

Service Component Architecture Java
Component Implementation
Specification Version 1.1
Working Draft

26 September 2007
Specification URIs:
This Version:

http://docs.oasis-open.org/sca-j/sca-javaci-draft-20070926.html
http://docs.oasis-open.org//sca-j/sca-javaci-draft-20070926.doc
http://docs.oasis-open.org//sca-j/sca-javaci-draft-20070926.pdf

Previous Version:

Latest Version:
http://docs.oasis-open.org/sca-j/sca-javaci-draft-20070926.html
http://docs.oasis-open.org//sca-j/sca-javaci-draft-20070926.doc
http://docs.oasis-open.org//sca-j/sca-javaci-draft-20070926.pdf

Latest Approved Version:

Technical Committee:
OASIS Service Component Architecture / J (SCA-J) TC

Chair(s):
Henning Blohm, SAP
MIchael Rowley, BEA Systems

Editor(s):
Ron Barack, SAP
David Booz, IBM
Anish Karmarkar, Oracle
Ashok Malhotra, Oracle
Peter Peshev, SAP

Related work:
This specification replaces or supercedes:

• Service Component Architecture Java Component ImplementationSpecification Version
1.00, 15 February 2007

This specification is related to:
• Service Component Architecture Assembly Model Specification Version 1.1
• Service Component Architecture Policy Framework Sepcification Version 1.1

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 1 of 22

http://docs.oasis-open.org/sca-j/sca-javaci-draft-20070926.html
http://docs.oasis-open.org//sca-j/sca-javaci-draft-20070926.doc
http://docs.oasis-open.org//sca-j/sca-javaci-draft-20070926.pdf
http://docs.oasis-open.org/sca-j/sca-javaci-draft-20070926.html
http://docs.oasis-open.org//sca-j/sca-javaci-draft-20070926.doc
http://docs.oasis-open.org//sca-j/sca-javaci-draft-20070926.pdf
http://www.oasis-open.org/committees/

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 2 of 22

Declared XML Namespace(s):
TBD

Abstract:
This specification extends the SCA Assembly Model by defining how a Java class provides an
implementation of an SCA component, including its various attributes such as services,
references, and properties and how that class is used in SCA as a component implementation
type. It requires all the annotations and APIs as defined by the SCA Java Common Annotations
and APIs specification.
This specification also details the use of metadata and the Java API defined in the context of a
Java class used as a component implementation type.

Status:
This document was last revised or approved by the OASIS Service Component Architecture / J
(SCA-J) TC on the above date. The level of approval is also listed above. Check the “Latest
Version” or “Latest Approved Version” location noted above for possible later revisions of this
document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-j/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-j/ipr.php.
The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/sca-j/.

http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/ipr.php
http://www.oasis-open.org/committees/sca-j/ipr.php
http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 3 of 22

Notices
Copyright © OASIS® 2007. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 4 of 22

Table of Contents
1 Introduction...5

1.1 Terminology ..5
1.2 Normative References ..5
1.3 Non-Normative References ..5

2 Service..6
2.1 Use of @Service...6
2.2 Local and Remotable services ...8
2.3 Introspecting services offered by a Java implementation...8
2.4 Non-Blocking Service Operations...9
2.5 Non-Conversational and Conversational Services...9
2.6 Callback Services ...9

3 References ...10
3.1 Reference Injection...10
3.2 Dynamic Reference Access..10

4 Properties ...11
4.1 Property Injection..11
4.2 Dynamic Property Access...11

5 Implementation Instance Instantiation..12
6 Implementation Scopes and Lifecycle Callbacks ...14

6.1 Conversational Implementation ..14
7 Accessing a Callback Service ..16
8 Semantics of an Unannotated Implementation ..17
9 Specifying the Java Implementation Type in an Assembly..18
10 Specifying the Component Type ..19
A. Acknowledgements ..20
B. Non-Normative Text ...21
C. Revision History..22

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 5 of 22

1 Introduction 1

2
3
4
5
6
7
8
9

10

11

12
13
14

15

16
17
18
19
20
21
22
23
24

25

26

This specification extends the SCA Assembly Model [1] by defining how a Java class provides an
implementation of an SCA component (including its various attributes such as services, references, and
properties) and how that class is used in SCA as a component implementation type.
This specification requires all the annotations and APIs as defined by the SCA Java Common
Annotations and APIs specification [2]. All annotations and APIs referenced in this document are defined
in the former unless otherwise specified. Moreover, the semantics defined in the Common Annotations
and APIs specification are normative.
In addition, it details the use of metadata and the Java API defined in [2] in the context of a Java class
used as a component implementation type

1.1 Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
TBD TBD

[1] SCA Assembly Specification
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf

[2] SCA Java Common Annotations and APIs
http://www.osoa.org/download/attachments/35/SCA_JavaCommonAnnotationsAndAPIs_V100.pdf

1.3 Non-Normative References
TBD TBD

http://www.ietf.org/rfc/rfc2119.txt

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 6 of 22

2 Service 27

28

29
30

31

32

33
34

35
36
37

38
39
40

41
42
43

44

45
46
47
48
49

50
51

52

A component implementation based on a Java class may provide one or more services.

