

Service Component Architecture Spring
Component Implementation
Specification Version 1.1
Working Draft

26 September 2007
Specification URIs:
This Version:

http://docs.oasis-open.org/sca-j/sca-springci-draft-20070926.html
http://docs.oasis-open.org/sca-j/sca-springci-draft-20070926.doc
http://docs.oasis-open.org//sca-j/sca-springci-draft-20070926.pdf

Previous Version:

Latest Version:
 http://docs.oasis-open.org/sca-j/sca-springci-draft-20070926.html
http://docs.oasis-open.org/sca-j/sca-springci-draft-20070926.doc
http://docs.oasis-open.org//sca-j/sca-springci-draft-20070926.pdf

Latest Approved Version:

Technical Committee:
OASIS Service Component Architecture / J (SCA-J) TC

Chair(s):
Henning Blohm, SAP
MIchael Rowley, BEA Systems

Editor(s):
Ron Barack, SAP
David Booz, IBM
Anish Karmarkar, Oracle
Ashok Malhotra, Oracle
Peter Peshev, SAP

Related work:
This specification replaces or supercedes:

• Service Component Architecture Spring Component Implementation Specification
Version 1.00, March 21 2007

This specification is related to:
• Service Component Architecture Assembly Model Specification Version 1.1
• Service Component Architecture Policy Framework Sepcification Version 1.1

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 1 of 14

http://docs.oasis-open.org/sca-j/sca-springci-draft-20070926.html
http://docs.oasis-open.org/sca-j/sca-springci-draft-20070926.doc
http://docs.oasis-open.org//sca-j/sca-springci-draft-20070926.pdf
http://docs.oasis-open.org/sca-j/sca-springci-draft-20070926.html
http://docs.oasis-open.org/sca-j/sca-springci-draft-20070926.doc
http://docs.oasis-open.org//sca-j/sca-springci-draft-20070926.pdf
http://www.oasis-open.org/committees/

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 2 of 14

Declared XML Namespace(s):
TBD

Abstract:
The SCA Spring component implementation specification specifies the how the Spring
Framework can be used with SCA. The goals of this effort are:
Coarse-grained integration: The integration with Spring will be at the SCA Composite level,
where a Spring application context provides a complete composite, exposing services and using
references via SCA. This means that a Spring application context defines the internal structure of
a composite implementation.
Start from SCA Component Type: It should be possible to use Spring to implement any SCA
Composite that uses WSDL or Java interfaces to define services, possibly with some SCA
specific extensions.
Start from Spring context: It should be possible to generate an SCA Composite from any
Spring context and use that composite within an SCA assembly.

Status:
This document was last revised or approved by the OASIS Service Component Architecture / J
(SCA-J) TC on the above date. The level of approval is also listed above. Check the “Latest
Version” or “Latest Approved Version” location noted above for possible later revisions of this
document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-j/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-j/ipr.php.
The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/sca-j/.

http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/ipr.php
http://www.oasis-open.org/committees/sca-j/ipr.php
http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 3 of 14

Notices
Copyright © OASIS® 2007. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 4 of 14

Table of Contents
1 Introduction...5

1.1 Terminology ..5
1.2 Normative References ..5
1.3 Non-Normative References ..5

2 Spring application context as component implementation...6
2.1 Direct use of SCA references within a Spring configuration...7
2.2 Explicit declaration of SCA related beans inside a Spring configuration..8

A. Spring SCA schema ...10
B. Acknowledgements ..12
C. Non-Normative Text ...13
D. Revision History..14

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 5 of 14

1 Introduction 1

2
3
4
5
6
7
8
9

10
11

12

13
14
15

16

17
18
19
20
21

22

23

24

The SCA Java Client and Implementation model for Spring specifies the how the Spring Framework can
be used with SCA. The goals of this effort are:
Coarse-grained integration: The integration with Spring will be at the SCA Composite level, where a
Spring application context provides a complete composite, exposing services and using references via
SCA. This means that a Spring application context defines the internal structure of a composite
implementation.
Start from SCA Component Type: It should be possible to use Spring to implement any SCA Composite
that uses WSDL or Java interfaces to define services, possibly with some SCA specific extensions.
Start from Spring context: It should be possible to generate an SCA Composite from any Spring context
and use that composite within an SCA assembly.

