
SCA Event Processing and 
Pub/Sub :

An Implementation Perspective



History

• Implementation work started: mid-2006

• Event proposal presented to OSOA: early-2007 

• OSOA debated 5 different proposals & 
produced a consolidated spec: April 2009

• OASIS Assembly TC Submission: May 2009

• First event-focused f2f: November 2009



Motivation

• Application Integration

• Integration of SCA components with existing 
infrastructure and interaction models

• Leverage well-accepted pub/sub style of 
organizing components

• Decoupled producers/consumers

• Components interacting via events



Motivation(2)

• SCA components consume events by invoking 
SCA services

• SCA services process requests by raising 
events



Scenarios

• Based on current implementation experience and user 
feedback

• Scenario 1: Overdrawn bank account
– Account overdrawn event
– Component A applies an interest rate
– Component B sends an alert (email/SMS)
– Component C freezes the account
– In the future component D may be added that detects fraud
– Consumers outside of an SCA domain may be interested in the 

event
– Producers outside of the an SCA domain may be raising the 

event



Scenarios (2)

• Scenario 2: Sales event processing
– Orders come in over the web and this results in an 

event

– Orders triggers processing at various consumers 
including order processing components: shipping, 
credit card verification, inventory check etc

– Results in additional events being raised (inventory 
update, shipping notice etc)

– Additional consumers may be added in the future: 
marketing, JIT inventory management

– Additional producers may be added in the future



Scenarios (3)

• Scenario 3: New employee provisioning

– New employee gets added or removed

– Triggers processing at various consumers: 
accounts provisioning, payroll, facilities, directory 
update etc

– Consumers outside of the SCA domain are 
interested

– Producers outside of the SCA domain produce the 
events



Implementation (Non-)Requirements

• Requirements gathered from about four years of implementation 
experience and user feedback

• JMS is the implementation technology
• Channels not scoped to be SCA-only

– External producers can raise events on an SCA channel
– External consumers can consume events from the SCA channel

• Web services:
– SOAP packaging not used for event messages, so WS-* specs have no 

use
– Outside the SCA boundaries WS-* spec such as WS-Eventing used for 

subscription management

• Filtering at channels not implemented
– Channel does not reject messages
– Trees falling down and no one around to hear it, is allowed



Implementation (Non-)Requirements 
(2)

• Partitioning mechanism (aka channels) not found to be useful
– Event types and other filters are sufficient to create virtual partitions
– On deployment, knowledge of all the participants allows for 

optimization, load-balancing etc

• JMS administration is painful/confusing for users
– SCA composites should stay away from similar configuration info 

unless absolutely necessary
– SCA runtimes should be allowed to provide the necessary “magic” for 

creating appropriate JMS destinations without user input
– JMS topic and SCA channel mapping should be decoupled
– SCA runtime should be allowed to change the underlying JMS 

configuration and/or mapping dynamically



Implementation (Non-)Requirements 
(3)

• Event source/destinations used as global resources
– Channels viewed as global rather than local
– Access control is provided by deploying appropriate security 

apparatus rather than information hiding or using scopes
– Consumers/Producers can connect to the same set of channels 

regardless of their position in the composition hierarchy
– No local SCA channels
– Promotion of channels adds to the administration pain-points 

and confuses users
– Event visibility controlled by topic/event type or 

filters/security/connectivity not by composition scope
– Recursive composition used for overriding config not visibility of 

events