The services provided by a Java-based implementation may have an interface defined in one of
the following ways:

• A Java interface

• A Java class

• A Java interface generated from a Web Services Description Language [3] (WSDL)
portType.

Java implementation classes must implement all the operations defined by the service interface. If
the service interface is defined by a Java interface, the Java-based component can either
implement that Java interface, or implement all the operations of the interface.

A service whose interface is defined by a Java class (as opposed to a Java interface) is not
remotable. Java interfaces generated from WSDL portTypes are remotable, see the WSDL 2 Java
and Java 2 WSDL section of the SCA Java Common Annotations and API Specification for details.

A Java implementation type may specify the services it provides explicitly through the use of
@Service. In certain cases as defined below, the use of @Service is not required and the services
a Java implementation type offers may be inferred from the implementation class itself.

2.1 Use of @Service
Service interfaces may be specified as a Java interface. A Java class, which is a component
implementation, may offer a service by implementing a Java interface specifying the service
contract. As a Java class may implement multiple interfaces, some of which may not define SCA
services, the @Service annotation can be used to indicate the services provided by the
implementation and their corresponding Java interface definitions.

The following is an example of a Java service interface and a Java implementation, which provides
a service using that interface:

Interface:

public interface HelloService { 53
54

 String hello(String message); 55
} 56

57

58

Implementation class:

@Service(HelloService.class) 59
public class HelloServiceImpl implements HelloService { 60

61

 public String hello(String message) { 62
 ... 63

 } 64
} 65

66

67
68
69

The XML representation of the component type for this implementation is shown below for
illustrative purposes. There is no need to author the component type as it can be reflected from
the Java class.

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 7 of 22

70

<?xml version="1.0" encoding="ASCII"?> 71
<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9"> 72

73
 <service name="HelloService"> 74
 <interface.java interface="services.hello.HelloService"/> 75
 </service> 76

77
</componentType> 78

79

80
81
82
83

84

The Java implementation class itself, as opposed to an interface, may also define a service offered
by a component. In this case, @Service may be used to explicitly declare the implementation class
defines the service offered by the implementation. In this case, a component will only offer
services declared by @Service. The following illustrates this:

@Service(HelloServiceImpl.class) 85
public class HelloServiceImpl implements AnotherInterface { 86

87

 public String hello(String message) { 88
 ... 89

 } 90
91 …

} 92
93
94
95
96

In the above example, HelloWorldServiceImpl offers one service as defined by the public methods on the
implementation class. The interface AnotherInterface in this case does not specify a service offered by the
component. The following is an XML representation of the introspected component type:

<?xml version="1.0" encoding="ASCII"?> 97
<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9"> 98

99

 <service name="HelloService"> 100
 <interface.java 101
interface="services.hello.HelloServiceImpl"/> 102
 </service> 103

104
</componentType> 105

106

107

108

@Service may be used to specify multiple services offered by an implementation as in:

@Service(interfaces={HelloService.class, AnotherInterface.class}) 109
public class HelloServiceImpl implements HelloService, AnotherInterface 110

{ 111
112

 public String hello(String message) { 113
 ... 114

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 8 of 22

 } 115
 … 116

} 117

118

119

The following snippet shows the introspected component type for this implementation.

<?xml version="1.0" encoding="ASCII"?> 120
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"> 121

122

 <service name="HelloService"> 123
 <interface.java interface="services.hello.HelloService"/> 124
 </service> 125
 <service name="AnotherService"> 126
 <interface.java interface="services.hello.AnotherService"/> 127
 </service> 128

129
</componentType> 130

131

132
133
134

2.2 Local and Remotable services
A Java service contract defined by an interface or implementation class may use @Remotable to
declare that the service follows the semantics of remotable services as defined by the SCA
Assembly Specification. The following example demonstrates the use of @Remotable:

package services.hello; 135
136

@Remotable 137
public interface HelloService { 138

139

 String hello(String message); 140
} 141

142

143
144

145

146
147
148
149

150
151

152

153
154
155

156
157
158

Unless @Remotable is declared, a service defined by a Java interface or implementation class is
inferred to be a local service as defined by the SCA Assembly Model Specification.