1.1 Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
TBD TBD

[1] Spring Framework

http://static.springframework.org/spring/docs/2.0.x/reference/index.html

1.3 Non-Normative References
TBD TBD

http://www.ietf.org/rfc/rfc2119.txt
http://static.springframework.org/spring/docs/2.0.x/reference/index.html

2 Spring application context as component 25

26

27
28

29
30
31

32
33
34

35
36
37
38
39

40
41
42
43

44

implementation
A Spring Application Context is used as an implementation within an SCA composite component.
Conceptually, this may be represented as follows:

Figure 1 below illustrates a simple SCA domain composed of two composites, both of which are
implemented by Spring application contexts.

SCA Domain

Application Context A

Bean
X

Declared
Service

Reference

Bean
Y

Use of Spring
composite A

Use of Spring
composite B

Spring Application Context B

Bean
Z

Declared
Service

Spring
App

Spring
App

Service
Binding

Bean
W

Figure 1 SCA Domain with two Spring application contexts as composite components

In this figure, there are two composites defined by separate Spring Application Contexts, each
with one declared service. Composite A is composed of two Spring beans, and bean X is exposed
to SCA through an SCA service. Bean Y has a reference to an external SCA service. This service
reference is wired to another Spring context, Composite B, which has a single declared service
entry point, which is wired to Bean Z.

A component that uses Spring for an implementation can wire SCA services and references
without introducing SCA metadata into the Spring configuration. The Spring context knows very
little about the SCA environment. All policy enforcement occurs in the SCA runtime
implementation and does not enter into the Spring space.

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 6 of 14

Application
Context

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 7 of 14

45
46

47
48
49
50
51

52

53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68

69
70
71

72
73
74
75
76
77
78
79

Bean
X

Declared
Service Reference

Bean
Y

Implemented By SCA
Runtime

Figure 2

Figure 2 shows two of the points where the SCA runtime interacts with the Spring context:
services and references. Any policy enforcement is done by the SCA runtime on calls into the
Spring application context before the final message is delivered to the target Spring bean. On
outbound calls from the application context, references supplied by the SCA may provide policy
enforcement

2.1 Direct use of SCA references within a Spring configuration
The SCA runtime hosting the Spring application context implementing a composite creates a
parent application context in which all SCA references are defined as beans using the SCA
reference name as the bean name. These beans are automatically visible in the child (user
application) context.

The following Spring configuration provides a model for Spring application context A, expressed in
figure 1 above. In this example, there are two Spring beans, X and Y. The bean named “X” is the
entry point from SCA into the Spring context and Spring bean Y contains a reference to a service
supplied by SCA.

<beans>

<bean id="X" class="org.xyz.someapp.SomeClass">

 <property name="foo" ref="Y"/>

 </bean>

<bean id="Y" class"org.xyz.someapp.SomeOtherClass">

 <property name="bar" ref="SCAReference"/>

</bean>

</beans>

Two beans are defined. The bean named “X” contains one property (i.e. reference) named “foo”
which refers to the second bean in the context, named “Y”. The bean “Y” also has a single
property named “bar” which refers to the SCA service reference, given the name “SCAReference”

The SCA SCDL contains service and reference definitions for the Spring composite with appropriate
binding information:

<composite name="BazComposite">

 <component name="SpringComponent">

 <implementation.spring location=".."/>

 <service name="X"/>

 <reference name="SCAReference" .../> <!-- binding info specified -->

 </component>

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 8 of 14

80 </composite>

The only part of this that is specific to Spring is the <implementation.spring> element. The
location attribute of that element specifies the target uri of an archive file or directory that contains
the Spring application context files. The resource paths to the Spring application context configuration
files that are used to create the application context are then identified as follows:

81
82
83
84
85
86
87
88
89
90
91
92
93

If the resource identified by the location attribute is an archive file, then the file META-
INF/MANIFEST.MF is read from the archive. If the location URI identifies a directory, then META-
INF/MANIFEST.MF must exist underneath that directory. If the manifest file contains a header
"Spring-Context" of the format:
 Spring-Context ::= path (';' path)*
Where path is a relative path with respect to the location URI, then the set of paths specified in the
header identify the context configuration files. If there is no MANIFEST.MF file or no Spring-Context
header within that file, then the default behaviour is to build an application context using all the *.xml
files in the META-INF/spring directory.
Each <service> element used with <implementation.spring> should include the name of the
Spring bean that is to be exposed as an SCA service in its name attribute. So, for Spring, the
name attribute of a service plays two roles: it identifies a Spring bean, and it names the service
for the component. The service element above has a name of “X”, so there should be a Spring
bean with that name. The SCDL also contains the <reference> element named “SCAReference”.
The reference name becomes an addressable name within the Spring application context – so, in
this case, “SCAReference” can be referred to by bean “Y” in the Spring configuration above.

