SCA Event Processing and
Pub/Sub :

An Implementation Perspective



History

Implementation work started: mid-2006
Event proposal presented to OSOA: early-2007

OSOA debated 5 different proposals &
produced a consolidated spec: April 2009

OASIS Assembly TC Submission: May 2009
First event-focused f2f: November 2009



Motivation

Application Integration

Integration of SCA components with existing
infrastructure and interaction models

Leverage well-accepted pub/sub style of
organizing components

Decoupled producers/consumers

Components interacting via events



Motivation(2)

* SCA components consume events by invoking
SCA services

* SCA services process requests by raising
events



Scenarios

* Based on current implementation experience and user
feedback
* Scenario 1: Overdrawn bank account
— Account overdrawn event
— Component A applies an interest rate
— Component B sends an alert (email/SMS)
— Component C freezes the account
— In the future component D may be added that detects fraud

— Consumers outside of an SCA domain may be interested in the
event

— Producers outside of the an SCA domain may be raising the
event



Scenarios (2)

* Scenario 2: Sales event processing

— Orders come in over the web and this results in an
event

— Orders triggers processing at various consumers
including order processing components: shipping,
credit card verification, inventory check etc

— Results in additional events being raised (inventory
update, shipping notice etc)

— Additional consumers may be added in the future:
marketing, JIT inventory management

— Additional producers may be added in the future



Scenarios (3)

* Scenario 3: New employee provisioning
— New employee gets added or removed

— Triggers processing at various consumers:
accounts provisioning, payroll, facilities, directory
update etc

— Consumers outside of the SCA domain are
interested

— Producers outside of the SCA domain produce the
events



Implementation (Non-)Requirements

Requirements gathered from about four years of implementation
experience and user feedback

JMS is the implementation technology
Channels not scoped to be SCA-only
— External producers can raise events on an SCA channel
— External consumers can consume events from the SCA channel

Web services:

— SOAP packaging not used for event messages, so WS-* specs have no
use

— Qutside the SCA boundaries WS-* spec such as WS-Eventing used for
subscription management

Filtering at channels not implemented
— Channel does not reject messages
— Trees falling down and no one around to hear it, is allowed



Implementation (Non-)Requirements

(2)

e Partitioning mechanism (aka channels) not found to be useful

Event types and other filters are sufficient to create virtual partitions

On deployment, knowledge of all the participants allows for
optimization, load-balancing etc

e JMS administration is painful/confusing for users

SCA composites should stay away from similar configuration info
unless absolutely necessary

SCA runtimes should be allowed to provide the necessary “magic” for
creating appropriate JMS destinations without user input

JMS topic and SCA channel mapping should be decoupled

SCA runtime should be allowed to change the underlying IMS
configuration and/or mapping dynamically



Implementation (Non-)Requirements

(3)

* Event source/destinations used as global resources

Channels viewed as global rather than local

Access control is provided by deploying appropriate security
apparatus rather than information hiding or using scopes

Consumers/Producers can connect to the same set of channels
regardless of their position in the composition hierarchy

No local SCA channels

Promotion of channels adds to the administration pain-points
and confuses users

Event visibility controlled by topic/event type or
filters/security/connectivity not by composition scope

Recursive composition used for overriding config not visibility of
events