If an implementation class has implemented interfaces that are not decorated with an
@Remotable annotation, the class is considered to implement a single local service whose type is
defined by the class (note that local services may be typed using either Java interfaces or
classes).

An implementation class may provide hints to the SCA runtime about whether it can achieve pass-
by-value semantics without making a copy by using the @AllowsPassByReference.

2.3 Introspecting services offered by a Java implementation
In the cases described below, the services offered by a Java implementation class may be
determined through introspection, eliding the need to specify them using @Service. The following
algorithm is used to determine how services are introspected from an implementation class:

If the interfaces of the SCA services are not specified with the @Service annotation on the
implementation class, it is assumed that all implemented interfaces that have been annotated as
@Remotable are the service interfaces provided by the component. If none of the implemented

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 9 of 22

159
160

161

162
163
164

165

166
167
168

169
170
171
172
173
174

175

176
177

interfaces is remotable, then by default the implementation offers a single service whose type is
the implementation class.

2.4 Non-Blocking Service Operations
Service operations defined by a Java interface or implementation class may use @OneWay to
declare that the SCA runtime must honor non-blocking semantics as defined by the SCA Assembly
Specification when a client invokes the service operation.

2.5 Non-Conversational and Conversational Services
The Java implementation type supports all of the conversational service annotations as defined by
the SCA Java Common Annotations and API Specification: @Conversational, @EndsConversation,
and @ConversationAttributes.

The following semantics hold for service contracts defined by Java interface or implementation class. A
service contract defined by a Java interface or implementation class is inferred to be non-
conversational as defined by the SCA Assembly Specification unless it is decorated with
@Conversational. In the latter case, @Conversational is used to declare that a component
implementation offering the service implements conversational semantics as defined by the SCA
Assembly Specification.

2.6 Callback Services
A callback interface is declared by using the @Callback annotation on the service interface
implemented by a Java class.

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 10 of 22

3 References 178

179
180
181

182

183
184

185
186
187
188
189
190
191
192
193
194
195

196
197
198
199
200

201
202
203
204

205
206
207

208
209

210
211

212

213
214
215

References may be obtained through injection or through the ComponentContext API as defined in
the SCA Java Common Annotations and API Specification. When possible, the preferred
mechanism for accessing references is through injection.

3.1 Reference Injection
A Java implementation type may explicitly specify its references through the use of @Reference as
in the following example:

 public class ClientComponentImpl implements Client {

 private HelloService service;

 @Reference

 public void setHelloService(HelloService service) {

 this.service = service;

}
}

If @Reference marks a public or protected setter method, the SCA runtime is required to provide
the appropriate implementation of the service reference contract as specified by the parameter
type of the method. This must done by invoking the setter method an implementation instance.
When injection occurs is defined by the scope of the implementation. However, it will always
occur before the first service method is called.

If @Reference marks a public or protected field, the SCA runtime is required to provide the
appropriate implementation of the service reference contract as specified by the field type. This
must done by setting the field on an implementation instance. When injection occurs is defined by
the scope of the implementation.

If @Reference marks a parameter on a constructor, the SCA runtime is required to provide the
appropriate implementation of the service reference contract as specified by the constructor
parameter during instantiation of an implementation instance.

References may also be determined by introspecting the implementation class according to the
rules defined in Section Error! Reference source not found..

References may be declared optional as defined by the Java Common Annotations and API
Specification.

3.2 Dynamic Reference Access
References may be accessed dynamically through ComponentContext.getService() and
ComponentContext.getServiceReference(..) methods as described in the Java Common
Annotations and API Specification.

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 11 of 22

4 Properties 216

217

218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233

234
235
236

237
238

239
240

241
242

243
244

245

246
247

4.1 Property Injection
Properties may be obtained through injection or through the ComponentContext API as defined in
the SCA Java Common Annotations and API Specification. When possible, the preferred
mechanism for accessing propertoes is through injection.

A Java implementation type may explicitly specify its properties through the use of @Property as
in the following example:

 public class ClientComponentImpl implements Client {

 private int maxRetries;

 @Property

 public void setRetries(int maxRetries) {

 this. maxRetries = maxRetries;

}
}

If @Property marks a public or protected setter method, the SCA runtime is required to provide
the appropriate property value. This must done by invoking the setter method an implementation
instance. When injection occurs is defined by the scope of the implementation.

If @Property marks a public or protected field, the SCA runtime is required to provide the
appropriate property value. When injection occurs is defined by the scope of the implementation.

