S(0)=s, and we choose at random the remaining m-1 higher order coefficients.) The choice of 
GF(28)[X] for share polynomials limits us to 8-bit secrets and dictates that we regard a long secret as a 
sequence of bytes, each of which is split into shares independently – a process that should be made 
more explicit in the text. That the bound n <= 255 is independent of the representation of GF(28), i.e., of 
the choice of p, is correctly captured in the CheckErrors pseudocode of section 2.2.1. 
 
I feel that a mathematically precise overview of the Shamir construction – couched in intuitive, 
geometric language that, at a minimum, describes how the shares are split and what polynomial 
interpolation does for us – deserves to be presented in the introduction. A reordering of my sentences in 
the preceding three paragraphs (with judicious edits) would hopefully be seen as an improvement on 
the current text. 
  

• "In this specification, we select irreducible polynomials for interpolation over a finite field…" 
  
Some may regard this as nit-picking, but again, the polynomials referred to in this paragraph are chosen 
for the purpose of representing GF(28) as two particular quotients of the ring GF(2)[X]. You do utilize 
these representations to compute shares and recombine them – after all, they provide the concrete 
means of performing GF(28)[X] arithmetic that is required for interoperability – but strictly speaking 
you're not selecting these polynomials "for interpolation," interpreted as “for the purpose of 
interpolation.” {The existing text is much like saying "I’m going to paint my car green to go shopping," 
when shopping is not all you intend to do with the repainted car.} 
  

• “…over a [sic] finite field (Galois field) of the [sic] order 28” 
• “referred to as GF(28) or GF(256)” 
• “Within [sic] the finite field,” 

 
There’s only one field of order 28 (up to isomorphism), so the ar�cle “a” should be “the.” “of order 28” is 
preferred. {nit} The GF(28) nota�on beter captures its common definition as the extension of GF(2) of 
degree 8, but unfortunately it is not used in the sequel; I suggest making the change. “Within” is 
completely inappropriate here as the polynomials about to be introduced live in GF(2)[X], not GF(28)! 

• "The first polynomial (denoted throughout the rest of this document as 011B…" 
 
I found this promise of a consistent use of "011B" and "011D" to be frequently broken, the polynomials 
being generally referred to as "polynomials 1 and 2," and explicitly written down in App. E. I think that 
use of "P011B" and "P011D" for both the polynomials and their associated representations would be 
better throughout. The tags 011B and 011D should also be attached to the LOG/EXP tables (as they are 
to the test vectors), if only to signal the dependence of those tables on the choice of irreducible (even if 
the dependence on choice of generator is suppressed; see following comments for more on that point). 
 

• Sections 2.1.1 introduces the reader to the EXP and LOG tables but omits a clear explanation of 
their meaning. Section 2.3 makes matters worse (see below). 

• “The exponential function” only makes sense if a particular generator of the multiplicative group 
of non-zero elements of GF(28) is specified; otherwise, there are many exponential functions. 



 
An old mathematician will recognize that EXP011B[0x01] = 0x03 means we're using the (residue class of 
the) primi�ve polynomial x+1 (mod P011B) as generator of the mul�plica�ve group of GF(2)[X]/<P011B>; 
EXP011B captures its successive powers encoded as bytes; and LOG011B is the inverse discrete log 
func�on. Similarly, EXP011D[0x01] = 0x02 means we've taken x as generator in the P011D 
representa�on.  

But what is a young engineer to make of the exis�ng text, given that a description of the actual role of 
P011B and P011D is never made explicit, and EXP/LOG are not precisely defined?  
 
I guess what I’m objecting to here is a certain lack of mathematical rigor in the document; it could be 
much better! I suppose one could take the position that this is an engineering document, not a math 
paper. But I’d counter by holding up IEEE P1363 2000 as an excellent model of a mathematically rigorous 
engineering document! They do exist and, I believe, they are worth trying to produce. 
 

• “All bytes in the threshold secret sharing algorithm are interpreted as finite field elements...” 
 
What this is trying to say is that there is an obvious correspondence between bytes [b7b6…b0] and 
elements of GF(2)[X]/<p>, i.e., residue classes of polynomials b7x7+b6x6+…+b1x+b0 ∈ GF(2)[X] modulo the 
chosen irreducible p. In both representa�ons, bytes are regarded as compact encodings of polynomial 
residue classes. 