94
95
96
97
98
99

100

101
102
103
104
105

106
107

108
109
110
111
112

113
114

115
116
117

118

119
120

121
122

123
124
125
126
127
128

129

The SCA runtime is responsible for setting up the references and exposing them as beans with
their indicated names in the spring context. This is usually accomplished by creating a parent
context which has the appropriate beans defined and the context supplied by the implementation
becomes the child of this context. Thus, the references – e.g. the “SCAReference” that bean “Y”
uses for it’s “bar” property – are available to the context.

2.2 Explicit declaration of SCA related beans inside a Spring
configuration

It is also possible to explicitly declare SCA-related beans inside a Spring configuration to proxy
SCA references. When inheriting bean definitions created by an SCA runtime in a parent context, a
bean defined in the child context with the same name as one in the parent context overrides it.
The primary reason you may do this is to enable the Spring container to decorate the bean (using
Spring AOP for example).

A reference to an SCA service (known as an SCA reference) is declared using the Spring SCA
namespace support.

For example, to declare a bean that represents the service referred to by an SCA reference named
"SCAReference" (as discussed in section 2.2.1) you would declare the following:

<sca:reference name="SCAReference" type="com.xyz.SomeType/>

The Spring SCA namespace support provides three elements in total. These are:

<sca: reference> This element defines a Spring bean representing an SCA service which is
external to the Spring application context.

<sca: property> This element defines a Spring bean which represents a property of the SCA
component which configures the Spring composite.

<sca: service> This element defines the beans that the Spring composite exposes as services. It
functions to provide component type information for the Spring composite. Specifically, the SCA
runtime is responsible for creating the proper service bindings and applying required policies to
those services based on SCDL configuration. If a <sca:service> entry is not configured in the
parent SCDL, the SCA runtime must throw a configuration error. If no <sca:service> elements are
specified in the Spring application context, any bean may be exposed as a service. .

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 9 of 14

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156

The following example show an application context that exposes one service, SCAService, and
explicitly defines a bean for an SCA reference, SCAReference. The "goo" property of bean Y is
configured with the SCA property with name "sca-property-name".

<beans>

 <!-- this definition is not required, and the bean SCAReference could also

 have been inherited from the parent context -->

 <sca:reference name=”SCAReference” type="com.xyz.SomeType"/>

 <bean name="X">

 <property name="foo" ref="Y"/>

 </bean>

 <bean name="Y">

 <property name="bar" ref="SCAReference"/>

 <property name="goo" ref="sca-property-name"/>

 </bean>

 <!-- expose an SCA property named “sca-property-name” -->

 <sca:property name="sca-property-name" type="java.lang.String"/>

 <!-- expose the bean "X" as an sca service named "SCAService" -->

 <sca:service name="SCAService" type="org.xyz.someapp.SomeInterface"
target="X"/>

</beans>

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 10 of 14

A. Spring SCA schema 157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.springframework.org/schema/sca"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 attributeFormDefault="unqualified"

 elementFormDefault="qualified"

 targetNamespace="http://www.springframework.org/schema/sca">

 <xsd:element name="composite">

 <xsd:complexType>

 <xsd:attribute name="component" use="required">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="sca-adapter-class" use="optional">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:attribute>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="reference">

 <xsd:complexType>

 <xsd:attribute name="name" use="required">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="type" use="required">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="default" use="optional">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:attribute>

 </xsd:complexType>

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 11 of 14

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

 </xsd:element>

 <xsd:element name="property">

 <xsd:complexType>

 <xsd:attribute name="id" use="optional">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="name" use="required">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="type" use="required">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:attribute>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="service">

 <xsd:complexType>

 <xsd:attribute name="name" use="required">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="type" use="required">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="target" use="required">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:attribute>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 12 of 14

B. Acknowledgements 241

242
243
244
245
246
247

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:
Participants:

[Participant Name, Affiliation | Individual Member]
[Participant Name, Affiliation | Individual Member]

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 13 of 14

C. Non-Normative Text 248

sca-springci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 14 of 14

D. Revision History 249

250
251

[optional; should not be included in OASIS Standards]

Revision Date Editor Changes Made

1 2007-09-26 Anish Karmarkar Applied the OASIS template + related changes
to the Submission

 252
253

	Introduction
	Terminology
	Normative References
	Non-Normative References

	Spring application context as component implementation
	Direct use of SCA references within a Spring configuration
	Explicit declaration of SCA related beans inside a Spring co