If @Property marks a parameter on a constructor, the SCA runtime is required to provide the
appropriate property value during instantiation of an implementation instance.

Properties may also be determined by introspecting the implementation class according to the
rules defined in Section Error! Reference source not found..

Properties may be declared optional as defined by the Java Common Annotations and API
Specification.

4.2 Dynamic Property Access
Properties may be accesses dynamically through ComponentContext. getProperty () method as
described in the Java Common Annotations and API Specification.

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 12 of 22

5 Implementation Instance Instantiation 248

249
250
251
252
253
254

255

256

257

258

259
260

261

262

263

264
265

266

267

268

269

270
271

272
273

274

275
276

277

278

279

280

281
282

283

284

285

286

287

A Java implementation class must provide a public or protected constructor that can be used by
the SCA runtime to instantiate implementation instances. The constructor may contain
parameters; in the presence of such parameters, the SCA container will pass the applicable
property or reference values when invoking the constructor. Any property or reference values not
supplied in this manner will be set into the field or passed to the setter method associated with
the property or reference before any service method is invoked.

The constructor to use is selected by the container as follows:

1. A declared constructor annotated with a @Constructor annotation.

2. A declared constructor that unambiguously identifies all property and reference values.

3. A no-argument constructor.

The @Constructor annotation must only be specified on one constructor; the SCA container must
report an error if multiple constructors are annotated with @Constructor.

The property or reference associated with each parameter of a constructor is identified:

• by name in the @Constructor annotation (if present)

• through the presence of a @Property or @Reference annotation on the parameter
declaration

• by uniquely matching the parameter type to the type of a property or reference

Cyclic references between components may be handled by the container in one of two ways:

• If any reference in the cycle is optional, then the container may inject a null value during
construction, followed by injection of a reference to the target before invoking any service.

• The container may inject a proxy to the target service; invocation of methods on the proxy
may result in a ServiceUnavailableException

The following are examples of legal Java component constructor declarations:

/** Simple class taking a single property value */

public class Impl1 {

 String someProperty;

 public Impl1(String propval) {...}

}

/** Simple class taking a property and reference in the constructor;

 * The values are not injected into the fields.

 *//

public class Impl2 {

 public String someProperty;

 public SomeService someReference;

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 13 of 22

288

289

290
291
292

293

294

295

296

297
298
299

300

301

302

303

304

305

306
307

308

309

310

311

312

313

 public Impl2(String a, SomeService b) {...}

}

/** Class declaring a named property and reference through the
constructor */

public class Impl3 {

 @Constructor({"someProperty", "someReference"})

 public Impl3(String a, SomeService b) {...}

}

/** Class declaring a named property and reference through parameters
*/

public class Impl3b {

 public Impl3b(

 @Property("someProperty") String a,

 @Reference("someReference) SomeService b

) {...}

}

/** Additional property set through a method */

public class Impl4 {

 public String someProperty;

 public SomeService someReference;

 public Impl2(String a, SomeService b) {...}

 @Property public void setAnotherProperty(int x) {...}

}

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 14 of 22

6 Implementation Scopes and Lifecycle Callbacks 314

315
316
317
318
319
320
321
322
323
324

325
326

327
328
329
330
331
332
333
334
335
336
337
338
339
340

341

342
343
344
345

346
347
348

349
350
351
352
353
354

355
356
357
358
359
360
361
362

The Java implementation type supports all of the scopes defined in the Java Common Annotations
and API Specification: STATELESS, REQUEST, CONVERSATION, and COMPOSITE. Implementations
specify their scope through the use of the @Scope annotation as in:

 @Scope(”COMPOSITE”)

 public class ClientComponentImpl implements Client {
 // …
}

When the @Scope annotation is not specified on an implementation class, its scope is defaulted to
STATELESS.

A Java component implementation specifies init and destroy callbacks by using @Init and
@Destroy respectively. For example:

 public class ClientComponentImpl implements Client {

@Init
public void init() {

 //…
 }

 @Destroy

public void destroy() {
 //…
 }
}

6.1 Conversational Implementation
Java implementation classes that are CONVERSATION scoped may use @ConversationID to have
the current conversation ID injected on a public or protected field or setter method. Alternatively,
the Conversation API as defined in the Java Common Annotations and API Specification may be
used to obtain the current conversation ID.

For the provider of a conversational service, there is the need to maintain state data between
successive method invocations within a single conversation. For an Java implementation type,
there are two possible strategies which may be used to handle this state data:

1. The implementation can be built as a stateless piece of code (essentially, the code expects
a new instance of the code to be used for each method invocation). The code must then
be responsible for accessing the conversationID of the conversation, which is maintained
by the SCA runtime code. The implementation is then responsible for persisting any
necessary state data during the processing of a method and for accessing the persisted
state data when required, all using the conversationID as a key.