The following might be a suitable introduc�on to sec�on 2.3: 
 
Arithme�c opera�ons in GF(2)[X]/<p> can be performed naively using the polynomial arithme�c taught 
in grade school with the results reduced modulo p, but computa�ons in the mul�plica�ve group (i.e., 
mul�plica�on, inversion, division, and powers) can be carried out much more efficiently using a look-up 
table of the powers of a primi�ve element and another table of its discrete logs. 

Once a representa�on is chosen primi�ve polynomials are abundant and easy to find; the corresponding 
EXP/LOG tables are easily generated; and all provide equally efficient mul�plica�on opera�ons with 
iden�cal results. However, it’s natural to look for the “smallest” primi�ve when we have an obvious (and 
canonical) ordering of our field. In the P011D representa�on, the smallest non-constant polynomial x = 
[x02] is primi�ve and so provides good EXP/LOG tables. However, x = [x02] is not primi�ve in the P011B 
representa�on; it has order 51:  

LOG011B[0x02] = 0x19 = 25, so x51 = ((x+1)25) 51 = (x+1)255*5 = 1. 

This is why we take x+1 = [0x03] as generator for the EXP/LOG tables in that representa�on: it’s primi�ve 
and the next larger element in the lexicographic ordering of bytes/field elements. 

------------------------- 

I think it would be helpful to insert an illustra�ve example mo�va�ng the use of the EXP/LOG tables 
(thereby explaining the two different approaches to GF(28)[X] arithme�c presented in App. E). Something 
along these lines, though perhaps not so folksy? 

{Here, I’ll assume that the correspondence between bytes [b7b6…b0] and field elements v = 
[b7x7+b6x6+…+b0] ∈ GF(2)[X]/<P011B> has been explicitly established.} 



  
How do we multiply two bytes, say u = [0x27] and v = [0xb5], in our P011B representation of 
GF(28)? Well, we could write u as the bit vector [00100111] and immediately read off the 
corresponding polynomial: u = x5+x2+x+1. Similarly, v = x7+x5+x4+x2+1. So, we could (rather naively; 
see E.1.2) compute u*v mod P011B by applying distributivity and reducing the resulting 
polynomial of degree 12 to one of degree at most 7 by (repeatedly!) using the substitution x8 = 
x4+x3+x+1 (since x8+x4+x3+x+1 = 0 in the P011B representation and we're in characteristic 2). 
Tedious and inefficient? You betcha!  
 
For greater efficiency, the following alternative approach is commonly employed (see E.1.1): 
 
{I presume this is one of the motivations for including E.*.1/E.*.2, though I've only skimmed the 
Cryptol and not really tried deciphering it. So, after properly defining EXP011B as the table of 
powers of x+1 in the (cyclic) multiplicative group of non-zero elements of GF(2)[X]/<P011B>, and 
LOG as the table of discrete logs with respect to that generator…} 
  
Recall that our table EXP011B contains pre-computed powers of the primitive polynomial g = x+1 = 
[0x03], those powers exhaust the non-zero elements of our field, and g255=1 (check: EXP011B[0xff] 
= 0x01). Since u = [0x27] = EXP011B[0x6a] – equivalently, LOG001B[0x27] = 0x6a – we have u = 
g0x6a. Similarly, LOG001B[0xb5] = 0x60 implies v = g0x60. Consequently, 

u*v = g0x6a * g0x60 = g0x6a + 0x60 = g0xca mod P011B. 
(Here, since g255=1, we generally add bytes in the exponent modulo 255, though the reduction is 
not necessary in our example). Putting this together, we find that: 

[0x27] * [0xb5] = EXP011B[0xca] = [0xcf]. 
Thus, with a single-byte addition, a possible single-byte modular reduction, and three table 
lookups, we've managed to compute:  

 (x5+x2+x+1) * (x7+x5+x4+x2+1) = x7+x6+x3+x2+x+1   mod (x8+x4+x3+x+1) 
{Hopefully this is correct!} 
 
Repeating this computation in the P011D representation, using LOG011D and EXP011D, and 
getting a different value for the product u*v clearly illustrates the fact that agreement on the 
choice of representation is crucial for interoperability. {Explanation: [0x27] in the P011B 
representation is x5+x2+x+1 mod P011B, while [0x27] in the P011D representation is x5+x2+x+1 
mod P011D, and these residue classes are not the “same;” since they live in different sets, they 
can’t even be compared.} 
  
There are infinitely many representations of any finite field. This standard specifies use of the 
representations of GF(28) defined by P011B [AES] and P011D [BSAFE] to foster interoperability, as 
well as to leverage existing implementations: the arithmetic operations required to perform TSS in 
either of these representations are already widely available in both hardware and software. 
 