2. The implementation can be built as a stateful piece of code, which means that it stores
any state data within the instance fields of the Java class. The implementation must then
be declared as being of conversation scope using the @Scope annotation. This indicates
to the SCA runtime that the implementation is stateful and that the runtime must perform
correlation between client method invocations and a particular instance of the service
implementation and that the runtime is also responsible for persisting and restoring the
implementation instance if the runtime needs to clear the instance out of memory for any
reason. (Note that conversations are potentially very long lived and that SCA runtimes

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 15 of 22

363
364
365

may involve the use of clustered systems where a given instance object may be moved
between nodes in the cluster over time, for load balancing purposes)

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 16 of 22

7 Accessing a Callback Service 366

367
368
369

Java implementation classes that require a callback service may use @Callback to have a
reference to the callback service associated with the current invocation injected on a public or
protected field or setter method.

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 17 of 22

8 Semantics of an Unannotated Implementation 370

371
372

373
374

375
376

377

378
379

380

381
382

383

384
385

386
387
388
389
390

391
392

393

The section defines the rules for determining properties and references for a Java component
implementation that does not explicitly declare them using @Reference or @Property.

In the absence of @Property and @Reference annotations, the properties and references of a class
are defined according to the following rules:

1. Public setter methods that are not included in any interface specified by an @Service
annotation.

2. Protected setter methods

3. Public or protected fields unless there is a public or protected setter method for the same
name

The following rules are used to determine whether an unannotated field or setter method is a
property or reference:

1. If its type is simple, then it is a property.

2. If its type is complex, then if the type is an interface marked by @Remotable, then it is a
reference; otherwise, it is a property.

3. Otherwise, if the type associated with the member is an array or a java.util.Collection, the
basetype is the element type of the array or the parameterized type of the Collection;
otherwise the basetype is the member type. If the basetype is an interface with an
@Remotable or @Service annotation then the memberis defined as a reference. Otherwise, it
is defined as a property.

The name of the reference or of the property is derived from the name found on the setter method
or on the field.

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 18 of 22

9 Specifying the Java Implementation Type in an 394

395

396

397
398

399

400

401

402

403

Assembly
The following defines the implementation element schema used for the Java implementation type:.

<implementation.java class="NCName" />

The implementation.java element has the following attributes:

• class (required) – the fully qualified name of the Java class of the implementation

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 19 of 22

10 Specifying the Component Type 404

405
406

407
408
409
410

411
412
413
414

415
416
417

418

For a Java implementation class, the component type is typically derived directly from
introspection of the Java class .

A component type can optionally be specified in a side file. The component type side file is found
with the same classloader that loaded the Java class. The side file must be located in a directory
that corresponds to the namespace of the implementation and have the same name as the Java
class, but with a .componentType extension instead of the .class extension.

The rules on how a component type side file adds to the component type information reflected
from the component implementation are described as part of the SCA assembly model
specification [1]. If the component type information is in conflict with the implementation, it is an
error.

If the component type side file specifies a service interface using a WSDL interface, then the Java
class should implement the interface that would be generated by the JAX-WS mapping of the
WSDL to a Java interface. See the section 'WSDL 2 Java and Java 2 WSDL' in [2].

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 20 of 22

A. Acknowledgements 419

420
421
422
423
424
425

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:
Participants:

[Participant Name, Affiliation | Individual Member]
[Participant Name, Affiliation | Individual Member]

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 21 of 22

B. Non-Normative Text 426

sca-javaci-draft 26 September 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 22 of 22

C. Revision History 427

428
429

[optional; should not be included in OASIS Standards]

Revision Date Editor Changes Made

1 2007-09-26 Anish Karmarkar Applied the OASIS template + related changes
to the Submission

 430
431

	Introduction
	Terminology
	Normative References
	Non-Normative References

	Service
	Use of @Service
	Local and Remotable services
	Introspecting services offered by a Java implementation
	Non-Blocking Service Operations
	Non-Conversational and Conversational Services
	Callback Services

	References
	Reference Injection
	Dynamic Reference Access

	Properties
	Property Injection
	Dynamic Property Access

	Implementation Instance Instantiation
	Implementation Scopes and Lifecycle Callbacks
	Conversational Implementation

	Accessing a Callback Service
	Semantics of an Unannotated Implementation
	Specifying the Java Implementation Type in an Assembly
	Specifying the Component Type

